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The interaction of coherent radiation pulses in resonant multilevel media is considered. Analytic 
solutions that describe the propagation of multifrequency pulses and their collisions under self- 
induced transparency conditions are obtained via the inverse scattering method. The conditions 
for the appearance of soliton solutions for multifrequency pulses are obtained. The interaction 
between coherent pulses is considered in the case of parametric mixing of the frequencies, and the 
transformation length in a resonant medium is obtained. The results are generalized to include 
multilevel media. 

PACS numbers: 42.65. - k 

1. INTRODUCTION 

Coherent interaction of laser radiation with resonant 
media is being intensively investigated over a number of 
years. The overwhelming majority of studies of this subject 
deal with the interaction of monochromatic radiation with 
media that are satisfactorily described by the two-level ap- 
proximation. In addition to detailed numerical investiga- 
tions, effective analytic methods were developed and make it 
possible to describe in sufficient detail the evolution of the 
longitudinal structure of the pulses in both and 
amplifying two-level It became clear in the last few 
years that substantial role in the propagation of coherent 
pulses in two-level media is played by a small-scale instabil- 
ity that gives rise to a transverse structure of the  pulse^.^-'^ 
The evolution of this instability limits the propagation 
length of the coherent pulses in resonant media. The one- 
dimensional description is thus valid at not too large interac- 
tion lengths, and its applicability region should be deter- 
mined in each concrete case by a two-dimensional analysis of 
the transverse structure of the pulse. 

Ever increasing interest is now attracting by the interac- 
tion of short multifrequency laser pulses with resonant mul- 
tilevel medium. It is shown in Ref. l l that when resonant 
multifrequency radiation interacts with cascade transition it 
is possible to control, in a wide range, the parameters of short 
pulses in the self-induced transparency (SIT) regime. The use 
of multifrequency pulses can lower substantially the SIT 
thresholds and permits measurements of the dipole mo- 
ments for weakly allowed transitions. Joint propagation of 
multifrequency pulses in multilevel absorbing and amplify- 
ing medium was investigated in Refs. 12-14 by analytic and 
numerical methods. 

Stationary solutions that describe the propagation of 
pulsed multifrequency radiation with a common envelope in 
a multilevel resonant medium were obtained in Refs. 12 and 
13 (the authors called these pulses "simultons"). A station- 
ary propagation regime corresponds to a definite choice of 
the amplitudes of the individual frequency components and 
populations that participate in the level interaction. The last 
requirement means that a definite relation must be estab- 

lished between the level until the start of the interaction with 
the radiation. The solutions obtained in Ref. 14 describe sta- 
tionary propagation of a multifrequency pulse in a medium, 
a pulse causing transitions to several upper levels from one 
common lower level. Experimental observation of the sta- 
tionary propagation regime in this case does not call for a 
special "preparation" of the initial state of the multilevel 
system, and requires only selection of definite ratios of the 
amplitudes and durations of the individual frequency com- 
ponents of the pulse. Of course, a set of stationary solutions 
cannot describe the evolution of a multifrequency pulse hav- 
ing an arbitrary shape and entering a resonant medium. 

Of particular interest is the frequency conversion of the 
pulses in multilevel system in the coherent regime. i.e., co- 
herent parametric interaction of pulses with different fre- 
quencies. The point is that in the SIT regime high-power 
pulses pass through resonant medium without loss to ab- 
sorption, scattering, etc. At the same time, the resonant 
character of the interaction gives grounds for hoping for a 
high effectiveness of parametric conversion of the frequency 
of light. To solve the posed questions it is necessary to trace 
the evolution of multifrequency radiation in resonant multi- 
level systems. The present paper is devoted to an exposition 
of exact results obtained because we succeeded in a number 
of cases to apply the method of the inverse problem of scat- 
tering theory to the systems described above. To simplify the 
exposition we consider first three-level system, and then 
present a generalization to the multilevel case. 

2. BASIC EQUATIONS 

The propagation of multifrequency radiation 

E=Z Ej erp ( i k y - i q t )  
3 

in a resonant multilevel system is described by the equations 

where 4 is the corresponding component of the resonant 
polarization of the medium, and n is the nonresonant refrac- 
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tive index whose dispersion we neglect. The polarization of 
the medium is expressed in terms of the density-matrix ele- 
ments 

P,=Npkmpmk, (2) 

where N is the density of the resonant multilevel particles, 
p,, is the dipole moment of the transition between the levels 
k and m, which are at resonance with the frequency w, (i.e., 
w, zo,, ); the evolution of the density matrix is usually de- 
scribed by the Bloch equation.'" In the coherent approxima- 
tion, when the relaxation times can be regarded as infinitely 
long, the material equations of the multilevel medium are 
much simplified if they are written directly for the ampli- 
tudes a, of the level-filling probability. In the case of a 
three-level system the equations for the fields and for the 
level amplitudes take the form 

( i l= i (~ l az+~3a3) r  ~ ~ ~ = i a , a ~ * ;  
Ciz=i(~l'al+~za3)r ~ ~ ' = i ~ ~ ~ a ~ a ~ * ;  (3) 
ks=i ( ~ ~ * a ~ + e ~ * a ~ ) ,  ~ ~ ' = i ~ ~ ~ a , a ~ * ,  

where the dimensionless variables E, = p, Ej /2&2 are intro- 
duced; a dot denotes differentiation with respect to the di- 
mensionless proper time (t - xn/c)fl, and a prime denotes 
differentiation with respect to the dimensionless coordinate 
xnfl /c. Here 

and the numbering of the levels and transitions is shown in 
Fig. 1. 

Equations (3) were written for a general case when all 
three transitions are allowed and have commensurate dipole 
moments p, . 

In Sec. 3 we consider a case typical for gaseous media, 
when the total-angular-momentum selection rules allow 
only two transitions, while the third transition between the 
upper levels is forbidden ( p2 = 0). This situation is of inter- 
est from viewpoint of joint propagation of pulses in the SIT 
regime. We shall describe the form, structure, and interac- 
tion of the simultons, and also obtain conditions for their 
formation. 

In Sec. 4 we consider the case when all the pi differ 
from zero, and present solutions that describe the effective 
parametric interaction of the light pulses. 

Both situations can be investigated numerically, but in a 

Fig. i 

number of cases it is possible to obtain analytic solutions of 
the system (3) by the method of the inverse scattering prob- 
lem. This method15 sets in correspondence with the initial 
nonlinear problem a system of two linear equations for ma- 
trices p whose elements depend on x and t: 

The operators A and B depend on x and t and are chosen such 
that the condition for compatibility of (4a) and 4(b) 

be equivalent to the initial system. The construction of the 
matrices A and B is the principal step for the analytic solu- 
tion of the nonlinear problem. 

Assume that the matrix A can be presented in the form 
A = R-J + U, where J is a diagonal matrix with constant ele- 
ments, R- is a spectral parameter, and U is a matrix with zero 
diagonal, the so-called potential, with 1 U 14 as It +CO, so 
that 

It is then possible, using (4a), to construct the scattering ma- 
trix S (il,x,) given a potential U ( t j )  specified at the point x,. 
Equation (4b) determines the dependence of S on x, and 
when U (t,x) is reconstructedfromS (Ax) thevariablex serves 
as a parameter. The solution of the inverse problem is based 
on the methods of solving the classical problem of the theory 
of functions of complex variable, known as the Riemann 
problem,I5 and is given by a system of integro-differential 
equation analogous to the Gel'fand-Levitan-Marchenko 
equation. 

It is easy to verify by direct calculation that thematrices 
A and B can be chosen for the system (3) in the form 

wherep is the density matrix of the resonant particles. Equa- 
tions (5) and (6) are equivalent to Eqs. (3) if the parameters x2 
and x,  are connected by the relation 

the meaning of which will be clarified below. 

3. SELF-INDUCED TRANSPARENCY 

After writing the equations in the form (4)-(6), the in- 
verse-problem method makes it possible in principle to solve 
the problem of the evolution of arbitrary pulses that enter 
into the medium. It is obvious, however, that in a resonantly 
absorbing medium the entering pulse, at sufficiently large 
distances, either attenuates as a result of dispersion spread- 
ing, or is transformed into one or several pulses of stationary 
form (solitons). Therefore, in our opinion, the following 
questions are of interest. First, solitons of what type can 
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propagate (including simultaneous propagation) in the given 
three-level system; second, how do they interact with one 
another; third, what are the threshold conditions for the for- 
mation of multifrequency solitons. 

The construction of soliton  solution^'^ reduces to the 
problem of the construction of definite matrix functions $+ 
and *- that are respectively analytic in the upper and lower 
half-plane of the variable A and have in the region of their 
analyticity equal numbers of zeros A, and pn = A *, (with 
coinciding degrees of degeneracy of $+(An ) and $-( p, )), 
satisfying on the real axis the condition 

$-*+=I (8) 

and having a unity asymptote at infinity. The matrix U is 
expressed in terms $+ via the formula 

U= limh[J,9+]. 
)i+ OD 

(9) 

The soliton parameters are determined by the zeros of the 
Riemann function (8). A detailed exposition of the solution 
would take too much space. Using the fact that the differ- 
ences of the solution from the general analysis of the inverse- 
problem variant considered in detail in Ref. 15 are negligi- 
ble, we proceed directly to an exposition of the results. The 
details of the solutions are given in a separate paper. l6 

The simplest single-pole solution describes simulta- 
neous propagation of pulses that are at resonance with dif- 
ferent transitions: 

The constants C ,,, are connected by the condition C : + C : 
= 1, so that the areas 8 = J ~ d t  under the pulses satisfy the 
relation (8: + 8:)1'2 = 2 ~ .  In this sense the solution (10) 
can be regarded as a two-frequency analog of the known 2 ~ -  
pulse in a two-level system. The duration and velocity of 
such a pulse are connected by the condition 

c/nv-1 =QZxz. (11) 

The solution (10) was obtained earlierI2-l4 as a stationary 
solution of Eqs. (3). It can be added that (10) includes as a 
particular case the propagation of a single 2n-pulse that is at 
resonance with one or the other transition (C, = 0 or 
c2 = 0). 

The inverse-problem method makes it possible to study 
the interaction of simultons. We begin with a two-soliton 
solution. It describes the propagation and collision of two 
pulses of the type (19) moving with different velocities. The 
general form of this solution is quite unwieldy and is not 
presented here (see Ref. 16), but for the interesting particular 
case when one pulse moves like a 2~-pulse at resonance with 
one transition and the second moves (with a different veloc- 
ity) as a 2n-pulse that is at resonance with the other the solu- 
tion takes the fonn 

1 t-x/vs 1 -' t-xlv, 
ei=o{~sch(T;-) '-  (:+;) ~ x P ( - ~ ) } .  

where 

t-zlv, t-x/va 
~ e x p ( - ~ )  exp (-7). Ta 

For brevity, we have left out of these formulas the phase 
constants that determine the initial position of the solitons. 

One can trace the interaction between the pulses by as- 
suming that the faster one, say E ~ ,  overtakes the pulse E,. 

Equatian (12) show that as t -+  - m the fields are separated 
single-frequency 2~-pulses: 

1 t-slv, 1 t-xlv, 
&,=-sech TI (y-) . 8,- -sech TS (-). T3 (13) 

After the collision, when the pulses move far enough from 
one another (t-, + m)  they take the form 

(14) 

It can be seen, however, that upon collision the amplitude of 
the slow pulse reverses sign. During the time of the collison 
the slow pulse slows down and the fast one is accelerated, 
and the relative shifts are determined by one and the same 
quantity 

x=ln[(~t+T~)/(Ti-ra)]. 

An analysis of simulton collisions in the general case 
shows that despite the larger number of degrees of freedom, 
the character of the interaction of a two-frequency field with 
a three-level system does not differ qualitatively from the 
interaction of 2~-pulses (of solitons in a two-level system). 
Just as in pair collision of solitons in any fully conservative 
system investigated with the aid of the inverse-problem 
method, the collisions change only the phases of the simul- 
tons, and forward and backward shifts take place of the fast 
and slow pulses, respectively. The ratio of the field ampli- 
tudes, however, is not altered by the collision at both fre- 
quencies in each simulton. 

More and more complicated multisoliton solutions can 
be constructed just as the two-pole solution. Of course, they 
assume an ever more complicated form. We proceed now to 
the conditions for the appearance of solitons. 

Assume that two pulses E , , ~  (t ) of known form enter the 
medium at the boundary x = x,, and that I E ,  (4 as It I-+ a,. 

We consider two different fundamental matrices of the solu- 
tions of Eqs. (4a) at the point x,, namely p+, which has the 
asymptotic form 

cp+=exp (&It), t-++w, (15) 

and p-, which has the asymptotic form 

cp-=exp (ikJt), t+ -m. (16) 

Since both matrices e, * are fundamental, i.e., made up of 
linearly independent columes, which are solutions of Eqs. 
(4a), there exists a nondegenerate matrix S (A  ), called the 
scattering matrix, such that 

ql-=q)+S. (17) 
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The dependence of S on x is obtained from Eq. (4b) on the solitons. The pulse durations are connected by the condi- 
the asymptote Jt I+w , where we know the matrix B. In the tion 
case of a resonantly absorbing medium, all the elements of 52:zi=const, 
the density matrix vanish as It I+ W ,  with the exception of 

(20) 

p , ,  = 1 (the medium is in the ground state). The zeros of the and their velocities are given by . - -  
~ i e m a n i  problem (8), which-determine the parameters of s t v,=c/n. 
the solitons, are the zeros of the principal minors of the ma- 

(21) 

trix S (Ref. 15). 
The propagation velocity v2 of the pulse E,  turns out to be 
equal to the velocity of light in the medium. In fact, since all 

We consider the case when rectangular pulses E ,  and E, 

enter the medium in succession without overlapping and the particles are on the lower level prior to the arrival of the 
pulses E ,  and E,, the medium is transparent to the field of E,. 

have the frequencies of the corresponding transitions. An 
The pulse decay lengths are equal to 

analysis of the scattering matrix shows in this case that for 
the first zero to appear it is necessary that the area of at least 
one of the pulse exceed T. If this condition is satisfied for 
only one pulse, then the usual 2~ pulse is produced in the 
corresponding transition. If, however, the areas of both ini- 
tial pulses exceed P, then two 2~-pulses are produced in the 
medium in different transitions; this solution is described by 
Eq. (12), and the second pulse does not necessarily have a 
larger velocity than the first. These results do not differ from 
those obtained for a two-level 

It is easy to obtain the scattering matrix for identical 
rectangular entering pulses. In this case the first soliton ap- 
pears at (0 : + 8 :)"' > P, where 0 ,,, are the areas of the 
entering pulses. The solution is then described by Eq. (10) 
and corresponds to a stationary joint two-frequency soliton. 

All the foregoing results are easily generalized to multi- 
level systems in which pulses interacting with a common 
lower level propagate. The inverse-problem can be used in 
the case when the oscillator strengths of all the transitions 
are equal, pfoi = const. Violation of this condition changes 
the situation substantially. Numerical calculations show 
that in this case the soliton collison leads to their breakup, to 
excitation of the medium, etc. 

4. PARAMETRIC INTERACTION 

We consider now a three-level system in which all three 
types of transition are possible. The condition (7) relates the 
oscillator strengths of the transitions 

(18) 

or, equivalently, L? : + L? : = L? :, where Oi = 2r/Np;oi / 
fi. The simplest one-pole solution is of the form 

and describes the decay of a 2~-pulse E, into two 2~-pulses el  
and E, or the inverse process of the mixing of the frequencies 
of the pulses E, and E,  and generation of a pulse E,. The 
constants ai and A, in (19) determine the initial positions of 

and turn out to be of the same order as the lengths of the 21r- 
pulses in the corresponding resonant media. Since the decay 
takes place at sufficiently short pulses, the condition (18) 
should be satisfied only with accuracy 6f2 ' / f 2  < 1. If (18) is 
rigorously satisfied, the conversion efficiency is 100%. 

An analysis of the coefficients a, and Ai shows that the 
phase of the pulse E, is reckoned from the point where the 
pulses e, and E, collide, i.e., form the point where the maxi- 
ma of the fields of &, and E,  coincide. The condition (18) is 
none other than the Manley-Rowe relation for the pulses as a 
whole, i.e., the law of conservation of the total number of 
photons in a coherent interaction. Indeed, in any three-wave 
mixing process in a nondissipative medium one photon of 
frequency 12, is produced for each pair of photons w ,  and 13,. 

If the radiation intensities in a transparent nonresonant me- 
dium are not optimal from the point of view of the Manley- 
Rowe relation, the strong pulse is mixed only partially with 
the weaker one. The remaining radiation leaves the medium 
freely. In coherent interaction with a resonantly absorbing 
medium the stable formations are solitons. If we require that 
the system, be fully conservative, a requirement common to 
problems solved by the inverse-problem method, only soli- 
tons can be produced in processes of decay or mixing of radi- 
ation at different frequencies. Otherwise part of the radi- 
ation is retained in the medium as a result of dispersion 
spreading. This reasoning, of course, is not a proof, but ex- 
plains qualitatively why in this system the relation between 
the oscillator strengths of three transition, a relation equiva- 
lent to the law of conservation of the total number of photons 
in the interacting 2n pulses, appears as the condition of the 
applicability of the inverse-problem method. 

Let us discuss the possibility of realizing this three-level 
system for a three-frequency interaction of light pulses. One 
of the variants is to place the resonant particles in a crystal 
matrix, where the hindrances are lifted because of the inter- 
action with the environment and all three transitions can 
become allowed. It is important here to satisfy the condition 
that the phase velocities of all waves be equal, i.e., the usual 
condition of spatial synchronism. Thus, introduction of spe- 
cially chosen impurities into the nonlinear crystal can in- 
crease strongly the efficiency of conversion of ultrashort 
pulses. Moreover, at sufficiently large oscillator strengths 
and a high density of the resonant particles in the crystal 
matrix, the dispersion of the refractive index of the matrix 
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Fig. 2 

can become negligible. Since the interaction length L,,, -c/ 
L? '7 of the pulses in the medium should be less than the 
phase-synchronism length 2.rr/ksn, and the pulse durations 
should not exceed the polarization transverse-relaxation 
time T2, the dispersion of the crystal-lattice matrix can be 
neglected under the condition 2p2T,N /fi > Sn. 

In a gaseous media, where the momentum selection 
rules are satisfied, the indicated interaction scheme cannot 
be realized without resorting to supplementary fields. How- 
ever, a three-frequency parametric interaction of the pulses 
can be effected in a four-level gas medium in the presence of a 
stationary electromagnetic field. One such scheme is shown 
in Fig. 2. If the field Eo is strong enough, i.e., p24E0~,,2 /fi) 1, 
and the resonance condition o, = w ,  + o2 + a, is satisfied, 
the results obtained above are valid. In place ofp, it is neces- 
sary to substitute in (1 8) the effective value of the dipole mo- 
ment of the transition between the levels 2 and 3 

pz3 eff =pscp12EolftAr 

whered is the deviation of the frequency of the field E2 from 
the frequency of the 2-4 transition. By varying the frequency 
deviation and the amplitude of the field Eo it is possible to 
satisfy the condition (18) exactly. 

5. CONCLUSION 

Within the framework of the inverse-problem method it 
is possible to obtain also more complicated solutions that 
describe different variants of soliton and simulton interac- 
tions in a three-level system. In the present paper are cited 
only the simplest of them, which demonstrate the qualitative 
features of such an interaction. It should be noted that it is 
possible to obtain in similar fashion analytic solutions that 
describe nonlinear interaction of coherent pulses in multile- 
vel resonant media with a number of k of levels larger than 
three. For the use of the method to be valid, the oscillator 
strengths of the resonant transitions must in this case be 
connected by (k - l)(k - 2)/2 conditions similar to (18). 

By writing Eqs. (3) in the form (5) and (6) it is possible 
also to investigate the amplification of multifrequency 

pulses in an inverted three-level medium. This problem 
differs in its formulation from the one considered here only 
by the initial conditions for the density matrix. The amplifi- 
cation of pulses in two-level media was considered in this 
manner in Refs. 6 and 7. The amplification in a three-level 
system is the subject of a separate analysis. 

We point out in conclusion that all the results were con- 
sidered on the basis of a one-dimensional treatment. 
Allowance for the transverse structure of the pulses limits 
the applicability region because of the development of small- 
scale transverse perturbations.*-lo The characteristic 
lengths of the resonant media at which development of a 
transverse structure can be neglected amount to I, ln(Eo/El), 
where 1, is the length of the pulse in the medium, and Eo and 
E, are the amplitudes of the field and of the initial transverse 
perturbations. 

The results obtained here are thus applicable for a suffi- 
ciently smooth transverse profile of the pulses at the en- 
trance into the resonant medium. The region of one-dimen- 
sional treatment is much larger for coherent pulses with 
of-resonance frequencies, since the growth rate of the trans- 
verse instability decreases upon d e t ~ n i n g . ~  

The authors thank A. P. Napartovich for a useful dis- 
cussion. 
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