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The quadratic Zeeman effect for the hydrogen atom in a highly excited state is investigated with 
the aid of a discrete analog of the WKB method. This method is applied to a three-term recurrence 
formula obtained by expanding the zeroth-order wave function in terms of the basis eigenfunc- 
tions of the unperturbed Hamiltonian for the hydrogen atom in parabolic coordinates. Approxi- 
mate analytical expressions are found for the energy levels and the inversion level splitting in the 
case when the mixing of states from different shells can be neglected. 
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The spectrum of the highly-excited Rydberg states of 
atoms located in a magnetic field exhibits a number of dis- 
tinctive and incompletely explained features. ' v 2  In this con- 
nection, Zeeman effect calculations have been performed for 
the hydrogen atom in states with high principal quantum 
numbers n.3-7 The only true integral of the motion (besides 
the energy) in a homogeneous magnetic field is the angular 
momentum component m along the direction of the field. 
This means that atomic levels with the same m cannot be 
degenerate in any nonzero magnetic field. Numerical com- 
putations have, however, shown that: 

a) in weak magnetic fields Z, when we can neglect the 
mixing of wave functions from different shells (i.e., when we 
need consider only the I-mixing regime), some of the levels 
are grouped in close doublets. The separation between the 
doublet components tends exponentially rapidly to zero 
with increasing n. Thus, for n = 20, m = 0 the separation 
between the components of the doublet with the lowest ener- 
gy is approximately lo7 times smaller than the distance 
between neighboring doublets; 

b) upon further increase of Z (i.e., in the n-mixing re- 
gime), the levels derived from neighboring shells undergo 
quasi-crossing. If n is large, then this quasi-crossing is ex- 
tremely small, and also tends exponentially to zero as n+ BY. 

A qualitative explanation of these results was found in 
Refs. 8 and 9 by Solov'ev on the basis of an investigation of 
the motion of a classical particle in the Coulomb and weak 
magnetic fields. In these papers Solov'ev also derived a qua- 
siclassical quantization rule and classified the states of the 
hydrogen atom in a magnetic field. He was, however, unable 
to compute the magnitudes of the exponentially small split- 
tings. 

In the present paper we find an approximate analytical 
expression for the magnitude of the doublet splitting of the 
Zeeman spectrum of the hydrogen atom under the condi- 
tions of I mixing. We also derive an approximate expression 
for the correct zeroth-order wave function, which is neces- 
sary for the computation of the quasi-crossings under the 
conditions of n mixing. The results are compared with the 
results obtained in a numerical calculation. 

1. RECURRENCE FORMULA FOR THE COEFFICIENTS IN THE 
WAVE FUNCTION EXPANSION 

The nonrelativistic Hamiltonian for the hydrogen atom 
in a magnetic field has the form 

where 

[in the expression (1) we neglect the spin and use the atomic 
system of units: f i  = [el = m, = 11. The operator (1) con- 
tains terms of both first and second order in the field. We, 
however, have [H,L, 1 = 0, and we can allow for the w, L, 
term exactly (this term leads to the trivial effect whereby the 
levels with magnetic quantum number m get shifted through 
a distance of mu,). Therefore, the perturbation operator is 
just wi V/2, while the perturbation parameter is the square 
of the magnetic field. 

We shall limit the analysis to fields in which we can 
neglect the mixing of states from different shells, i.e., for 
which it is sufficient to consider the first order in wi in the 
expression for the energy. To do this, it is, in its turn, suffi- 
cient that the quadratic Zeeman splitting (estimates of which 
are given below) be much smaller than the distance between 
neighboring shells; for m = 0, for example, this leads to the 
inequality 5n4wi/4(n-3. In fact, many Zeeman sublevels 
are well described by the formulas of first-order perturbation 
theory, and in much stronger fields. This circumstance is 
directly connected with the nature of the quasicrossings of 
levels from neighboring shells, and requires special treat- 
ment (cf. the analogous situation in the case of the Stark 
effect for the Rydberg states of the alkali metals''). 

In order to compute the Zeeman effect to second order 
in the magnetic field, we must diagonalize the matrix of the 
operator V in the basis of the unperturbed eigenfunctions 
belonging to the shell with the given n. We shall use the basis 
obtained by separating the variables in the parabolic coordi- 
nates 6 = r + z, a = r - z, and p (Ref. 11, $37): 

$mn2rn= o(2/n2) fnlm ( ~ l n )  fmrn ( d n )  exp (imcp) /I%, (3) 
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where 

fntm ( 5 )  = [ni l /  (ni+ I m 1 ) I ]  "'Lnim ( x )  exp ( -x2/2)  x'"'/~. 

The quantum numbers n, and n, are connected with the 
principal quantum number n and the magnetic quantum 
number m by the relation 

nr+nz=n- 1 mi-1=2a. (4) 

The wave function in the zeroth-order approximation 
can be written in the form 

The coefficients C,,  are the elements of the eigenvector of 
the perturbation-operator matrix 

Vn,n,'=($nt, zo-nt,  m 1 xZfyZI  $ncv, 2a-nt ' ,  m). (6) 

The matrix elements VnIni  are easily computed; it turns out 

that VnIni = 0 when In, - n; 1 a2.  Consequently, the equa- 

tion for the CmI  is a three-term recurrence formula (TRF); it 
can be written in the form 

(O<n, (24. Here 

w,,= (2 /n2)  Vn,,,=3n'-m2+l-12(a-nI)z, 

pnt5 (2/na) V"1, nt-I  

(8) 

=4[n , (n ,+Iml )  (2a-n,f  1)  (2a-n ,+Iml+l ) ]" .  

The eigenvalues E of the TRF (7) are connected with the 
eigenvalues of the Hamiltonian (1) by the formula 

E=- ( i / 2 n 2 )  + o L m + ' / ~ o ~ Z n 2 ~ + O ( ~ ~ 4 ) .  (9) 

Below we shall, for brevity, sometimes call the eigenvalues E 

energy levels. 

2. THE DISCRETE WKB APPROXIMATION 

For large n - Iml and far from the boundaries of the 
interval [0,2a], the relative change that occurs in the coeffi- 
cients wnI and pnl  in the TRF (7) when the subscript n, is 
changed by unity turns out to be small. An approximate 
solution to the TRF with slowly varying coefficients can be 
obtained with the aid of a discrete analog of the WKB meth- 
~ d . ' ~ - ' ~  Following Refs. 16 and 18, let us set forth some min- 
imum amount of information, necessary for the understand- 
ing of the subsequent computations, about this method. 

Let us consider the Hermitian TRF 

pJ,-I+ (wA-&)Ch+~'f,+ICk, ,=o, (10) 

whose coefficients are slowly varying functions of the sub- 
script k; this implies that they can be represented in the form 

where il is a small parameter and P (x) and W(x) are smooth 
functions of their arguments, with P ( x )  > 0. From the condi- 
tion (1 1) it follows that the coefficients w, and pk are also 
defined for noninteger k, and that 

a w , i a ~ c = o ( ~ ) ,  ap,/a/c=o ( I . ) .  

Let us go over from the C ,  to a new unknown sequence 
p, by setting 

Then for the pk we obtain the relation 

pk+ ( Z ~ A - E )  PR t ~ h + l ~ h ~ k + l = O .  (13) 

It is well known that the solution to Eq. (1 3) in the trivial 
particular case in which the coefficients w, and pk do not 
depend on k can be obtained by setting pk = pk + , = p. 
Then (13) goes over into a quadratic equation, the two roots 
of which give two particular solutions of the original TRF 
(10); a linear combination of these particular solutions will 
be the general solution to the TRF with constant coeffi- 
c i en t~ . ' ~  In the case of the TRF with slowly varying coeffi- 
cients, we can assume that the successive elements p,, 
pk + , , though not equal, will be close to each other. Setting 
pk + z p k  in (13), we arrive at the quadratic equation 

Let us, taking into account the fact that according to the 
condition ( 1 1) 

pkpa+t=ph2+~,?+0 (A'). 

write the discriminant of Eq. (14) in the form 

D,= (Uk+-e)  (C',.-- F ) .  

where the quantities 

are functions of the subscript k. The functions U * play for 
the TRF a role similar to that played by the potential energy 
in the Schrodinger equation, and determine the character of 
the solutions of the TRF. Thus, if 

Uk-<e<Ul,+,  (16) 

then D, <O. The roots of the quadratic equation will be 
purely imaginary and close in absolute value to unity; they 
can be written in the form 

pke=Bk+i(l -Bk2)'"=exp (fi arccos Bk), (17) 
Bk= ( E - W I )  /2~1+1,~. (18) 

Substituting (17) into (l2), we obtain two particular solutions 
to the TRF: 

The formula (19) is the lowest approximation of the 
WKB method. Allowance for the next order in A gives the 
pre-exponential factor; in this order the real linear combina- 
tion of the solutions to the TRF can be written in the form16 

k 

&=A ( -Dk)  w s  ( arccns BJS+&) (20) 
A0 

(A and 6, are arbitrary constants). It is clear that the range of 
k values over which the inequalities (16) are satisfied is the 
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analog of the classically allowed region (CAR) in the coordi- 
nate representation. 

If E > U 2 ,  then the roots of Eq. (14) are real and posi- 
tive. They can be represented in the form 

p h f  =Bk* (Bk2-1) Ih=exp (*arch B,) . (21) 

The fundamental particular solutions of the TRF with 
allowance for the pre-exponential factor then have the form 

(the C * are arbitrary constants). The solution C k+ increases 
exponentially with increasing k, while the solution C ,  ex- 
ponentially decreases. Thus, the condition E > U ,+ deter- 
mines the classically forbidden region. 

The solutions of the TRF have a special character if 
E < U ;  . Then the roots of Eq. (14) are real and negative: 

pk*=Bk*(fih'-l)rh=-e~p [ rarch ( - B , ) ] .  (23) 

The particular solutions of the TRF have the form 

The absolute value of the solution C ,  increases exponen- 
tially with increasing k, while that of the solution C ,+ ex- 
ponentially decreases; this means that the range of values 
where E < U, is a classically forbidden region. Here, how- 
ever, neighboring elements C, and Ck + , of each of the parti- 
cular solutions (24) have opposite signs. 

The approximate WKB-type solutions lose meaning in 
the neighborhood of the "turning points" kt, the roots of the 
equations E = Uk+ and E = U  k .  The matching of the solu- 
tions obtained in the different regions can be accomplished, 
using, for example, the standard TRF for the Bessel func- 
tions.16 We shall give here the matching condition for the 
case in which the classically allowed region, which is bound- 
ed by the turning points kt and k ; (kt < k ;), lies to the right 
of the region where E < U ; . Then that solution to the TRF 
which decays exponentially into the interior of the left classi- 
cally forbidden region has the form 

fork, < k < k ;  and 

fork<kt .  
The normalization constant A in (25) and (26) is deter- 

mined from the condition 

Requiring that the solution be damped in both the 
k < kt and the k > k : regions, we obtain the quantization 
rule-the analog of the Bohr-Sommerfeld quantization rule: 

where N is a whole number. 
In the problems of quantum mechanics the role of the 

small parameter A responsible for the slowness of the vari- 
ation of the coefficients in the TRF is usually played by the 
Planck constant fi [Eq. (7) is no exception; this becomes evi- 
dent when it is written with the dimensional factors re- 
tained]. Let us show that the formulas of the discrete quasi- 
classical approach are simply connected with the equations 
of classical mechanics. Let us assume that the TRF (10) is _a 
Schrodinger equation for some mechanical system in the K 
representation, where K is a Hermitian operator whose 
eigenvalues are successive whole numbers. This means that 
the elements Ck of the solution to the TRF are the coeffi- 
cients in the expansion 

of the eigenfunction !P of the Hamiltonian of tbe system in 
terms of the eigenfunctions fk of the operator K: 

RfkXkfh. (30) 

In the classical limit A 4  the subscript k has the meaning of 
a dynamical variable that satisfies a classical equation of mo- 
tion Cjust as the independent variable x of the one-dimension- 
a1 Schrodinger equation acquires the meaning of a particle 
coordinate in the classical limit). Let us find this equation. 
According to (20), the role of the classical momentum, con- 
jugate to the variable k, is played by the quantity 

II=arc cos [ ( e -  w,) /2pR+ll,]. (31) 

From this it follows that the classical Hamiltonian of the 
system in question has, in the canonical variables k and Il, 
the form 

H=e (k ,  II) = w ~ + ~ P R + ' / ~  COS IT. (32) 

This leads to the canonical equations 

dk 
- = -2pi+gl: sin II. 
dt 

According to (32), 

sin n=* {I- [ ( E - W ~ ) / ~ P ~ + ' / , ]  ')%. 

Therefore, the sought equation has the form 

dk/dt=&[4pk:y,- ( e - ~ , ) ~ ] ' ~ = r t [  (Uk+-e) (e-U,-) 1'" (344 

(cf. the equation x = + (2 /m)[~  - U ( x ) ]  j ' I 2  for the coordi- 
nate x). The integration of (34a) leads to the formula 

Thus, to each TRF with slowly varying coefficients cor- 
respond the equations (34) of classical mechanics. The boun- 
daries of the domain of variation of the variable k are deter- 
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mined by the roots of the expression under the square-root 
sign, i.e., by the turning points k t .  The motion described by 
Eqs. (34a) and (34b) can occur only when the classical energy 
E satisfies the inequalities 

min Uk-<~<max u,,+. (35) 

It is therefore natural to expect that the energy spectrum for 
the quantum problem (10) lies wholly in the interval 
[min U, , max U ,+ ] ; this statement can be rigorously 
proved. 

Let us give a simple example that, as will be seen below, 
has a direct bearing on the problem of the quadratic Zeeman 
effect for the hydrogen atom. Let us consider the free quan- 
tum-mechanical asymmetrical top with rotational constants 
ai (a, > a, > a,) and in a state with prescribed total-angular- 
momentum squared J(  J + 1) and energy E values. The ex- 
pansion of the wave function of the top in terms of the gener- 
alized spherical functions leads to the TRF (Ref. 11, 5 103) 

where J, is the angular momentum component along the axis 
of inertia of a top with rotational constant a,; 

pJ:='Ir (a i -a2)  [ ( ] - J s +  2) ( J - J J + I )  (1+13) ( I f  J 3 - I ) ]  %. 

The role of the variable k, which changes by 1 at each step of 
the TRF, is played here by J3/2. Neglecting the corrections 
that are unimportant at large J and J, values, we find that 

Equation (34a) therefore assumes the form 

1 / 2 d l S l d t = ~  { [a,JZ- (a1-a3)Jb2-F]  [ E - ~ : J ~ +  (a2-a3) Isz] }". 

(39) 
As was to be expected, it coincides with the equation, well 
known in classical mechanics, of motion of the free asym- 
metrical top [see Ref. 20, Eq. (37.7)]. 

3. QUASICLASSICAL SOLUTIONS TO THE TRF DESCRIBING 
THE HYDROGEN ATOM IN A MAGNETIC FIELD 

According to the formulas (8) and (15), the potential 
functions for the TRF (7) have the form 

Notice that 

u,:,,=u,: 
This means that the plots of the functions U are symrnetri- 
cal about the straight line n, = a .  The condition (41) is a 
consequence of the evenness of the Hamiltonian (1). Indeed, 
the parabolic coordinates 6 and r ]  transform into each other 
under inversion. The quantum numbers n, and n, then 
change places, which, according to (4), corresponds to the 
substitution n , 4 2 4 2  - n ,. 

The basis functions 2a - n,,m are the eigenfunc- 
tions of thez component of the Runge-Lenz operator .& (Ref. 
11, $37): 

Consequently, the role of the operator k in Eq. (30) is played 
by the operator (n/2)& +a,  and Eq. (34), as applied to the 
TRF (7), determines the evolution of the z component of the 
Runge-Lenz vector in the classical problem of the motion, 
perturbed by a weak magnetic field, of a particle in the Cou- 
lomb field. As is well known, the vector A for a particle in the 
Coulomb field is oriented along the semimajor axis of the 
elliptic orbit and is, in absolute value, equal to the eccentric- 
ity of the orbit; the perturbation by the magnetic field leads 
to the periodic variation of A in magnitude and direction. 
Allowing for the factor win2/4, which relates the matrix of 
the TRF (7) to the perturbation operator in the Hamiltonian 
(I), we find that 

Here U +(Az)  and U -(A,) are the functions (40) in which we 
have set n, = a + nA,/2. 

Let us now consider particular cases corresponding to 
different relations between the quantum numbers n and m. 

a) m = 0. The potential curves are then parabolas, since 

(see Fig. 1). Equation (43) assumes the form 

It is not difficult to see its similarity to the Eq. (39) of motion 
of the asymmetrical top; these equations coincide if we set in 
(39) 

and carry out a scaling transformation of the independent 
variable. 

Thus, the classical motion of a particle in the Coulomb 
field, perturbed by a weak magnetic field, can, in the m = 0 
case, be simulated by the free rotation of the asymmetrical 
top. A number of properties of the solutions to Eq. (45) fol- 
low at once from this analogy. Thus, it is evident that, in the 
case of a prescribed total angular momentum J, the energy 
of a top with rotational constants a ,  >a2  > a, is limited by 
the inequalities a ,J ,>&>a,J '. To the limiting cases E = a3J2 
and E = a , J 2  correspond stable steady rotations about the 
axes 3 (in which case J, = f J) and 1 ( J, = 0) respectively. 
For a3J  < E < a g 2 ,  the angular-momentum component J,  
oscillates without changing its sign; the amplitude of the os- 
cillations increases with increasing E. For E-NZJ the period 
of the J, oscillations tends to infinity (the top "gets stuck" in 
the state of unstable steady rotation about the axis 2 for 
which J,= f Jand J, =O).Finally,fora J2<&<a , J2 the  
angular-momentum component J, oscillates about zero, the 
amplitude of the oscillations decreasing with increasing E. 

Analysis of Eq. (45) with the aid of the potential curves 
and with allowance for the relations (46) leads to the same 
results. The possible E values in Eq. (45) [and, hence, the 
eigenvalues of the TRF (7)] satisfy the inequalities 

495 Sov. Phys. JETP 57 (3), March 1983 P. A. Braun 495 



As can be seen from Fig. la, for min U n; < E < rnax U n; 
= n2 the problem contains two symmetrical CAR; for 

rnax U ;  < E < rnax U ,t, one CAR with its center at the 
point n, = a (i.e., at the point where A, = 0). Therefore, for 
E < max U n; the solution to Eq. (45) oscillates without 
changing its sign (which is positive or negative, depending on 
the initial conditions); for E > rnax U n; the functions A, (t ) 
oscillates about zero. In the limiting cases E = min U n; and 
E = rnax U :  the CAR degenerates into points. The solu- 
tions to Eq. (45) will then be the constants A, = f 1 or 
A, = 0. For E close to the mininum of U ;  or the maximum 
of U ,t , the A, oscillations will be harmonic oscillations. 

We can, by finding A,(t ) from Eq. (45), determine the 
time dependence of the elements of the elliptic orbit of a 
classical particle in the Coulomb and a weak magnetic field. 
Thus, taking account of the fact that A :<A2<1, we find 
that, for E = min U -, the particle moves along a trajectory 
that has degenerated into a straight line oriented along 
(when A, = 1) or against (when A, = - 1) the field. For oth- 
er E values the dependence of the eccentricity and the orien- 
tation of the orbit on the time can be established, using the 
following relation found in Ref. 8: 

The enumerated characteristics of the classical motion 
are directly reflected in the character of the spectrum of the 
TRF (7). In particular, the presence in the case when 

FIG. 1. The potential curves and the eigenval- 
ues of the three-term recurrence formula (7) for 
n = 20 (the splittings of the bottom doublets are 
shown without regard to scale; see Tables I and 
11) and different values of m: a) m = 0; b) m = 4; 

min U; < E < rnax U n; of two symmetrical CAR separated 
by a potential barrier (the role of which is played by the peak 
of the function U n; ) leads to the earlier-mentioned doublet 
structure of the Zeeman spectrum. Indeed, if we neglect tun- 
neling and seek the quasiclassical solutions to the TRF in the 
left and right CAR independently of each other, we obtain 
two sets of solutions [ Cn, ) to the TRF. The solutions of one 
of the sets differ substantially from zero in the region 
n, < n, < n;, where n, and n: are the boundaries of the right 
CAR, and fall off exponentially outside it. To these solutions 
correspond those eigenfunctions of the Hamiltonian (1) 
which contain in their expansions mostly the basis functions 
$n,n2, with n, = 2a - n, < n,. This indicates an asymmetry 
in the charge distribution with respect to thez = 0 plane: the 
greater part of the charge is located in the region z > 0 (Ref. 
11, $37). The solutions to the TRF that belong to the other 
set are localized in the left CAR (the charge in the corre- 
sponding atomic states is located mostly in the z < 0 region). 
On account of the symmetry of the problem, the eigenvalues 
of the recurrence formula in the WKB approximation are 
double degenerate. They can be found from the quantization 
rule (28) with the integration performed over one of the CAR 
(the left one or the right one, it makes no difference). 

The region rnax U; < E < rnax U ,t contains only one 
CAR. To the quasiclassical solutions of the TRF correspond 
here atomic wave functions describing a charge distribution 
that is symmetric about the z = 0 plane. Therefore, we do 
not have the approximate twofold degeneracy. 
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To the harmonic oscillation of the classical variable A, 
fore close to the minimum of U ; or the maximum of U ,t in 
the quantummechanical problem corresponds the approxi- 
mate equidistance of the lowest and the highest energy levels 
for a given n .  Using the formula (68) of the Appendix, we can 
obtain for the lowest (doublet) levels an expansion of the 
form 

E ~ = I + ~ ~ Y T ( N + ' / ~ )  -12 ( N + ' / , ) ~ +  . . . , (48) 

where N is a quantum number { N  = 0,1,2, . . .). For the up- 
per levels we find from the formula (67b) that 

~ ~ = 1 + 5 n ~ - 4 n ~ ~ ( 1 9 ; + ~ / ~ )  +9/2  (iV+'/,) '+ . . . (49) 

(N = 0,1,2, . . .). Let us draw attention to the fact that, as the 
quantum number N increases, the energy of the levels de- 
scribed by the formula (49) decreases. Strictly speaking, the 
formulas (48) and (49) are applicable when N<n and k 4 n ;  
numerical examples show, however, that they are sufficient- 
ly accurate for Nand N comparable to n  as well. 

b) Let the magnetic quantum number m be restricted by 
the inequalities 0 < m < n / G .  The graph of the potential 
functions for this case is shown in Fig. I b. The function U n .  
has a maximum at n  , = a .  Therefore, for 

min u,,-=-4m2+21'5n I ml < ~ < m a x  U,,-=nz+mz (50) 

we have two symmetrical CAR and an approximate twofold 
degeneracy of the levels; the approximate degeneracy does 
not occur in the region 

mas Un,-<e<rnax U,,+=5nz-3mt (51) 

The bottom and the top levels are approximately equidis- 
tant. For them we can obtain the expansions 

~~=1-4m~+2~~n1m1+4(5n~+~m~-6151m1n)'"(~+'1~) 

which are respectively similar to the formulas (48) and (49). 
c) Let Im 1 > n / 6 .  The potential curves are shown in 

Fig. lc. The function U n; does not have a maximum in this 
case, so that there is only one CAR for all possible E.  There is 
therefore no twofold degeneracy. The upper levels are de- 
scribed as before by the formula (53); for the lower levels we 
obtain in place of (52) the expression 

4. COMPUTATION OF THE DOUBLET g-u SPLITTING 

The coefficients of the TRF (7) satisfy relations that are 
a consequence of the evenness of the Hamiltonian: 

wn,=w~-nrr pnl=P~a-nt+~. (55) 

Therefore, if C = { C,, j is some solution to the TRF, then 
C' = ( Cni ) , where C, ; = C,, - ., , will also be a solution cor- 

responding to the same eigenvalue. From this it follows that 
either C' = C, or C' = - C; to the first case corresponds an 
even, and to the second an odd, wave function (5) if m is even 
(if m is odd we have the opposite situation). 

We shall consider those values of the parameters for 
which the levels are approximately doubly degenerate, i.e., 
for which Jmf < n / G  and min U - < E < max U A (Figs. l a  
and lb). When allowance is made for the finite transparency 
of the barrier between the CAR, the doubly degenerate ener- 
gy levels split. The correct solutions to the TRF in the zeroth 
approximation will be the even or odd combination of the 
WKB-type solutions localized in the left and right CAR. 

The splitting calculation can be carried out in much the 
same way as the corresponding computations are carried out 
in the coordinate representation (Ref. 11, $50, problem 3) (a 
formula for the splitting of the eigenvalues of the TRF is 
given in Ref. 18 without deviation). Let us denote by 
f = ( f,, ) that solution to the TRF which is localized in the 
right CAR, and falls off exponentially under the barrier (for 
n ,  < n,; see Fig. lb). We shall assume that f is normalized: 

"t' 

fn..=1. 

nt-nt 

Let us denote the E value corresponding to this solution by 
E,,. Let us denote the eigenvalues of the TRF that correspond 
to the correct linear combinations (we assume, for definite- 
ness, that m is even) 

- 
c">= ( l n t + f z a - n l )  11% Cn,"= (fnt-f2a-nt)l12, (56) 

by E, and E, .  Let us write out the TRF that are satisfied by 
the sequences fnl  and C : 

Let us introduce a whole number q that is equal to a if a 
is integral and a + 4 if a is half-integral. Let us multiply the 
TRF (57) by CB,, and the TRF (58) by f n l  , subtract one of the 
resulting expressions from the other, and sum over n ,  in the 
range from q to 2a. Taking account of the fact that 
pza + , = 0, we obtain 

On account of the normalization condition, we have 

Using (56), we thus obtain 

We can establish in an entirely similar fashion that 

Subtracting (60b) from (60a), we find that, for integral a 

and for half-integral a 
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Inside the barrier, E < U -, and the quasiclassical solu- 
tion is given by the formula (26). Let us also take into account 
the fact that, according to the formulas (12) and (23), 

Consequently, for integral a 

and for half-integral a 

Replacing f, and f, - , by their values as given by the for- 
mula (26), and taking the symmetry of (55) into account, we 
finally obtain 

(63) 
Here n;' = 2a - n, is the turning point at the left boundary 
of the barrier (see Fig. lb). The formula (63) is valid for both 
even and odd magnetic quantum numbers m. The integral in 
the exponent is taken over the barrier; the integral in the 
denominator, over the right CAR. For given n and m the 
magnitude of the splitting is smallest for the lowest levels, 
and increases rapidly as the level approaches the top of the 
barrier. 

The formula obtained by us is entirely similar to the 
well-known expression for the magnitude of theg-u splitting 
in the coordinate representation. The denominator in the 
formula (63) is equal to one half the period of the classical 
motion described by the equations (34); the numerator has 
the meaning of a barrier factor, which gives the probability 
for tunneling in a single approach to the barrier. A charac- 
teristic departure from the one-dimensional coordinate case 
consists in the fact that the bottom level in a doublet can be 
either or even- or odd parity. As in the coordinate analog, the 
formula (63) becomes inapplicable when the level ap- 
proaches the top of the barrier and the barrier factor be- 
comes comparable to unity. 

The evaluation of the integrals in the formula (63) is 
much simpler in the m = 0 case. It is then found that 

"t 
40 

I = arch ( -Be)  ds=n 
l - J  

[II(l-20,r.)-K(x) 1, 
nc" 

(3-20) 'I2 

Here a = &/2n2 (0 < a < 0.5); II and K are the complete ellip- 
tic integrals of the third and first kind with the parameters 

x=[5(1-20)/(5-2o)]'", %'=( I - - xZ )" .  

For small a ,  the integrals I, and I, can be expanded in 
series: 

I,=n{-ln [(3-)/%)I21 - (l/)/q [a+3/l,02+. . .] 
In (1010) + O - - ~ / ~ ~ O ~ + .  . .), 

Using these expansions and the formula (48), we can derive 
an explicit expression for the g-u splitting of the lowest (for a 
given n and for m = 0) levels: 

where N is the doublet number (N = 0,1, . . . ;N(n). 

5. NUMERICAL EXAMPLES 

Let us illustrate our results by numerical examples. In 
Tables la and Ib the "exact" eigenvalues of the TRF (7), 
obtained through a numerical diagonalization of the TRF 
matrix with n = 20, m = 0, are compared with the approxi- 
mate eigenvalues given by the quantization rule (28) and the 
explicit formulas (48) and (49). Table Ia contains the energies 
of the levels lying below the top of the potential barrier (for 
n = 20 and max U - = 400). The exact eigenvalues here 
clearly group themselves into doublets. To the two compo- 
nents of a doublet corresponds one and the same quantum 
number N (since the solutions of the TRF that correspond to 
them are proportional to the sum of, and the difference 
between, the states localized in the left and right CAR, and 
having one and the same quantum number). Table Ib shows 
the energies of the levels lying above the barrier; as can be 
seen, no doublet structure is exhibited have. Finally, in Table 
I1 we present the values of theg-u splitting for the levels with 
m = 0 and n = 5, 8,20. [The eigenvalues of the TRF (7) for 
n = 20, m = 0,4, and 10 have also been plotted in Figs. la, 
lb, and lc respectively.] 

As can be seen from the numerical data presented, the 
WKB approximation guarantees a high accuracy at relative- 
ly moderate n values (states with principal quantum 
numbers of the order of one hundred and more are observed 

T A B L E  I. Eigenvalues o f  the TRF (7) for n = 20, m = 0: a )  Bottom group 
o f  levels. 

b) Top group of levels 

N 

0 

1 

2 
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Exact and 
'"Iity 

87.338848 ( u )  
87.338909 (g) 

240.386532 ( u )  
240.4491 73 (g) 
358.300624 ( u )  
364.944891 (g )  

Approximate value 

Exact and 
parity 

1913.802 (g) 
1743.910 ( u )  
1583.032 (g )  

479.401 (g)  
431.118 ( u )  

Approximate value 

N Found from the 

- I I Compute from the ex- 
quantization rule (28) plicit formula (49) 

Found from the - 

quantization rule (28) 

87.39 

240.7 

362.7 

Computed from the 
explicit formula (48) 

87.44 

242.3 

373.2 

1912.68 
1742.8 
1581.9 

468.0 
405.2 

0 
i 
2 

12 
13 

1912.68 
1742.8 
1581.9 

478.9 
4242 



TABLE 11. Inversion splitting of the levels of the TRF (7) for m = 0. 

in experiment). The accuracy of the quantization rule (28) 
decreases regularly as the level approaches the top of the 
barrier (see the level with N = 13 in Table Ib). The high accu- 
racy of the simplest explicit formulas (48) and (49) and the 
applicability of the WKB formulas for the states with N = 0 
and N = 0 seem somewhat surprising. The applicability of 
the WKB formulas for the states with N = 0 and &'= 0 is 
due to the fact that the quantization formula (28), like the 
Bohr-Sommerfeld quantization rule, gives the exact level- 
energy values for the harmonic o~cillator.'~ The WKB ap- 
proximation is, strictly speaking, inapplicable when N is 
close to zero, but the quasiclassical quantization rule never- 
theless gives the correct result, since the harmonic approxi- 
mation begins to operate. At the same time, the quasiclassi- 
cal wave functions for N = 0 become unsatisfactory. This 
leads, in particular, to a marked decrease, at N = 0, in the 
accuracy of the computation of the preexponential factor in 
the formula (63) and to an increase in the error that is made 
in the calculation of the g-u splitting (see the computed val- 
ues for n = 20 and different N in Table 11). 

Approximate value . 

6. CONCLUSION 

The discrete quasiclassical method allows us to investi- 
gate the essentially two-dimensional problem of the quadrat- 
ic Zeeman effect for the hydrogen atom with a degree of 
clearness characteristic of one-dimensional quantum-me- 
chanical problems. Our results pertained to the I-mixing re- 
gime, but we can draw more general conclusions from them. 
It can be shown, in particular, that in the n-mixing regime 
the quasicrossing between the top level of a shell with princi- 
pal quantum number n' = n and the bottom level of the high- 
er-lying shell with n" = n + 1 will be extremely close if 
Im I < n/*. This follows from the fact that, for (m ( < n / 6 ,  
the CAR for those solutions of the TRF (7) which corre- 
spond to the top and bottom (for given n and m) levels do not 
intersect, as well as from the fact that the operator 
(o2/2) (x2 + y2) in the representation of the functions (3) is 
almost localized (i.e., the matrix elements 

(lp,,,, %I-,&,, ," 1 x2+ yz 1 qL,,. aII-n, , ,  m) 

decrease rapidly with increasing In, - n; I). 
The method developed in the paper can be applied to 

certain related problems as well. Thus, the results of the pa- 
per can easily be generalized to the case of level-splitting 
calculations for the hydrogen atom in parallel electric &9 and 
magnetic &P fields if %' and Z' are such that the mixing of 
states from different shells can be neglected (this means that 

the level energies are computed up to first order in O and 
second order in R. In the basis (3), this problem reduces to 
the problem of a TRF differing from (7) only in that it has in 
place of the coefficient wnI the expression wnl + 20n (n, 
- a )  p, where f i  =12cZ%'/5&PZn2. The potential functions 

lose their symmetry when 8 #O, which leads to the disap- 
pearance of the doublet structure of the spectrum. The spec- 
tral patterns for 0 <p < -& (when we can speak of an electric- 
field-distorted quadratic Zeeman effect), /3 > 1 (when we can 
speak of a magnetic-field-distorted linear Stark effect), and 
in the intermediate region -& <p< 1 are found to differ signif- 
icantly from each other. 

Another possible generalization is connected with the 
investigation of the quadratic Zeeman splitting of the Ryd- 
berg states of nonhydrogenic atoms in the quantum-defect 
approximation. If the Zeeman splitting is small in compari- 
son with the spacing between neighboring shells, but com- 
parable to the I splitting in zero field, then this problem also 
reduces to the problem of a TRF (if we use the basis set 
obtained by separating the variables in spherical coordi- 
nates). Its solution is of considerable interest in connection 
with the available experimental data.2 

The author thanks E. A. Solov'ev for useful discussions. 

3.7802 
0,78508 
6.058.20-' 
6.264.10-' 
6.644 

APPENDIX 

440 
0.748 
5.37.10-5 
6.88.10-' 

13.7 

The eigenvalue spectrum of a TRF at points not far 
from the minimum of the potential function U; or the max- 
imum of U ,+ has an approximately equidistant character. 
The effective frequency and anharmonicity constant can be 
expressed in terms of the coefficients of the Taylor expan- 
sions of the potential functions. l 8  Let the functions U: and 
U; have in the neighborhood of the point k ,  (where k, is not 
necessarily a whole number) the expansions 

423 
0.774 
5.31.10-' 
6.03-10-a 
6.64 

5 
8 
20 

If then: a) k ,  is the minimum point of the function U; 
(6, = 0, b2 > 0), we have 

0 
0 
0 
i 
2 

(674 
where N = 0,1,2, . . . ; 

b) k ,  is the maximum point of the function U,+, the 
oscillator level series is "inverted" in comparison with the 
normal situation, and is given by the formula 

Eigenvalue expansions similar to the formulas (67) can 
be written down also in the case when the U: and U ,  
curves intersect at the point k, at an acute, nonzero angle." 
Thus, let the potential functions in the vicinity of k, be repre- 
sented by the expansions (66) in which a, = b,=U,, 
a ,  > 6, > 0, and the domain of definition of the TRF lies in 
the region k > k,. Then 
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where N = 0,1,2, . . . and fko)  denotes the rational part of 
ko. 
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