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The evolution of a two-component acoustic signal in a nonlinear low-viscosity medium is consid- 
ered. A perturbation method that is applicable at all stages of the wave propagation is used to 
obtain a representation of the velocity field and to analyze the scale and regimes of the interactions 
between the components. The statistical characteristics of a regular signal interacting with weak 
small-scale noise are investigated. It is shown that in the case of a signal interacting with large- 
scale noise the concept of turbulent viscosity can be used to describe the evolution of the average 
velocity. 

PACS numbers: 43.25.Ba 

1. INTRODUCTION 

The evolution of acoustic waves of finite amplitude is of 
great theoretical and applied interest in connection with the 
study of sound propagation in liquids and gases both under 
natural conditions and in the laboratory.' Propagation of 
waves traveling in the same direction is described in this case 
by the well-known Burgers equation 

where v is the viscosity coefficient. (In acoustic applications t 
can have the meaning of a spatial coordinate.) 

Equation (1) can also be used to describe the propaga- 
tion of three-dimensional fronts, if the diffraction effects de- 
velop later than the onset of the action of the nonlinearity. It 
is then possible to take into account, within the framework of 
nonlinear geometric acoustics, the inhomogeneity of the me- 
dium and the divergence of the propagating waves.' 

The wave-propagation process described by (1) is char- 
acterized by two time scales: the wave-breaking time 
r0 = la-', where a and I are the amplitude and the scale of 
the perturbation at t =0, and the attenuation time 
rat, = I 'v-'. The ratio of these times gives the values of the 
acoustic Reynolds number which shows the degree to which 
the nonlinear effects can develop. At large Reynolds 
numbers there is formed an ensemble of sawtooth waves that 
attenuate because of the energy dissipation on the steep 
fronts. The running Reynolds number, which can be treated 
as the ratio of the wave scale to the diffusion length 
I d  = (vt )'", decreases in this case, so that at t - rat, we have 
Re=12(vt)-'-1. 

At small Reynolds numbers, the random solutions of (1) 
can be investigated by expansion in harmonics. At large Re, 
however, coherent interaction takes place between a large 
number of harmonics, so that this approach is not effective. 
Evolution of a random perturbation leads in this case to de- 
velopment of a strong turbulence, for which the phase-ran- 
domization hypothesis is not valid. 

A more adequate method of investigation is to change 
over to the Riemann equation that follows from (1) at v = 0 
and whose solution shows that the sought velocity u is con- 
stant along the characteristics (rays) described by the equa- 

tion x = x, + v(x,)t, where v(x,) is the initial perturbation of 
the velocity field. 

Until recently most studies were devoted to the statis- 
tics of random waves in the region prior to the onset of dis- 
continuities, where the Riemann solution is single valued or, 
in other words, one ray arrives at each point. Also consid- 
ered were various particular cases pertaining to the region 
where the discontinuities are formed. The results of these 
studies are reviewed in Ref. 2. 

At t)r,, where the investigation is made difficult by the 
fact that the Riemann wave is multiply valued, it becomes 
necessary to use the principle of selecting the dominant solu- 
tion (ray) realized in the produced shock wave. According to 
this principle, which has been formulated for different cases 
in Refs. 3-6, the dominant ray is the one that has at the given 
point the least action: 

(5-xo) 
s(x)=(p(xo)+- 

2t 
, q ( x o ) =  j v(x.)dxo. 

- m 

This form of the selection principle allows us to investi- 
gate the wave propagation with the aid of a numerical experi- 
ment that reduces in the main to the construction of realiza- 
tions of a random process. 

Analytic results can be obtained in cases when the num- 
ber of competing rays is small or large. In the latter case, the 
rays that become dominant in the course of time are those 
connected with even deeper minima of the initial action, as a 
result of which the scale of the sawtooth waves increases up 
to the instant when the running Reynolds number becomes 
of the order of unity and the waves go over into the stage of 
exponential damping. This regime, which can be called one- 
dimensional acoustic turbulence, was investigated for a pure 
noise wave in Refs. 3-5. 

The problem of the interaction of two components of an 
initial perturbation (primarily of a regular signal with sta- 
tionary noise) was posed and solved for individual ranges of 
parameters and separate stages of propagation, including the 
stage prior to the breaking of the Riemann the stage 
of random sawtooth waves,' and for several cases pertaining 
to the intermediate 

The present paper is an attempt to obtain a general de- 
scription of the evolution of a two-component wave on the 
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basis of a perturbation method that requires smallness of the 
ratio of the amplitudes or of the scales of the components. A 
perturbation method that takes into account the competi- 
tion of the rays and the selection of the dominant solution 
makes it possible to analyze from a unified viewpoint various 
interaction regimes and find their characteristic scales. On 
the basis of this method, the present paper presents also a 
statistical description of the interaction of a regular signal 
with weak small-scale noise and with a large-scale noise. For 
the latter, we investigate the applicability of the concept of 
turbulent viscosity when describing the evolution of the 
average field. 

2. RAY DESCRIPTION OF THE PROPAGATION OF A 
NONLINEAR ACOUSTIC WAVE 

We consider the ray method of describing the evolution 
of a nonlinear acoustic wave specified at t = 0 in the form 
u = u(x) with parameters l,a,r = la- '  such that the Reyn- 
olds number is Re = aiv-') 1. 

It is known that the solution of an exact Burgers equa- 
tion can be obtained in the form of a ratio of two integrals by 
using the Hopf-Cole su6stitution.' Calculating the integrals 
by the method of steepest descent, we arrive at an expression 
for the velocity field in the form"' 

where each term of the sum is connected with a stable branch 
of the solution of the Riemann equation. The quantities u,, 
and s,,, are solutions of a characteristic system of ordinary 
differential equations (partial values of the velocity and of 
the action) and are of the form 

+- 

um=u (r,,,) , s ( x )  + ( x - x m )  cp  -5 v  ( x )  dx,  
-ea 

where Ix,,, ) is the set of pointsx,, satisfying the equation 

subject to the additional condition 1 + u; (x,,,)t > 0 that re- 
quires the action s to have a local minimum at the given x,,, . 

At t < r Eq. (3) has one solution and (2) contains one 
term. At t > T the solution of (3) is multiplying valued, i.e., 
many rays arrive at a given point. At large running Reynolds 
numbers, however, we can take into account in (2) almost 
everywhere (except for narrow fronts) only one term-the 
dominant partial solution satisfying the selection rule 

Taken together, (3) and (4) specify the mapping 
x,, = x,,(x,t ), and at t , ~ ,  when the regime of sawtooth waves 
sets in thex axis is mapped on an assembly of small vicinities 
of points x,, satisfying {he condition ~ ( x , , ,  ) = min. These 
vicinities are the regions of emergence of the beams of rays 
that dominate on a scale L and have a width L r t  - '. 

If the initial perturbation is regarded as a noise or as a 
regular signal with indeterminate phase, x,, becomes indeter- 
minate at a fixed x. This indeterminacy can be characterized 
by a turbulent-diffusion length L,. 

Over times shorter than the signal breaking time, the 
diffusion length is determined directly from (3): 

In multiray propagation, the diffusion length depends 
on the displacement of the dominarit ray. It follows from (4) 
that this displacement is limited by the condition that the 
regular increase of the action s be offset by its possible de- 
crease due to variastion ofp .  The concrete value ofL, differs 
in different cases. For a regular periodic signal with zero dc 
component we have L, = I. If v is a stationary noise, the L, 
is given approximately by It > T) 

Ld2/2t=[DV(Ld) 1'". D,(Ld)=( [cp(xf  Ld) - V ( X )  1') (6) 

and depends on the value of following parameter, which is 
conserved as the wave propagates: 

+ - + - 
J = ( a  ( x )  u ( x + y )  )dy = 5 (u(x) v ( z + y )  )dy=const. I - 01 -OD 

If J =  0, then q, is also a stationary noise and 
D,(x)-a"? at x > I .  If J#O, then D,(x)-Jx at x > l .  We 
have thus for stationary noise ( t  > T) 

Ld= (a l t )  " (J=O) , Ld= ( I t Z )  ''I ( J Z O )  . (7) 

The wave-breaking time is characterized by equality of the 
diffusion length and of the initial scale. At t > T the scale of 
the wave is L - L, . 

3. PERTUBATION METHOD AND PRINCIPAL INTERACTION 
REGIMES 

We consider the evolution of the initial velocity, speci- 
fied at r = 0 in the form of a sum of two components: 
u = u ,  f u,, for each of which are defined parameters I, a ,  
and r such that Re, 1 and that one of the relations I, I ; 1 
or1,l; I- l ,a,a; l%l issatisfied. 

Under these assumptions the ray equation (3)  breaks up; 
apart from small terms, into two: 

(50) = (5-50) It, ( 8 4  

v2 (x,) = ( 5 , - x , ) l t ,  f = t i [ l + t u , ' ( 5 , )  1 .  . (8b) 
For the partial values u, and s,, we have in the same 

approximation. 

u,,,=L', (g,,,) + v 2  ( x , )  f / t = v z  (xm) +v ,  [Zm-v2 ( x m ) r ] ,  
(9) 

where (x,, 1 is the set of solutions (8a), andx,, is the solution 
(8b) that satisfies the selection condition at a given i, : 

Substituting (9) in (2) we obtain ageneral representation 
for the velocity field of a two-component signal in terms of 
the parameters of the individual components; this represen- 
tation is valid both before and after the breaking of the field. 
It follows from this representation that everywhere except in 
the vicinities of the shock fronts, the following formula is 
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valid: 

where%, is an element of the set (2, ] and satisfies the condi- 
tion 

where s2(2 ,) = s2(2,,x,,i ), and the functions x,(f,),i (2,) are 
given by (8b) and (10). 

In the argument of each of the functions v, in (1 1) the 
action of the other component uj gives rise to an indetermin- 
acy that can be described by a length L,. The time at which 
L ,  (the relative length of the turbulent diffusion) becomes 
equal to the spatial scale v, is the time of interaction of u, 
with vj . It describes the destruction of one component by the 
action of the other. 

We consider now in greater detail the features of the 
interaction between the components at various ratios of the 
problem parameters. We assume for simplicity that one of 
the components is a regular periodic signal with zero dc 
component, and the other is a similar signal or a stationary 
noise with a one-scale correlation function. We note that a 
number of the results that follow are valid also outside the 
boundaries of these restrictions. At t g r ,  Eq. (8a) has one 
solution and is independent of tr, I ,  

u(x, t) =u, [x-uz(5, f) t ]  +u2(Zo, t ) ,  (13) 

where u, and u, are the solutions of the Burgers equation for 
each of the components. 

An expression close to (13) was obtained in (9) for the 
region u, ahead of the breaking. It can be easily seen that (13) 
describes phase modulation of the small-scale component by 
the large-scale one. The modulation is characterized by the 
same length as the proper length of the turbulent diffusion 
for v,, defined by (5): L,, = a,t. The interaction time at 
which the modulation index reaches unity and destruction of 
the coherent (but not spectral) structuer of v, takes place can 
be obtained from the equality L,, = L,. If v, is a signal or a 
noise with a, <a , ,  we have for the interaction time 

At r, < t and T2 < T, there can be established in the sys- 
tem sawtooth wavles of scale L,, modulated by u,. 

At t < T, the effect of v, on v,, as follows from (1 3), is also 
characterized by a proper length L, for the component v,. 
At t > T, the presence of the component v, changes the value 
of the action connected with each of the competing rays that 
emerge from the vicinities of the points f, , and therefore 
changes the conditions of the competition. The interaction 
length that represents the interval in which is located the 
point of emergence of the dominant ray is specified by a 
condition that follows from (12): 

If u, is the signal, the right-hand side of (15) takes the 
form 

whence, if v,  is also a signal, follow the interaction scales: 

If v, is a noise, the regular small-scale component has 
little influence on it. 

If v, is a noise, we have for the right-hand side of (15) 
As, = Dq2 (L,,),  and the interaction iength with the signal v,  
is specified just as at t < T,, by expression (7). From the equa- 
tion L,, = L ,  = I, we obtain the interaction time 

If /,a, > I,a, or J,  > l,a:, the signal v ,  is destroyed at 
t-r,, < T, prior to its breaking, because the growth of the 
scale of the noise waves prevents the establishment of saw- 
tooth waves of scale I,. 

If u ,  is a regular signal or noise, but r,, < r , ,  breaking of 
u,  takes place at t-r,. In this case each produced saw is 
connected with a bundle of rays that emerge from the vicini- 
ty 62, -L,r, / t  of the point 2, [p,(2,) = min]. At 
t >  L ,  L ; I ,  when Sx, -L,, modulation by u, affects only 
the positions of the centers and of the boundaries of the indi- 
vidual saws. 

Using the foregoing analysis, we can describe the basic 
types of interaction and self-action of the two components of 
the initial perturbation (u,  and 0,): 

1. Self-action of the small-scale component with a char- 
acteristic time r,, which manifests itself at T, < 7,.  

2. Destruction of the coherent structure of the small- 
scale component (phase modulation) over times r2 ,, which 
takes place if v, is a regular signal or a noise with r,, < 7,. 

3. Self-action of the large-scale component at t - r , ,  
which appears if v, is a signal or a noise with r,, > 7,. 

4. Destruction of the spectral structure (scale) of the 
small-scale component, which takes place at t = r, L ,  L ; ' 
in the case when the conditions indicated in Item 3 are satis- 
fied. 

5. Destruction of the structure of the large-scale signal 
on account of modulation by the small-scale noise at t = r,,, 
and further transfer of energy towards the lower frequencies 
all the way to a scale that is in whole-number ratio with 1, 
and I, (if v,  and v, are regular and I, I ; ' is rational), or until 
the running Reynolds number reaches the value unity. 

Upon interaction of a regular periodic signal and sta- 
tionary noise, the following principal regimes are observed: 

a) Interaction of the large-scale signal u ,  with the weak 
small-scale noise v, (r, < r,,). In this case the modulation of 
the noise by the signal destroys the structure of the noise and 
causes establishment of sawtooth waves with the scale of the 
signal at t = r, .  At t = T, the residual modulation by the 
noise blurs the structure of the signal and an acoustic-turbu- 
lence regime with growing scale sets in. 

b) Interaction of a large-scale signal v,  with a strong 
small-scale noise v, (7, > T,,). In this case the noise is weakly 
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modulated by the signal during the intial stage. After the 
breaking of the noise, its scale begins to grow, and this leads 
to destruction of the signal prior its breaking at T,,. 

c) Interaction of a small-scale signal v, with a large- 
scale noise v , .  The destruction of the coherent structure of 
the signal takes place at t = T,,, and its final blurring and 
transition into the regime of acoustic turbulence take place 
at t - ~ , L , l ; ~ .  

The general expressions obtained above for the velocity 
field allow us to calculate the statistical characteristics of a 
signal interacting with a noise. In the sections that follow we 
shall dwell on two problems pertaining to regimes a) and c), 
in which the approach employed yields some new results. 

4. INTERACTION OF A SIGNAL WlTH A WEAK SMALL-SCALE 
NOISE 

If the signal, u ,  interacts with a nosie u,, with I, S I ,  and 
r2)7, it follows from the general relations (9) that 

Prior to the breaking of u,,  the statistical characterisitcs 
can be calculated with the aid of the probability density of 
the Riemann-wave parameters. At t 2 7 ,  it is necessary for 
such a calculation to use in addition the selection rule. At 
7 ,  < t < r I2 ,  at any point of observation, we can confine our- 
selves to allowance for the competition of only two rays, for 
which %,,, < x  <%,,, + , . From the selection rule it follows 
that a ray emerging from the point %, is dominant if 

From (19) and (20) follows a formula from the probability 
density of the velocity at the point (x,t ): 

where W,, is the joint probability density of the parameters v  
and e, at the points 2, and i,, + , for the noise uz. 

At t ) r ,  and at a Gaussian function W,, we obtain from 
(21) a formula for the average velocity on the interval 
O<x< l ,  in the form 

(2-11/2) 1,  Y = ------ D, (x) = ( x - z )  (0 :  (x) u2 (x+z) )dz. 
t [D?(L,)  1',! ' I 

Thus, the average velocity comprises sawtooth waves 
having the scale of the signal and blurred on account of the 
residual noise modulation by the front. The noise field takes 
the form of successive narrow random pulses located at the 
positions of the fronts of the regular signal. 

At t = r I2,  defined by (18), the residual noise modula- 
tion destroys the waves of scale I ,  and a turbulent regime sets 
in. l o  

5. INTERACTION OF SIGNAL WITH LARGE-SCALE NOISE 

For a signal v, interacting with a large-scale noise v,,  
expression (13) is valid and yields for the probability density 
of the velocity u the formula 

where W, is the one-point probability density of v , .  
From (23) following expressions for the moments 

Expression (24) for the Gaussian function W o  was ob- 
tained in (1 I),  but without indication of the limits of its appli- 
cability. At t  < 7, it coincides with the corresponding expres- 
sion for the Riemann wave. Equations (23) and (24) for the 
region t > T2 could also be obtained by likewise using the 
selection rule for the dominant ray and taking into account 
the competition between the neighboring rays, as was done 
in the preceding section. 

It follows from (24) that at t > l , /a,  the average field 
attenuates. If 

Wo= (2n) -'la exp [ -oIz/2a,'], 

we get at t>r,, 
'2 

(ZL) - e ~ p [ - Z n ~ o , ~ t ~ Z ~ - ~ ] ,  (u2)=oIz+ (2nZ2)-' Ju,'(x) dr .  
0 

(25) 

At tgr , ,  when thecompetitionofthe raysmust be taken 
into account, the selection procedure turns out to be differ- 
ent in the following cases: 

1) r2 > T , ,  when competition takes place between rays 
with random value of the action; this competition can be 
described by the method of Ref. 10. 

2) r ,  > r2, when at t > T, there arrive at the point rays 
with correlated action, so that the method of Ref. 10 leads to 
not quite a correct result. 

In the latter situation it is necessary to apply in succes- 
sion the selection rules, first in the form (10) and then in the 
form (12). Expression (10) is a form of a local rule for select- 
ing the dominant ray from among a set of correlated rays. 
We note, however, that for the most interesting cases the 
probability density can be obtained also by simpler methods. 
At t ( r ,  it is given by expression (23), which takes the neces- 
sary restrictions into account automatically. At t)r, ,  as can 
be seen from the equations of Sec. 3, acoustic turbulence sets 
in and has the same parameters as in the case of propagation 
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of pure noise. It was erroneously stated in Ref. 10 that this 
regime has a weak dependence on the signal parameters. 

We discuss in conclusion the question of the applicabi- 
lity of the concept of turbulent viscosity for the description 
of the evolution of the average field in the case ofjoint propa- 
gation of a signal and large-scale noise.lO." 

Averaging the Burgers equation and discarding the vis- 
cosity term, which is small under our assumptions, we have 

The condition for closing the equation for ( u )  by intro- 
ducing turbulent viscosity Y, is the relation 

For large-scale noise I,>/, at tg r , ,  when the moments 
of the velocity are described by (24), the required connection 
is obtained in two cases: 

1) The signal is weakly perturbed by the noise, t<l,/a,. 
From a Taylor expansion of u2(x - v,t ) we then obtain (27), 
where Y, = a12t. In this case, however, the influence of the 
noise on the signal is certainly weak. 

2) The signal perturbs the noise regime weakly, as is the 
case at a,>a,, as well at t%12a,. 

Equation (24) leads then to the relation 

From (28) we obtain the nonlocal equation 

which goes over, if W, is a Gaussian function, into the diffu- 
sion equation 

~ ( U ) I ~ ~ = V , ~ ~ ( U ) I ~ X ~ ,  v,=alZt. (30) 

The turbulent viscosity was obtained in this form" by a 
method that did not make it possible to set the limits of appli- 
cability of the result. 

For a signal interacting with small-scale noise, turbu- 
lent viscosity was introduced in Ref. 10 under the condition 
J = 0 for t > ~ ,  , T, > T, , and t,rSn, t, < T, in the form 

where tC, can depend on t and on the parameters of the signal 
and the noise. 

We note that if upon interaction of a signal with a noise 
(assuming J = 0) we describe the evolution of the average 
velocity by an equation with turbulent viscosity, defined by 
(30) or (3 I), this will lead to a qualitatively correct picture. 
The diffusion length and interaction time introduced above 
are connected with Y, by the formulas 

At t,rSn the turbulent viscosity leads to an incorrect value of 
the damping decrement. During the stage when the average 
velocity constitutes sawtooth waves of scale I , ,  which man- 
age to establish themselves at large values of the turbulent 
Reynolds number. 

as asls Re, - - ( s n ) ,  ReT - - ( l s > l n )  , 
a n  a n l n  

the turbulent viscosity gives a correct estimate of the static 
broadening of the fronts: A -~ , t l ,  -2 .  As for the structure of 
the average field near the front, it is correctly described only 
in the case of small-scale noise. 

The indicated scheme of interaction of the components 
of the initial perturbation is applicable in the main to a large 
class of signals that have two or several characteristic scales. 
It is possible to treat in this manner the interaction of a 
bounded wave packet with noise, the evolution of a signal 
having a random amplitude and phase modulation, and oth- 
ers. 
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