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A macroscopic and microscopic analysis is carried out of the second-order (with respect to mag- 
netization) magneto-optical effects in cubic crystals containing magnetic ions in different crystal 
sublattices. Thedipole-allowed optical transition 'S (3d ')+'P (3d 44pL) in the Fe3+ ion at the octa- 
hedral and tetrahedral positions in the yttrium iron garnet is considered in detail. It is shown that 
in the case of cubic symmetry of the local surroundings of the magnetic ion the absorption does 
not depend on the direction of the magnetization m relative to the crystallographic axes, i.e., the 
magneto-optic effects are isotropic. Magneto-optic anisotropy arises if uniaxial deformations of 
the crystalline field around the magnetic ions are taken into account. The relation between the 
isotropic and anisotropic contributions is determined by the magnitudes of the absorption-band 
splitting due to noncubic distortions and to spin-orbit interaction. The relations between the 
macro- and microscopic parameters are obtained within the framework of the axial model for the 
case of an arbitrary direction of the local distortion axis. The results can explain a large number of 
"forbidden" effects observed in cubic crystals with various magnetic ions. 

PACS numbers: 78.20.Ls, 71.70.Ch, 75.30.Gw, 71.70.Ej 

1. INTRODUCTION 

Recent investigations of magneto-optical effects of sec- 
ond order, such as magnetic linear birefringence and sponta- 
neous and photoinduced magnetic linear dichroism, have 
shown (see the reviews1.* as well as Refs. 3-12) that in addi- 
tion to the extraordinarily large magnitude, their character- 
istic feature is a strong anisotropy, i.e., dependence of the 
effects on the direction of the magnetization m in the crystal. 
Whereas the large magnitude of the magneto-optic effects 
can be sufficiently well explained as being due to the pres- 
ence of large spontaneous magnetization, the nature of the 
magneto-optic anisotropy is at present less clear. To explain 
it, many models were proposed in the literature, based on the 
anisotropic interaction of polarized light with magnetic ions 
contained in a low-symmetry crystal field. These models 
were analyzed in greatest detail for the case of rare-earth 
iron garnets, where the magnetic ions are in octahedral, te- 
trahedral, and dodecahedral positions.2'6s7 It was assumed 
that absorption of polarized light by magnetic ions can be 
described by the expression 

W,- (Eu,) (mu,)', (1) 

where E, m, and u, are the unit vectors that characterize the 
directions of the polarization of the light, of the magnetiza- 
tion, and of the local high-symmetry axis of the crystal field 
around the considered ion. We shall hereafter call this the 
axial model. To describe the photoinduced linear dichroism, 
the following expression was proposed in Ref. 7 

W,={A [1+B(u,E)'] [i+C(u,m)Z]), (2) 

where W, is the probability of photon absorption by a mag- 
netic ion in the position r. It follows from (1) and (2) that the 
absorption is a maximum if the magnetization and polariza- 
tion of the light are directed along the distortion axis of the 
local environment of the magnetic ion. It should be noted 
that Eqs. (1) and (2) are based only on intuitive ideas concern- 

ing the interaction of polarized light with a magnetic ion in a 
crystal field with axial distortion, but have so far not been 
corroborated microscopically in any way. Nonetheless, 
these formulas will be used to develop a theory of magneto- 
optic and photoinduced anisotropy, and the important re- 
sult was here that the character of the anisotropy turned out 
to be substantially different for ions in the octahedral, tetra- 
hedral, and dodecahedral  surrounding^.^.' Thus, for exam- 
ple, for ions in octahedra distorted along a threefold axis of 
the [ I l l ]  type, the magnetic linear dichroism should vanish 
at an orientation of the magnetization along a fourfold axis 
of the type [100]. The same situation holds for the photoin- 
duced linear dichroism when m is oriented along the [I001 
a x i ~ . ~ , ~  For ions in tetrahedra distorted along axis of the 
[I001 type, in turn, the magnetic linear dichroism is a maxi- 
mum at mJ1[100]. These and other conclusions have made it 
possible to deduce the distribution of various magnetic ions 
over the sublattices in the garnet structure from the charac- 
ter of the anisotropy of the linear d i ~ h r o i s m . ~ - ~ ~ . ' ~  

However, a careful examination of the experimental re- 
sults points to systematic violation of the "ideal" picture of 
the magneto-optic or photoinduced anisotropy predicted by 
the axial model. Thus, in Ref. 11 the "forbidden" photoin- 
duced dichroism at m11 [I001 and Ell [I001 was approximately 
one-quarter of the allowed one. The "forbidden" dichroism 
was observed also in many other studies.'-lo To explain it, 
two mechanisms were proposed, namely the distribution of 
magnetic ions of the same type over different sublattices, and 
deviation of the local symmetry of the impurity ions from 
axial.' These mechanisms can explain in principle the ap- 
pearance of forbidden dichroism, but so far there is no proof 
that this is in fact the situation. Indeed, in the case of pure 
yttrium iron garnet,3 when these two mechanisms do not 
operate, there is still a clear-cut deviation from the axial 
model for the dichroism in the region of the first maximum 

501 Sov. Phys. JETP 57 (3), March 1983 0038-5646/83/030501-08$04.00 @ 1983 American Institute of Physics 501 



of the electron absorption -0.9 pm. There is no doubt that 
this maximum is connected with the transition 6A1g-+4Tlg 
for the octahedral ion of trivalent iron, but the "forbidden" 
dichroism at m11[100] is approximately double the allowed. 

The foregoing circumstances, namely the insufficient 
microscopic justification for Eqs. (1) and (2) and the presence 
of systematic discrepancies between the predictions of the 
axial model and the experimental data stimulated the pres- 
ent study, devoted to a macroscopic and microscopic analy- 
sis of the absorption of light by cubic magnets. 

2. PRELIMINARY REMARKS 

Since the overwhelming number of presently available 
experimental data on magneto-optic anisotropy were ob- 
tained for rare-earth iron garnets (REIG), we shall carry out 
the analyses for just these crystals. Nonetheless, many of the 
results obtained below are general in character and can be 
extended to other cubic magnets, for example those with 
spinel, perovskite, or rock-salt structures. 

The properties of REIG have been well described in the 
handbook literature,13 and we shall recall here only those of 
them which will be needed for the analysis. The REIG crys- 
tallized in a cubic structure with point group m3m and space 
group O f .  The unit cell contains eight formula units 
R,Fe,O,,. The rare-earth ions occupied the dodecahedra1 
positions 24c, while the ions of the trivalent iron occupies the 
octahedral positions 16a and the tetrahedral positions 24d. 
An essential element in the structure are the local distortions 
of the oxygen polyhedra. The octahedra are elongated along 
the threefold axes of type [I l l ] ,  and this leads to a lowering 
of the local symmetry of the 16a positions from the point 
group 0, to the group C,,. The tetrahedra are elongated 
along one of the axes of the type [OOl], and this lowers their 
symmetry from T, to S,. The dodecahedra are elongated 
along one of the twofold axes of the type [110], their local 
symmetry is lowered to D,,, and the crystal field can no 
longer be regarded as axial. 

The distortions of the oxygen polyhedra depend on the 
types of the ions making up the garnet, and can reach appre- 
ciable magnitudes. Thus, for yttrium iron garnet the length 
of the edges of both the octahedra and the tetrahedra differ 
by approximately 10%. Since the parameters of the crystal 
field depend strongly on the distance r between the ions, for 
example Dq-rP5 (Ref. 14), the axial component of the field 
should be sufficiently large. So far, however, there is no reli- 
able quantitative proof of the appearance of noncubic distor- 
tions in the electronic spectra of the iron ions in the garnets, 
with the only exception of assumptions that a connection 
exists between the splitting of the first maximum of the ab- 
sorption and the region of 0.9 p m  and the lowering of the 
octahedra ~ymmetry. '~ That the additional structure in the 
spectra is connected with the lowering of the local symmetry 
was assumed also for single sublattice garnets,I6 but no proof 
was presented in favor of this assumption as yet. 

Absorption of light in an yttrium iron garnet in the re- 
gion 10000 and 25000 cm-' is due to electronic transitions 
between the 3d levels of the trivalent iron, split by the crys- 
tal field." These transitions have relatively low intensity, 

inasmuch as in tetrahedra they are spin-forbidden, and in 
octahedra they are both spin and parity forbidden. Above 
25000 cm-' the absorption and the magneto-optic effects 
increase strongly, this being attributed to allowed dipole 
transitions, for example6S (3d 5)+6P (3d 44p1). In Sec. 4 below 
we shall consider just this allowed transition, since the anal- 
ysis becomes more complicated and is no longer'clear in the 
case of forbidden transitions. 

3. PHENOMENOLOGICAL DESCRIPTION OF QUADRATIC 
MAGNETO-OPTIC EFFECTS IN A CUBIC MAGNET 

We consider the interaction of light with a cubic magnet 
within the framework of concepts of the dielectric tensor eii. 
Let its magnetic ordering be describable by one magnetiza- 
tion vector m. At high temperatures, in the parametric re- 
gion and in the absence of magnetic field, the optical proper- 
ties of such a cubic crystal are determined by the tensor 
E~ = E; + i~ ; ,  where E& describes the refraction and E; the 
absorption of the crystal. The transition of the crystal into 
the magnetically ordered state leads to the appearance of 
additions to the real and imaginary parts of the dielectric 
tensor. The increments linear in the magnetization m cause 
magnetic circular dichroism and magnetic circular birefrin- 
gence of light (the Faraday effect), which we do not consider 
in the present paper since they are completely isotropic in a 
cubic magnet. The increments quadratic in the magnetiza- 
tion m lead to a change of the absorption, described by the 
anti-Hermitian part of the dielectric tensor E;~." The qua- 
dratic increments to &ih form an imaginary symmetrical ten- 
sor i&ih(m), where &ih(m) is a symmetric real tensor. For a 
cubic ferromagnet of symmetry m3m the density of the light 
energy absorbed per second can be written, from symmetry 
considerations, in the form 

Q/4no=~,"E~+A,"E~rn~+ h2" (Em) 

where E is the electric field of the light wave, R ]' are pheno- 
menological constants, and o is the frequency of the light. 
Differentiating (3) twice with respect to the components of 
E, we can obtain an expression for the components eih and 
&ih(m)." In the general case, the passage through a crystal is 
described by the complex refractive index ii = Reii + iImii. 
An analysis of the increments to the real part, which de- 
scribes the influence of the magnetization on the magnetic 
linear (with respect to polarization) birefringence of light, 
was carried out earlier in Refs. 19 and 20. If the absorption is 
not too large, i.e., ReiisImii, then the refraction and absorp- 
tion coefficients Reii and Imii can be connected respectively 
with the Hermitian and anti-Hermitian parts of the tensor 
E ~ . "  In this case the different terms in (3) give rise to the 
following optical phenomena. The term with E; describes 
the isotropic, i.e., independent of polarization, light absorp- 
tion which is not connected with the magnetization. The 
remaining terms with R describe the isotropic absorption 
that depends neither on the orientation of the magnetization 
in the crystal nor on the polarization of the light, nor also on 
their relative orientation; the term with R ; describes the 
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additional absorption that does not depend on the orienta- 
tion of the magnetization in the crystal, but does depend on 
the relative orientation of the vectors m and E; the term with 
A ; describes anisotropic absorption that depends on the ori- 
entation of m in the crystal and on the relative orientation of 
m and E. In other words, it can be stated that the term with 
A ;' leaves the cubic crystal optically isotropic, the term with 
A  3.; makes it optically uniaxial with optical axis along the 
magnetization, while the term with A ; transforms the crys- 
tal into an optically biaxial one, and the orientation of the 
axis is determined by the direction of the magnetization and 
by the value of the parameter of the magneto-optic anisotro- 
pya = A ;/(,I ; + R- ;).'9-20 The coefficientsR- I' can obvious- 
ly be obtained from purposeful experiments on the change of 
absorption as a function of the orientation of the magnetiza- 
tion and of the polarization of the light in the crystal. To 
determine A;' it is necessary here to measure the absolute 
absorption coefficient, while A ; and A ;  can be obtained 
from the magnetic linear dichroism (MLD) spectra 
Aa = all - a, ,  where all and a, are the absorption coeffi- 
cients when the polarization of the light is oriented parallel 
and perpendicular to the magnetization. Since it is necessary 
to determine two parameter, A ; and R ;, the experiment 
must be carried out with the magnetization oriented along 
two nonequivalent directions in the crystal. 

The theoretical calculation of the parameters A ;', R ;, 
andR ; entails the choice of a model that describes the aniso- 
tropic absorption of light by the magnetic centers. After 
summing over all the centers, definite relations are estab- 
lished between the microscopic and macroscopic parameters 
R- ,". In Sec. 4 is considered the anisotropy of the absorption 
for an electrodynamic transition. In Sec. 5 are established 
relations in the microscopic and macroscopic parameters for 
the axial model at arbitrary directions of the local distor- 
tions. 

transitions for them are parity and spin forbidden. As noted 
above (see Sec. 2), the electric dipole transition between the 
states 6S (3d 5)-+6P (3d 5)4p1) in the free ion Fe3+ is forbidden. 
Let us examine the mechanism whereby isotropic and aniso- 
tropic magneto-optic absorption sets in, using this transition 
as an example. 

The splitting of the terms 6S and 6P, with consistent 
perturbation-theory allowance for the cubic crystalline field 
and for the exchange spin-orbit interaction, is shown in Fig. 
1 (Ref. 22). The picture of the splitting is qualitatively the 
same for the Fe3+ ion in both the octahedral and the tetrahe- 
dral field, but the values of the crystal and exchange fields 
are different in these two ways. We consider for the sake of 
argument transitions in an octahedral iron ion. 

A cubic crystal field does not split the terms 6S and 6P, 
but only shifts them in energy. The exchange field lifts the 
spin degeneracy, and the spin-obit interaction lifts the orbi- 
tal degeneracy of the 6T,, (6P) state. The electrodipole tran- 
sitions are allowed between states with identical S, m,, and 
Am, = - 1,0, + 1. The exchange splitting of the ground 
state of the octahedral ion amounts to approximately 
A E  = g/?H,,,Am, --, 100 cm- ', therefore at low tempera- 
ture we can confine ourselves only to consideration of transi- 
tions from the lower level of the ground state (m, = 5/2). 
The transition Am, = 0 is allowed in a polarization (Ellm), 
while the transitions Am, = - 1, + 1 are allowed in a+ 
and a- polarization (Elm). The light energy absorbed by the 
crystal in electrodipole transitions can be written in the form 

~ ( w ) = z  IdiEIzf(oi, a ) ,  

where di is the dipole-moment operator of the ith transition, 
f (mi,@) is the form function of the absorption band, w ,  is the 
resonant frequency, and w is the frequency of the light. For 
the transition considered by us we can write 

4. MICROSCOPIC ANALYSIS OF THE MAGNETO-OPTIC W(o) =f (a09 a)  ( d m  
ABSORPTION AND MLD FOR THE SINGLE-ION DIPOLE 
TRANSITION 6S+sP +'Iz [f (oo+y/2, a )  +f (ao-712, @) 1 (dlWZ9 ( 5 )  

The ground state of the free ion of trivalent iron where dl, and d, are dipole moments oriented respectively 
~ e ~ ' ( 3 d  ') isan orbital singlet 6S (see Fig. 1) with sixfold spin parallel and perpendicular to the magnetization rn(mllH,,,), 
degeneracy (S = 5 /2 ) .  The excited states correspond to sev- and y / 2  is the spin orbit splitting of the 6T,,, state. Recogniz- 
era1 quartet and doublet terms inside the 3d ' shell, but dipole ing that 

FIG. 1. Splitting of the 6A!g(6S) and 6T,,  (6P) states in a cubic crystal field 
wo of symmetry 0, (or T,) wlth allowance for the exchange and spin-orbit 

ms= - 5/Z interactions. 

6s f4 
/- /.- 

3 d 5 - - -  - A & z - -  
\-- 

\,---- 
ms = 5/Z 

free ~a~ crystal field exchange spin orbit 
ion Oh interaction interaction 
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(this follows from the fact that in perpendicular observation 
the intensity absorption of the v component is equal to the 
sum of the intensities of the a componentsz3) and assuming 
y/2 to be less than the width of the absorption band, we have 
for the electrodipole absorption connected with the influ- 
ence of the magnetization 

This absorption does not depend on the orientation dl, (and 
meaning also on m) relative to the crystallographic axes, i.e., 
the transition in a cubic field contributes to the isotropic 
term with A ; in expression (3), and the anisotropic coeffi- 
cient A ; vanishes in this expression. This isotropy of the 
absorption and of the MLD is due to the fact that the orbital 
angular momentum is quantized relative to an axis directed 
along the magnetization m but not connected in any way 
with any crystallographic direction. 

We proceed now to take into account the axial compo- 
nent of the crystal field. Assume that in the local coordinates 
(x',y1,z') the distortion of the tetrahedron is directed along 
the z' axis. The noncubic crystal field lifts the orbital degen- 
eracy of the 6T1, state (see Fig. 2) and partially freezes the 
orbital momentum. The remaining degeneracy is preserved 
at mlz' and is lifted at mllz'. The expression for the absorp- 
tion in the case of the level scheme of Fig. 2 is of the form 

W (o)  =f (oo-6, 0) (d,.E)' + 

where S is the axial splitting of the level 6Tlu .  Taking into 
account only terms that depend on the magnetization, we 
obtain 

crystal field crystal field exchange spin-orbit 
Oh ' 3 i  interaction interaction 

m ll z' mlz' 

FIG. 2. Splittings of the 6A,g(6S) and 6T,,(6P) states in a crystal field of 
symmetry C3i (octahedron elongated along the threefold axis [I 111) with 
allowance for the exchange spin-orbit interactions. 

The split-off level 6A1, can contribute to the dichroism 
only when account is taken of the anisotropy of the exchange 
field (due to the noncubic distortions of the local surround- 
ing) acting on this state. Assuming the anisotropy of He,, to 
be weak, we can write 

where 5 = 4P 'S (4 H fxCll - g: H :,,,) is the anisotropy con- 
stant of the exchange splitting. We see that noncubic distor- 
tions of the local surrounding leads to a dependence of the 
absorption of the orientation of the magnetization relative to 
the distortion axis, and also to anisotropy of the MLD, i.e., 
in the general case, to a nonzero coefficient A ; in (3). 

Thus, consideration of the absorption for two splitting 
schemes shown in Fig. 1 and 2 demonstrates that if the axial 
splitting is substantially smaller than the spin-orbit splitting, 
i.e., S(y/2, the magnetic absorption will be isotropic. In the 
other extreme case S)y/2 the magnetic absorption for the 
split-of transition will be anisotropic. In those cases when 
these two splittings are comparable, mixing of the wave 
functions of the sublevels 6Eu and 6A,u of the state 6Tlu 
should lead to coexistence of the isotropic and anisotropic 
absorptions. For an exact solution of such a problem by per- 
turbation theory it is necessary to take into account simulta- 
neously the influence of the spin-orbit interaction and of the 
noncubic part of the crystal field on the wave functions of the 
electrons. To this day, however, we do not know the magni- 
tude of these interactions. Nonetheless, for a qualitative ex- 
amination we can use the analogy between the transitions 
from a singlet to a triplet and the classical harmonic oscilla- 
tor in a magnetic field (Fig. 3). The influence of the noncubic 
distortions will be simulated here by the difference 
S = w ,  - w, between the resonant oscillator frequencies, 
where w ,  is the frequency of the oscillations along the distor- 
tion axis z', w, is in the x'y' plane (in the absence of the mag- 
netic field H), while the spin-orbit interaction will be simu- 
lated by the splitting of the states of an oscillator in the 
magnetic field H. We shall assume that the field H lies in the 
x'z' plane. It is easy to show that the eigenvalues of the ener- 
gies and of the polarizations of the states of the oscillator 

FIG. 3. Three-dimensional anisotropic harmonic oscillator in a magnetic 
field. 

504 Sov. Phys. JETP 57 (3), March 1983 B. B. Krichevtsov and R. V. Pisarev 504 



a , , - a l ,  rel. un. a ,, - aL , rel. un. 

correspond fully to the previously considered limiting values 
S4y/2 and 8% y/2, if we put y/2 = eH /mc, where e and m 
are the charge and mass of the electron and c is the speed of 
light. At arbitrary relations between y/2 and S (it is conven- 
ient here to introduce the parameter 7 = 2S /y), the eigen- 
states of the harmonic oscillator are three ellipses whose di- 
rections of the principal axes, ellipticity, and resonant 
frequencies are complicated functions of the parameter 7 
and of the angle e, between the directions of the distortion 
axis z' and of the magnetic field H. Without going through 
the mathematical operations, we write down only the final 
expression for the contribution of an individual ith state 
(i = 1,2,3) to the MLD (Aa , ) :  

where k is the wave vector of the light, Pfpi) = 1 + p i  
xcos2q, + (pi + 7)-*sin2p,pi is one of the three solutions of 
the cubic equation p3 + 7 p2 - p  - 7 cosZP = 0, and 
oi = w, + ypi/2. Equation (10) was obtained under the as- 
sumption that wO,y/2,S, an assumption that holds for opti- 
cal transitions. 

To find the total MLD of a crystal, given 7 and H, it is 
necessary to sum the contributions of the individual states of 

FIG. 4. Results of the calculation of the MLD for the S 4  
transition at different values of the axial splitting 6. The axes 
of the local distortions are directed along the axes of type 
[lOOl, k11[0101; a) mll[OOll; b) mIl[1011. 

the harmonic oscillators Aai(i = 1,2,3) for all the positions 
that have different directions u,(zl), i.e., different angles p. 
The results of such a calculation, carried out wth a comput- 
er, for the distortion directions u, and for the field H along 
the principal crystallographic axes at different values of the 
parameter S are shown in Figs. 4 and 5. We have assumed in 
the calculation that f (@,,a) is a Lorentz function with reso- 
nant frequency mi and half-width T ,  while y /2 r  = 0.1. Fig- 
ure 6 shows the angular dependences of the MLD for octahe- 
dra and tetrahedra at different values of the axial splitting. 
In the absence of distortions, the MLD is isotropic and pro- 
portional to the second derivative f "(w,) in accordance with 
(6). Introduction of distortions changes somewhat the 
shape, decreases the amplitude, and leads to a small anisot- 
ropy of the MLD. Thus, at S = r, for the principal maxi- 
mum of the MLD, the parameter of the magneto-optic an- 
isotropy is a = 0.84 at u,JJ[111] and a = 1.29 at u,))[100]. 
Figure 7 shows a plot ofa(S /r ) at the frequency o, for differ- 
ent distortion directions. It can be seen that substantial 
changes in the parameter a begin when the uniaxial splitting 
6 becomes larger than the half-width T. At S > r the MLD 
line shape differs substantially from f "(a,) and depends on 
the direction of the magnetic field, and this gives rise to a 
frequency dependence of the parameter a. With further in- 
crease of S /(S,r) the line shape and the magnitude of the 
MLD tend to a limit described by Eq. (8) (summed over all 
the u,-see the next section). However, even at values S / 
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FIG. 6. Angular dependences of the MLD at k{1[100] and mll[l00] 
for different values of the axial splitting 6; a) u, 11 [ 1001; b) 
u,\J [ 11 1 1. The solid curve indicates the axial model. 

r)5 there are deviations from the purely axial model-the 
MLD line shape at u, 111 1001, H11[100], and u,ll[ 11 11, 
Hll[111] does not duplicate f "(a,) exactly, and in the remain- 
ing cases one observes near w, an MLD proportional to 
f '(a,). The form, amplitude, and anisotropy of the MLD de- 
pend thus substantially on the relations between the param- 
eters y/2,6, and r ,  with an isotropic MLD realized at S4y/ 
2, r ;  the coexistence of a "locally" isotropic and a "locally" 
anisotropic MLD is observed at 6 > y/2; the purely axial 
model is observed at 6>y/2 and 6 > r .  In the general case 
absorption of an individual center at a given frequency can 
be represented as a sum of two contributions: locally isotrop- 
ic -(Earn)' and locally anisotropic - (E*~,)*(m-u,)~, in con- 
trast to Eqs. (I) and (2), where only a locally anisotropic term 
is present. 

The noted peculiarities of the MLD spectra of the elec- 
todipole S-P transition for the cases y/2 < 6 < r and 
6 > r,y/2 make it possible in principle to determine uniquely 
the directions of the distortions for the investigated center 
or, if the distortion directions u, are known, to relate the 
transition to a particular center. There exists, however, a 
certain region S z ( 2  - 3 ) r  where such an identification is 
difficult and it is necessary to use more subtle characteris- 
tics, such as the distances between the zeros of the MLD, etc. 

An interesting question is that of the influence of the 
distortions on the anisotropy of the MLD for the P-S transi- 
tion, i.e., for the transition from a triplet to a singlet. If it is 
assumed that the transitions go only from a lower energy 
level, the MLD line shape should in this case be proportional 
t o f  (00). 

FIG. 7. Dependenceof the parameter of the magnetooptic anisot- 
ropy on6/r:~)u,~~[111];0)~,~~[100]. 
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5. ANISOTROPY OF MLD OF A CUBIC CRYSTAL IN THE CASE 
OF THE AXIAL MODEL 

In the preceding sections it was shown that noncubic 
distortions of the local surrounding of a magnetic field, at 
sufficiently large axial splitting 6, lead to a local anisotropy 
of the absorption, described by an expression of the type 
A (E-~,)~(m.u,)~,  where u, is the distortion axis. Locally iso- 
tropic absorption (E-m)' obviously contributes only to the 
term with A ; in (3); we therefore consider here the possible 
contributions of the locally anisotropic term to the total ab- 
sorption. We shall assume that the local surrounding of an 
individual magnetic ion has noncubic uniaxial distortions 
along an arbitrary direction u = u, x + u, y + u,z(x, y, andz 
are fourfold axes in the crystal), u2 = 1. For the crystal to be 
cubic, it is necessary in the general case that there exist 
24n(n = 1,2,3, . . . ) positions of ions with different direc- 
tions of the distortion u, = g,u (g, is a symmetry element of 
the 0, group). In the particular cases when u is parallel to the 
symmetry axis, this number decreases. In order to obtain an 
expression for the absorption coefficient connected with the 
locally anisotropic term, it is necessary sum its contribution 
from all the positions in the unit cell of the crystal: 

Without loss of generality, it suffices to consider the 
propagation of light along the fourfold axis k((x with the 
magnetization located in the yz plane. The expression for the 
MLD takes then the form 

where $ is the angle between m and the z axis; i j = x,y,z. 
Analysis of expression (3) shows that in the case k11[100] and 
m11[110] one observes an isotropic MLD -A ;m2, while at 
m11[001] one observes a sum of an isotropic and anisotropic 
MLD -(A ; + A ;)m2. Comparing these results with (12) we 
have 

Thus, in the general case, the locally anisotropic term con- 
tributes to the isotropic and anisotropic MLD. The isotropic 
part vanishes (A ; = 0) only under the condition u,ll [001], 
etc., for tetrahedral magnetic ions. Also possible is a "aci- 
dental" vanishing of the anisotropic MLD (A ; = 0) if the 
right-hand side of (13b) is equal to zero. If, however, 
u,JJ [ I l l ] ,  as is the case for octahedral ions, then 
A ; = - A ;. The anisotropy of the MLD when the local 
distortions are oriented along fourfold and threefold axes is 
shown in Fig. 6. We note that the MLD anisotropy consid- 
ered in Ref. 6 is a particular case of the general formula (12). 
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6. COMPARISON WITH EXPERIMENT 

The experimental results on the angular and spectral 
dependences of MLD in Y3Fe5012 show3 that in the Voigt 
geometry it is perfectly correct to use the phenomenology 
considered above without resorting to invariants of other 
types, proposed for example in Ref. 24. The MLD spectra in 
pure Y3Fe5012 (Ref. 3) at different directions are character- 
ized by isotropic and anisotropic MLD that are comparable 
in magnitude and whose relations with each other are not 
described by the axial model. Indeed, for the first absorption 
band in the 0.9-pm region, a band corresponding to the octa- 
hedral transition 6AIg-4T,g, the parameteraz0.5, whereas 
in accordance with the purely axial model a = w for 
u, 11 [ 11 1 I .  This points to the coexistence of a locaIly isotrop- 
ic and locally anisotropic MLD. Since the a(@) dependence is 
very weak for this transition, one can expect realization of 
the case y/2 < S U .  We recall that for the case S = r and 
u, 1) [ 1 11 ] we have a = 0.84 for the principal maximum of the 
MLD (Fig. 5). Thus (disregarding the line shape of the 
MLD), the model considered gives the correct tendency of 
the deviation of the parameter a from the purely axial model. 
The shorter-wavelength part of the MLD spectrum is char- 
acterized by a strong a(@) dependence that can be due either 
to satisfaction of the condition S >r or to the overlap of 
transitions having different anisotropies. 

A number of recent papers are devoted to the anisotro- 
py of MLD in the region of the absorption bands of various 
ions implanted as impurities in iron garnets. In Refs. 7-1 1 
were investigated the angular dependences of MLD in the 
transitions of FeZf ions, produced when Y3Fe,0,, is doped 
with Si, Sn, and Nb. Just as for Fe3', the MLD are charac- 
terized in this case by the presence of an isotropic (A  ;)and an 
anisotropic (A ;') part, the ratios between which depend on 
the type of the implanted ion. When Y3Fe,0,, is doped with 
Nb ionsX the angular dependences are close to the ones pre- 
dicted by the purely axial model with u, 11 [ 1001 (Fig. 6), and 
in the case of doping with Sn and Si ion~'-~-to the model 
with u, 11  [ 11 1 1. On this basis the authors of the papers de- 
duce various degrees of population of the u, 1) [ 1 1 1 ] octahe- 
dra and of the u, 11  [ 1001 tetrahedra by the Fe2+ ions. In light 
of the concepts developed here, we can propose also another 
explanation of this behavior of MLD, by assuming that in- 
troduction of different ions into the garnet lattice influences 
the relaxation between the locally isotropic and locally an- 
isotropic terms in the absorption. In this case the Fe2+ ions 
can occupy only octahedral sites, but can have different axial 
splittings when doped by different ions, causing thereby dif- 
ferent anisotropy of the MLD. 

The angular dependences and the MLD spectra, inves- 
tigated in Ref. 10 for transitions on Ru4+ ions implanted in 
octahedral positions of Y,Fe5012, also offer evidence of the 
existence of locally isotropic and locally anisotropic MLD. 
For the absorption band in the region of 1.35pm, the magne- 
tooptic-anisotropy parameter a depends on the frequency 
and has in the region of the maxima a value - 3, i.e., in this 
case the anisotropic contribution exceeds the isotropic one. 

Thus, all the available experimental results point to the 
coexistence of a locally anisotropic and a locally isotropic 

MLD. The relation between them, as we have shown above, 
depends on the concrete characteristics of the transition, 
such as the axial splitting, the spin-orbit splitting, the line 
width, etc. As a result, the anisotropy of the MLD in cubic 
crystals is determined not only by the direction of the axis of 
the local distortions of the magnetic centers, a fact taken into 
account in the axial model, but also by the properties of the 
transition itself. An analysis of the experimental results and 
of the theory considered here indicates that realization of the 
axial model is possible only when the axial splitting greatly 
exceeds the line width and the splitting due to the remaining 
interactions. 

The authors thank G. A. Smolenskil for interest in the 
work as well as A. Yu. Zyuzin for help with the calculations. 

APPENDIX 

To find the eigenfrequencies and the polarizations of an 
anisotropic harmonic oscillator in a magnetic field it is nec- 
essary to solve the equation of motion, which can be written 
in the form 

mO2 - m2 ihzm 
(All 

where hi = eHi/mc = ymi/2, and ai is the electron-dis- 
placement component. The solution of this problem for the 
case o , = oo can be found, for example, in Ref. 23. Equating 
to zero the determinant in (Al), we obtain an equation for the 
eigenfrequencies 

2 2 ( ~ ~ ~ - 0  ) ( u ~ ~ - w ~ )  - ( c o ~ ~ - u ~ )  hlZu2- ( U ~ ~ - U " )  h z 2 ~ 2 = 0 .  

(A21 

Introducing the notation A = 28 /oo,s2 = h = S / y ,  
p = (oi - w2)/ois, and assuming that A,s(l (in this case 

ot + h$), we rewrite (A2) in the form 

p3+p'(q+s) - p ( I - A  COS' cp) - q  cos2 q=O. 

Recognizing that A(l and 7,s at v >  1, we obtain 

The solutionsp, , p,, and p, of this cubic equation determine 
the sought eigenfrequencies wi = oo + ypi/2 of the oscilla- 
tor. The polarization of the oscillations is obtained by substi- 
tuting oi in (Al)  and by the normalization relation 

I a: 1 '+ 1 ayl12+ )a: 1 '=d2/e2.  

We have assumed in the calculation that the value of the 
damping, which determines the absorption of the light, is the 
same for all the normal oscillations, i.e., the absorption is 
described by one and the same form function of the absorp- 
tion band, f (oi,o).  In this case the polarization dependences 
of the absorption are determined only by the state of the 
polarization and by the resonant frequencies of the natural 
oscillations of the oscillator. Calculation of the absorption is 
carried out in accordance with Eq. (4), in which the compo- 
nents of the dipole moments d are determined by the compo- 
nents of the displacements d = ea. The expression for d. as 
follows from (Al), is of the form 
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The MLD for the ith natural oscillations of the oscillator is 
given by the formula 

Aai=(~dB~~'-J4EL/')f(oj, o). 

In the subsequent transformations it is convenient to use the 
substitutions E = E h/h and E, = E [ k X h ] / k h ,  where k is 
the wave vector of the light (klh). Substituting these expres- 
sions in (AS), taking di from (A4), and expressing oi in terms 
ofp, and y/2,  we obtain Eq. (10) which was used in the calcu- 
lations. 
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