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A semiclassical theory valid for arbitrary Fresnel numbers is developed for collective spontane- 
ous emission of two-level quantum emitters in multidimensional (mainly two-dimensional) space. 
It is shown that uncorrelated spontaneous decay can be taken into account within the framework 
of the semiclassical approximation. The kinetics of formation of a correlated state in an ensemble 
of excited emitters is considered. It  is shown that to observe superradiance in a concentrated 
system calls for a symmetrical arrangement of the emitters (the Dicke model). A general expres- 
sion is obtained for the emission frequency shift in the Dicke model. A feature of the dynamics of 
extended emitter systems is that the angular distribution of the emission intensity does not reach a 
maximum simultaneously in different directions, in contrast to the results predicted by the exist- 
ing superradiance models. The question of the anisotropy of collective emission in the case of two- 
dimensional periodic structures is investigated. 

PACS numbers: 42.50. + q 

Spontaneous decay of a group of excited quantum emit- 
ters can differ radically from their independent decay and 
turns into an essentially collective process.'~2 Of interest are 
four cases in which collective properties of spontaneously 
emitting atoms manifest themselves: 1) the case of a concen- 
trated system, when Natoms decay in a spatial region of size 
RdA,  where A is the wavelength of the radiation field; this 
problem was first considered by Dicke,' who obtained for 
the radiation intensity a value proportional to N and intro- 
duced the concept of super-radiant state; 2) decay of a finite 
number of atoms at arbitrary distances between them was 
investigated in detail only for two atoms (a list of the basic 
papers is given in Ref. 3); 3) decay of one excited radiator in 
the presence of analogous unexcited emitters: in Ref. 4 was 
considered a simple model of linear oscillators with damp- 
ing, and in Ref. 5 (see the bibliogra,phy therein) was investi- 
gated decay in the presence of one unexcited radiator; 4) 
collective emission of an extended system of radiators with 
R )A, having arbitrary dimensions and shape-this problem 
in so general a formulation is very complicated, so that satis- 
factory results were obtained only in the one-dimensional 
appr~ximation.~ In a number of papers (see, e.g., Refs. 6-8) 
various methods were proposed for the description of the 
angular anisotropy of the radiation and for taking into ac- 
count the role of the different modes in the development of 
collective emission, but a common shortcoming of the em- 
ployed methods is the assumption of spatial homogeneity of 
the decay process and of constancy of the phases of the emit- 
ters. These conditions are realized only during the initial 
stage of the emission, when the intensity of the radiation is 
low, and are substantially violated when the intensity is in- 
creased, yet it is precisely the case of high radiation intensi- 
ties which is of interest. 

This variety of physical problems gives rise to a corre- 
sponding variety of methods of their solution, and it is some- 
times difficult to establish common ideas that connect these 
solutions. Furthermore, it is still too early to speak of a com- 
plete understanding of the physical mechanism of the super- 
radiance effect. All this stimulates a search for new theoreti- 

cal-description methods that would be more universal and 
free of unjustified assumptions. 

One can point out two difficulties faced by a theory of 
collective spontaneous emission: one is due to the vector 
character of the radiation field and the other to the spatial 
multidimensionality of the real problem. As for the first dif- 
ficulty, we note that in the problems listed above were used, 
explicitly or implicitly, special initial conditions for the ori- 
entations and phases of the radiating currents (several possi- 
ble types of such conditions are listed in Ref. 9), or else the 
polarization properties of the radiation were negle~ted."~ 
With respect to the second difficulty we note that at large 
Fresnel numbers F = S/AL > 1, where S and L are respec- 
tively the cross section and the length of the sample, the one- 
dimensional approximation works well, therefore a three- 
dimensional description is necessary only at F <  1, in 
particular at transverse dimensions comparable with the ra- 
diation -field wavelength. 

In the present paper, on the basis of a semiclassical de- 
scription of the "atoms + field" system, we consider a multi- 
dimensional model of collective spontaneous emission. Prin- 
cipal attention is paid here to the two-dimensional model 
since, first, within the framework of such a model it is physi- 
cally justified to neglect the polarization of the radiators 
and, second, this model contains a number of distinguishing 
features that are characteristic of three-dimensional systems 
and is at the same time very simple and illustrative. 

The basis of the semiclassical description is chosen to be 
a method cited in Ref. 10, which makes it possible to describe 
the inhomogeneities of a medium of arbitrary length; this is 
important when considering active media with small trans- 
verse dimensions. At the same time, the possibility is demon- 
strated of taking into account, within the framework of the 
semiclassical approach, the quantum fluctuations of the 
atomic variables and of the field, which are important during 
the initial stage of the development of the collective radi- 
ation. Allowance for the state of each radiator, and not for 
the integral characteristics of the system, makes it possible to 
consider a large number of problems of all the types listed 
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above. In the present paper, on the basis of the proposed 
model, we consider three fundamental cases: the Dicke mod- 
el (R(R ), solid samples characterized by small Fresnel 
numbers F(1, and systems of radiators with ordered ar- 
rangement-two-dimensional periodic systems whose per- 
iods are comparable with the wavelength of the radiation 
field. 

1. PHYSICAL MODEL 

In a two-dimensional system all the functions of the 
state of the medium (the field amplitude, the inverted popu- 
lation, the polarization of the radiators) depend only on two 
spatial coordinates. In a three-dimensional realization of 
such a system, each radiator constitutes a straight infinite 
filament along which are located identical two-level atoms 
whose states are the same at all instants of time. If the polar- 
ization direction is assumed constant and directed along the 
filament, the radiation of such a two-dimensional radiator is 
isotropic in a two-dimensional subspace orthogonal to the 
direction of the filament, and in this space the radiation field 
can be regarded as scalar. The two-dimensional case, as well 
as the three-dimensional one, differs from the one-dimen- 
sional one in that the force of the self-action of the radiator is 
infinite, and in that the retarded solution of Maxwell's equa- 
tion near the radiator increases without limit. To overcome 
this difficulty we shall use Dirac's method," wherein the 
self-action field of a point radiator (and a filament is a point 
in two-dimensional space) is chosen to be not the retarded 
field, but the limiting value of half the difference between the 
retarded and advanced solutions of Maxwell's equation. 
This method has two advantages: first, the self-action field of 
a point source is always finite, and second, this field de- 
scribes correctly the radiation-friction force. We note that in 
the one-dimensional case'' Dirac's procedure leads to the 
same result as allowance for only the retarded field, inas- 
much as the advanced field of the radiator at the location of 
the latter is finite in magnitude and differs only in sign from 
the retarded solution. 

We consider now a two-level quantum system and, in 
accord with Ref. 12, divide the total intensity of the sponta- 
neous emission of such a system into two parts: 
Z=y(R+R->=r((R1>2+(Rz>2) +r((ARLZ)+(ARZZ)+(Ra)), 

y=4dZo'/3c3, (1) 

where d is the matrix element of the dipole-moment opera- 
tor, w is the transition frequency, c is the speed of light, 
R * = R, f iR,, R, = ai/2, and o, are Pauli matrices. The 
first term in the right-hand side of (1) is due to the nonzero 
average value of the dipole moment, and can therefore be 
called the regular or classical part of the spontaneous emis- 
sion. The second term is due to quantum fluctuations of the 
dipole moment (the quantity (R,) in this term can be asso- 
ciated with quantum fluctuations of the electromagnetic 
field1,), and can therefore be called the fluctuating part. It is 
natural to assume that the classical parts of the radiation 
field due to different atoms interfere with one another while 
the fluctuation parts do not interfere. Using this assumption, 
we consider several examples. 

Thus, for a one-dimensional radiator-a p l a n e t h e  

fluctuation part of the total spontaneous-emission density is 
given by 

where n is the surface density of the atoms, 8 is the Bloch 
angle defined by the relation cos 0 = - 2(R,). The classical 
part of the radiation density is equal to" 

ZcI = (2nlc) (nod) sin2 0 ,  

and then we obtain for the total intensity the expression 

where the parameter 8, = ?r/3nR * can be regarded as the 
"classicism" parameter of a plane radiator. Indeed, at P , )  1 
all the radiation is classical. We note that relations (3) and (4) 
were obtained under the assumption that the emission of the 
atoms that fill the plane adds up coherently only in one direc- 
tion and with a definite polarization, i.e., only one working 
mode is segregared. At Dl - 1, i.e., nR 2 -  1, additional dif- 
fraction directions appear-additional working modes, and 
Eq. (4) no longer holds. 

We can consider similarly spontaneous decay of a two- 
dimensional radiator-a filament (see below). In this case 
one obtains an equation analogous to (4): 

where k = w/c,p, = 4/3Rs, ands is the number of atoms per 
unit length of the filament. Using the connection between 
the Bloch angle 19 and the radiator energy, we can obtain 
from (4) and (5) the law governing the collective decay of the 
radiator. Thus, at PI,, (1 both the one-dimensional and the 
two-dimensional radiators decay in accord with a character- 
istic super-radiant law, with the radiation intensity taking 
the form 

I (t) =Im,,sech2 [ (t-to) / 2~ ,1 ,  

where we have for a one-dimensional radiator 

and for a two-dimensional one 

We note that the radiation intensity is referred to a unit 
length of the two-dimensional radiation and to unit area of 
the surface of the one-dimensional one. For a three-dimen- 
sional radiator B= 1 and the decay is exponential. Sponta- 
neous decay of a plane was considered in Ref. 14 in a semi- 
classical approximation without allowance for atomic and 
field fluctuations, so that no criterion was given for the col- 
lective character of the decay. The problem of decay of a 
two-dimensional radiator (filament) has apparently not been 
considered before. 

We examine now a system of two-dimensional radiators 
(filaments parallel to one another), retaining for the Bloch 
angles 19 and q, the notation adopted in Ref. 10. In the pres- 
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ence of an external resonant field E (t ) = $? e - '"' the behav- 
ior of the two-level system is described by the equation" 

1 d -- 2idl  
(sin Beiq) = - 

cos 0 dt f i  ' (7) 

in which no account is taken of the fluctuation terms. To find 
the field it is necessary to take into account the fact that in 
the considered model the charge density is zero, therefore 
Maxwell's equation for the field E takes the form 

where x and y are the spatial coordinates and j is the current 
density. Since the current density in a resonant medium can 
be represented in the form 

j ( x ,  y, t) =J(x, y, t)e-'*', allat<ol, 

we obtain from (8) an expression for a slowly varying ampli- 
tude of the field 8' as a function of the current-density ampli- 
tude in the medium: 

where H is a Hankel function, and the time delay has been 
left out (see Ref. 10). In the case of a discrete two-dimension- 
al system of radiators we have in place of (9) 

where I, is the current amplitude defined in analogy with 
Ref. 10: 

We note, however, that expression (10) is'incorrect because 
Hhl1(O) = - im. This singularity is due to the infinite self- 
action of a point source of radiation. To obtain the correct 
value of the self-action force by Dirac's method'' it is neces- 
sary to determine the advanced solution of Eq. (8) 

( r ,  t )  = (nklc) H,"' ( k r )  I .  ( t )  (12) 

and calculate next the correct value for the self-action field 
gs: 

where Jo is a Bessel function, Jo(0) = 1. Substituting further 
the relation (1 1) in (lo) and next (10) in (7), as well as taking 
(13) into account, we obtain a system of equations that de- 
scribe the evolution of an ensemble of radiators: 

1  d -- (sin 0, exp (id ) 
cos en dz 

, 
=- H:') (klr,,,-rnI) sin Om exp (icpd, (14) 

where we have introduced the dimensionless time 
T = t (rd 'k ' s / f i ) ,  and the prime on the summation sign de- 
notes that Ha' is taken to be unity at m = n. In the system 

(14), account is taken only of the classical parts of the radi- 
ation field. To take into account the fluctuation parts, it is 
necessary to add to the left-hand side of (14) the term 

(2P2/sin 0,) (1-cos 0,-'12 sin",,) 

and remember that the quantum fluctuations of the dipole 
moment cause phase fluctuations 

I Acp, I =arctg (21 (hs)" sin 0,) 

about a mean value q, that obeys Eq. (14). To conclude this 
section we note that on going over to the continual limit, Eq. 
(14) can be represented in differential form: 

(sin BeQ)] =-4ik2 sin Bei', (15) 

which may turn out to be more convenient when approxi- 
mate calculation methods are developed. 

2. SPONTANEOUS DECAY OF A SYSTEM OF RADIATORS 
WITH DIMENSION R</Z 

The system (14) can be investigated analytically in the 
case R(A.  To this end it is convenient to introduce new var- 
iables Wn and Pn with the aid of the following relations: 

Pn--sin 8, exp (icp,) , W,=-cos On, (16) 

and represent the system (14) in a universal form that does 
not depend on the dimensionality of space: 

dP,ld-c= W, r, GnkPk, d~.ldr=-Fie ( P.' G,,,P,) , 
b R 

(17) 
where G,, is an element of the interaction matrix defined by 
the relations 

I esp (ik I xn-xkI ) , 

I exp (ik lrn-rk1 ) 4d2k" 
z=t - D=3 

ikl1,,-1kl ' 3h ' 
Gnn=l, 

where D is the dimensionality of space; scalar interaction is 
considered at D = 3. At R(A we have the asymptotic ex- 
pressions 

D = l  
D=2, 

n f k  
(19) 

D=3 
G,,=l. 

The principal quantity that characterizes the collective state 
of an ensemble of radiators is the collective Bloch vector S 
whose components in energy-spin space are defined in the 
following manner: 

For the absolute value of the vector S we get from (17) the 
equation 
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diSlz - = 2 z  Irn Gij  [ W j  Im (PieP,) + W ,  In1 (Pi*P,) I. 
dT 

i j , k  

We see therefore that in the multidimensional case, in con- 
trast to the one-dimensional case, the absolute value of the 
vector S is generally speaking not conserved, since ImGJ # O  
(moreover, IIm GU 1-a ), so that the possibility of super- 
radiance in multidimensional systems is not so obvious. 

We consider first a very simple system consisting of two 
radiators and introduce, besides the collective vector 
S = S, + S,, the vector A = S, - S,. For the vector A we get 
from (17) the equation 

From the definition of the vectors S and A it follows that the 
question of conservation of the modulus of the vector S re- 
duces to the question of the conservation of the modulus of 
the vector A. The change of the length of the vector A is due 
only to the presence of the last term in the right-hand side of 
(2 1). The first term in the right-hand side of (21) describes the 
change of the orientation of the vector A when the joint sys- 
tem of vectors S, and S, is rotated as a unit in the vertical 
plane around the vector S x e, . This rotation corresponds to 
relaxation of the system to the ground state. In the one-di- 
mensional case this plane is immobile, and in the multidi- 
mensional case, however, it rotates around a vertical axis 
with angular velocity 0 = (1/2) Im GS,, and the two vectors 
S ,  and S, rotate with it. The change of the orientation of the 
vector A in this rotation is described by the second term in 
the right-hand side of (21). We note also that this rotation 
describes a frequency shift amounting to 
Aw = - 1/2S, Im G. Finally, the remaining two terms in 
the right-hand side of (21) describe the rapid rotation of the 
vector A in a plane perpendicular to the vector S. An analysis 
of this motion shows that the end point of the vector A traces 
an ellipse with semi-axes A, and 
A, = A, (1 - 1/2 sin 8 ) - ' I 2  in a plane perpendicular to the 
vector S. Thus, in a system of two radiators the lengths of the 
vector S oscillates rapidly about a certain mean value with 
oscillation amplitude a Id IZ, and the radiators remain in 
phase (the decay is coherent) if IAI ( 1 at the initial instant. In 
terms of stability theory it can be stated that the state with 
A = 1 is an equilibrium state of the "center" type. 

We consider next a system of three radiators. In such a 
system, in contrast to the preceding one, there can be several 
unequal off-diagonal elements of the matrix G, and this gives 
rise to new peculiarities in the behavior of the system. We 
choose the simplest type of such a system, when there are 
two different off-diagonal elements of this matrix: 
G,=G,, = G2, and G,=G,,. Under this condition the sys- 
tem is symmetrical with respect to interchange of the first 
and third radiators. In view of the corresponding symmetry 
of Eqs. (17) it can be assumed in the simplest case that the 
states of these two radiators are always the same, i.e., 
S,(t ) = S,(t ). Equation (17) leads then to the system 

From this we get an equation that describes the evolution of 
the vector A: 

dA/dz= [A ,  [Se,] ] + 2 W 1  Im G,{e ,A]  + 3  Im Gi  [ A S , ]  
+A,  Im G,[S ,e , ]  +Wi Im(G,-G,)  [S ,e , l .  (23) 

The first four terms in the right-hand side are similar here to 
the corresponding terms in (2 l), while the last term is due to 
the asymmetry in the arrangement of the radiators; in con- 
trast to the first four, this term does not depend on A. Since 
the first two terms describe the rotation of the entire system 
of vectors as a unit, we shall consider, just as in the case of 
two radiators, the remaining terms separately. Assuming 
that the vector S ,  does not change over a time -(Im GI)-' 
(this assumption is generally speaking incorrect, but it makes 
it possible to reveal in simpler fashion the qualitative result), 
we obtain from (23) equations for the components of the vec- 
tor A in a plane perpendicular to the vector S,: 

sin 20 20- (A:+A,?)-  
dz' 12 ' 

(24) 
= -  Im ( G 2 - G I )  
dAe A ,  z1=r.3  I m G , .  E = 
dt' 3 Im 5, 

The nonlinear term in the first equation is small and will 
here-after be left out. From (24) we obtain the equation for 
the trajectory of the vector A in a plane perpendicular to the 
vector S,: 

sin 20 I"= +q 
sin' 81% I' =const. (25) 

Thus, the vector A rotates with a frequency - 3 Im G, along 
an ellipse whose center is shifted relative to the point 
A, = 0, A, = 0 by an amount -E ,  which indicates the de- 
gree of dephasing of the radiators. It is of interest to estimate 
the value of E for different forms of the interaction function 
G,, . Thus, in the two-dimensional model, according to (19), 
we have 

In a self-similar decrease of the geometric dimensions of the 
system of radiators we have ~4 and the degree of dephas- 
ing turns out to be insignificant. We note that this result 
remains in force also for an arbitrary arrangement of an arbi- 
trary number of radiators in a two-dimensional concentrat- 
ed system. In the three-dimensional case, if the function G,, 
is chosen in the form (18) (this choice corresponds to 
allowance for only the radiative part of the electromagnetic 
interaction) 

and at sufficient asymmetry of the system of radiators, E can 
be much larger than unity. It must be borne in mind, how- 
ever that at R d  an important role is assumed in the three- 
dimensional case by the dipole-dipole interaction of the radi- 

51 2 Sov. Phys. JETP 57 (3). March 1983 Karnyukhin eta/. 512 



ators. Taking this interaction into account, the function G 
for parallel dipoles takes the 

-i[(f -+)msx+- sin x2 ] } , x-kr. (26) 

At other types of mutual orientation of the dipoles, super- 
radiance is impossible; it is not clear at present, however, 
how a concentrated system of excited radiators goes over 
into a state with parallel orientation of the currents. Using 
(26), we obtain 

Consequently, when account is taken of the dipole-dipole 
interaction, the parameter E is even more sensitive to the 
degree of asymmetry of the system of radiators. 

In the case of a concentrated system containing Nradia- 
tors, the mathematical expression for the symmetry condi- 
tion consists in the fact that the quantity X i  G, does not 
depend on the index n. Only under this condition does the 
system of equations (17) have a solution with identical states 
of all the radiators, and the character of the stability of this 
solution becomes clear from the foregoing analysis of the 
simplest cases. At Pi = P and Wi = W, the system becomes 
substantially simpler: 

(LiW --- - NIP]' ,  I m G s -  
d r  

~ m z  G < ~ .  
N - l  (27) 

i*k 

The solution of this system is of the form 

and the radition intensity is determined by Eq. (6). At the 
same time, the radiation frequency is shifted relative to the 
fundamental frequency o by an amount 

Am=- ( z / t )  (N-I)  Im GW. (28) 

In the two-dimensional case we have 

Ao=- (2d2k2s/h) ( N -  1 )  W ln(kR),  (29) 

where R is the dimension of the region occupied by the radia- 
tors; in the three-dimensional case, 

We note that if the function G is chosen in the form (1 8) for 
D = 3, the expression for the frequency shifts coincides with 
the expression obtained in Ref. 12, in second-order perturba- 
tion theory, for a quantum description of the radiation field 
neglecting the dipole-dipole interaction. 

3. CASE OF CONTINUOUS MEDIUM 

We compare first of all the considered method with the 
one proposed earlierW.l3 for the analysis of extended media. 
To this end, we write down the equation for the integrated 
characteristic of the system (the total energy Zi Wi) an equa- 

tion that follows from (17): 

If account is taken of only the radiating part in the interac- 
tion function, and the vector character of the radiatian field 
is neglected, then Eq. (3 I), with the spontaneous processes 
taken into account, coincides with the corresponding equa- 
tions of the preceding method, since 

ReGii=sin (kri j) /kr, .  

A matrix of this type was considered in Ref. 16, and in 
greater detail in Ref. 7 (in a two-dimensional system, 
Re Gg = Jo(krg )). The use of the matrix (Re Gg ) is permissi- 
ble under the condition that the direction of the polarization 
of all the radiators is the same and is perpendicular to the 
vectors rg = ri - r,, but these requirements can be satisfied 
only in the two-dimensional model. In addition, the transi- 
tion from (17) to (31) entails the loss of information on the 
system, e.g., information connected with the frequency shift 
(28). At the same time, to solve equations such as (31) it is 
necessary to know the time dependence of the quantities 
(PYP,). Therefore, when investigating the relaxation of a 
multidimensional system and the anisotropy ofthe emission, 
use is made of various assumptions that facilitate the solu- 
tion of the problem, namely: it is assumed that at R > cr,  the 
relaxation process is homogeneous over the entire sample2 
and that the polarization phases pi of the different radiators 
are constant in time over the extent of the entire process.I3 It 
was shown in Ref. 10 that both these conditions are violated 
even at R -il /2(cr,. We shall show now that in the multidi- 
mensional case this leads to a number of singularities in the 
anisotropy of the radiation. 

Figure 1 shows the results of a numerical solution of the 
problem of relaxation of a two-dimensional continuous sam- 
ple (rg &I ) of length L = 3il and width b = 0.6;1, excited by a 
coherent resonant pumping pulse directed along the sample. 
The dimensions of such a system are close to the dimensions 
of the sample investigated in Ref. 17. To simplify the numeri- 
cal calculation, the quantum fluctuations of the dipoles and 
of the radiation field were left out, and for the initial angle 8, 
we chose the same value 0.1 for all the radiators. Since in the 
absence of inhomogeneous broadening the initial angle 8, is 
connected with the density of the radiators by the approxi- 
mate relation 

it follows that 8, = 0.1 the dimensionless density of the radi- 
ators is pil ,-- 2 x 10'. It  must be indicated that the initial 
angle 8, is different for radiators located in different places 
in the active sample, since the classical part of the radiation 
is not the same at different points of the sample (e.g., owing 
to the anisotropy of the radiation). For the considered sam- 
ple the Fresnel number is F = b 'ilL = 0.1241, so that the 
one-dimensional approximation is not valid here; neverthe- 
less, one can see distinctly the residual excitation previously 
observed lo in the sample in the one-dimensional approxima- 
tion. In a two-dimensional sample this excitation dissipates 
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FIG. 1. Relaxation of an active sample with dimension 
3 X0.6 A ', excited by a resonant pump pulse directed along 
the sample. On the left is shown the temporal dynamics of the 
inverted population, and on the right theangular distribution 
of the intensity of the radiation at various instants of time. 
The angle 9 is measured from the longitudinal axis of the 
sample, along which the exciting pulse is directed; 
T = t ( ~ d  2k 2 p ~ b  110~) .  

more rapidly because of the possibility of emission in lateral 
directions. We call attention to the presence of a "shallow" 
structure of the inversion density. The formation of this 
structure takes place during the initial stage of the collective 
relaxation and can be investigated with the aid of the linear- 
ized equation (17), by putting W, = 1. The spatial period of 
the "shallow" structure is equal toil /2. The nonlinear model 
predicts unusual dynamics of the anisotropy of the emission. 
Thus, whereas for homogeneous inversion and at constant 
phases of the radiator currents p(r, t ) = kx the dependence 
of the intensity of the radiation on the angle in a two-dimen- 
sional sample is of the form 

6in2[ '12k~ (1-cos @) ] 
z(m't)m k'L'(*-cm 6)' 

sin2 ('/,kb sin @) 

k2b2 sin2 @ 
sech2 (2) , (32) 

where @ is the angle between the longitudinal axis of the 
sample and the radiation direction, the nonlinear model pre- 
dicts that the directions of the lateral maxima are not de- 
scribed by Eq. (32), the maximum intensity in the lateral 
beam is reached considerably later than the maximum of 
intensity in the principal direction. The ratio of the maxi- 
mum values of the intensities in the lateral and in the princi- 
pal directions likewise does not agree with Eq. (32); accord- 
ing to (32) we have 

Z,lZo<sin2 (3n/2) l ( W 2 )  2z0,05,  
whereas it follows from Fig. 1 that I , /I0z0. 17. 

Figure 2 illustrates the collective emission from a need- 
lelike sample with dimensions L = 50il, b = 1.75R,00 = 0.1, 
corresponding to pR ' 20. The inversion longitudinal in- 
homogeneity that occurs here is reminiscent of the inversion 
inhomogeneity which takes place in the one-dimensional ap- 
proximation10 and accompanies the oscillations of the radi- 
ation intensity. The character of the radiation anisotropy is 
similar to that obtained in the preceding case: one observes 
the most powerful pulse in the longitudinal direction, and 
lateral pulses in which the intensity maximum is reached 
later than the maximum of the main beam. 

Figure 3 shows the relaxation of an excited sample with 
parameters L = 25il, b = 1.75/2, Oo = 0.005, corresponding 
topil - lo4. The most powerful radiation pulse is observed 
here in a direction opposite to the dirction of the pump pulse. 
In the forward direction, however, the radiation increases 
more slowly and turns out to be less powerful. Such an unu- 
sual behavior of the system is due to the strong interaction of 
two opposing coherent-radiation waves. This interaction re- 
calls the interaction of two coupled pendulums, and in the 
case of a homogeneous state of the medium it depends on the 
density and dimensions of the active sample. This pheno- 
menon was analyzed in greater detail in a separate paper.18 

In all the examples considered, the initial values of the 
phases were chosen in the form p(r, t = 0) = kx, correspond- 
ing to coherent resonant pumping. No less interesting is the 
case when the initial phases are specified by a random func- 
tion. In this case, as shown by analysis, we have a relatively 
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FIG. 2. Relaxation of sample measuring 50 X 1.75 A '. Below-temporal 
change of the intensity of the radiation I in various directions and the 
angular distribution of the intensity at a fixed instant of time; solid 
curve-@ = W, dashed-@ = 6", dash-dot-@ = 12". 

,in comparison with the relaxation times) phasing of 
radiators with an initially weak radiation wave propagat- 

. I I ~  from the geometrical center of the sample to its bound- 
ary. As a result, the amplitude of this wave increases consid- 
erably in the directions of the elongations of the sample, and 
the radiators phased by this wave have phases q(r) = k-r, 
where k is the wave vector of the radiation field. Conse- 
quently, the system assumes a state with coherent condi- 
tions. The emission is here symmetrical with respect to the 
geometric center of the sample, and the dynamics of the radi- 
ation anisotropy is characterized by the pecularities noted 
above (assuming that the active sample is elongated in 
shape). 

4. CASE OF TWO-DIMENSIONAL PERIODIC STRUCTURE 

As shown in Ref. 10, the rate of emission from a one- 
dimensional periodic lattice depends on the relation between 
the period of the lattice and the wavelength of the radiation 
field, so that it is of interest to consider a two-dimensional 
lattice with nonquadratic unit cell. The most important case 
here is the one in which the Bragg diffraction condition with 
a Bragg angle 6,  = ?r/2 is satisfied in one of the directions. 
In accordance with Ref. 10 one should expect a strong an- 
isotropy of the radiation with an intensity maximum in the 
Bragg-diffraction direction. Figure 4 shows the temporal re- 
laxation of the inverted population in a lattice of this type. At 
random initial phases of the radiators, the radiation does 
indeed turn out to be anisotropic with a maximum in the 
Bragg direction, while the inversion in the relaxation re- 

FIG. 3. Relaxation of sample measuring 25 x 1.75 
L 2. On the right is shown the temporal variation of 
the intensity of the radiation in different directions 
and the angular structure ofthe radiation at various 
instants of time; solid curve--@ = 0', dashed- 
9 = 180', dash-dot-@ = 180' + 14". 
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FIG. 4. Collective relaxation of a two-dimensional lattice consisting of 
100 radiators. The periods of the lattice in mutually perpendicular direc- 
tions are equal to A and A /4. Shown below is the angular dependence of the 
radiation intensity. The angle @ is reckoned from the Bragg-diffraction 
direction; T = t (rd 'k ZS/lOfi). Analogous results were obtained for a dif- 
ferent choice of lattice periods under the condition that in one direction 
the Bragg diffraction relation with angle 8, = r / 2  is satisfied. 

mains weakly inhomogeneous. Figure 5 shows the spontane- 
ous decay of an excited radiator in a lattice consisting of 
analogous unexcited radiators. In full accordance with the 
assumptions made in Ref. 10, the radiation that leaves such a 
structure is anisotropic: the Bragg planes "screen" the spon- 
taneous emission in the Bragg diffraction direction, and the 
transport of the radiation and excitation is effected predo- 
minantly along that Bragg plane on which the excited radia- 
tor is located. One can note here the phenomenon of the 
return of the excitation to the radiator, when the inversion of 
the radiator executes damped oscillations. The absorption 
will influence strongly the angular distribution of the t'adi- 
ation and quench it in those directions where the diffraction 
condition is not satisfied. As a result, Kossel lines will be 
observed near the Bragg angles (see also Ref. 19). 

In connection with the problem of one excited radiator, 
interest attaches to the case when all the radiators located in 
a single Bragg plane are initially excited. The radiation is 
then clamped by the remaining Bragg planes into a narrow 
channel because of the aforementioned screening, and will 
be strongly anisotropic. 

5. CONCLUSION 

Let us make a few remarks concerning the proposed 
model. 

FIG. 5. Spontaneous decay of one excited radiator in the same lattice ( A ,  
A /4) as in Fig. 4. The dynamics of the excitation of the radiators in the 
Bragg plane containing the excited radiator is shown. Below is represent- 
ed the angular distribution ofthe intensity of the radiation. The remaining 
radiators located in other planes are much less excited, but their fields are 
in phase, and this is in fact the cause of the "screening" of the radiation. 

1. From the point of view of the semiclassical descrip- 
tion, collective decay proceeds as follows: during the initial 
stage, each radiator emits independently because of its phe- 
nomenologically considered individual quantum fluctu- 
ations of the dipole moment and of the field. Next, against 
the background of the fluctuations, a polarization P appears 
and is the source of the classical field, the initial phase q, of 
this polarization being random. Under the influence of the 
classical resonant fields of the other radiator, the phase of 
each radiator "floats." As a result of this process there can 
occur in a concentrated system a state in which the phases of 
all the radiators are equal; the total polarization is then pro- 
portional to Nand the radiation intensity is proportional to 
N2. 

2. To establish such a state in a three-dimensional con- 
centrated system (R (R. ) it is necessary to have complete sym- 
metry in the arrangement of the radiators. Since the satisfac- 
tion of the last condition in the case of a gaseous medium is 
problematic, the reasons why the effect cannot be observed 
in a concentrated system becomes understandable. The sym- 
metry condition is not required in a two-dimensional system, 
and all the more in a one-dimensional system. 

3. An experimental investigation of the dynamics of the 
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angular anisotropy of collective emission is the most accessi- 
ble method of checking the proposed model. 

4. What is paradoxical is the existence of resonant fields 
in the spatial region of size smaller than the wavelength of 
the radiation field. This at first glance contradictory proper- 
ty of the field is explained by the fact that in a resonant 
medium the connection between the frequency o and the 
wave vector k is not the usual relation w f c k ,  as in vacuum; 
at the same time, because of the nonlinearity of the model 
there is no singled valued connection whatever between o 
and k. 
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