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Quantum below-barrier diffusion of atoms is considered in a crystal with arbitrary shift of the 
energy levels. The theory is developed within the framework of the density-matrix formalism with 
account taken of static fluctuations as well as of dynamic ones due to interaction with phonons. 
Diffusion is investigated under conditions of localization and induced phonon delocalization. A 
special analysis is made of quantum diffusion under conditions when the interaction between the 
particles ceases to be weak. The low-temperature recombination of atoms in a crystal, when the 
kinetics is restricted by below-barrier diffusion of the particles, is considered. A comparison is 
made with the experimental results obtained by Katunin et al. [JETP Lett. 34, 357 (1981)j and 
Mikheev et al. [Sov. J. Low Temp. Phys. 8,505 (1982)l. 

PACS numbers: 66.30.Dn 

1. INTRODUCTION 

The problem of quantum below-barrier diffusion of 
atomic particles into crystals has recently attracted much 
theoretical and experimental attention. A distinguishing fea- 
ture of this class of phenomena is the extremely weak tunnel 
bonds between the equivalent positions for the diffusing par- 
ticles, which are realized against the background of strong 
interaction with the dynamic and static fluctuations of the 
medium. The latter cause a strongly pronounced tendency to 
localize the particle, a tendency overcome in principle only 
to the extent that the tunneling is weak. 

In an ideal crystal at T = 0 any defect should in princi- 
ple be delocalized. This concept was methodically developed 
by Andreev and Lifshitz' on the basis of the concept of quasi- 
particle band motion of the defects in a quantum crystal. 
Allowance for scattering by phonons in this motion made it 
possible for them to find the low-temperature dependence of 
the diffusion coefficient D on T. 

In view of the very narrowband width A, however, the 
level shift in neighboring equivalent wells begins to exceed 
A, because of the interaction with the phonons, even at quite 
low temperatures. Dynamic destruction of the band sets in. 
The particle motion loses completely the band character and 
a tendency to particle localization ari~es.~."his localiza- 
tion, however, is only virtual. A general solution of the prob- 
lem was found in Refs. 2 and 3 for arbitrary temperatures 
and demonstrated the conservation of the coherent diffusion 
(particle tunneling without excitation of the phonon system) 
in dynamic destruction of the band; the solution described 
also the diffusion transport under conditions when the mean 
free path A is small compared with the interatomic distance 
a. 

The small bandwidth makes the low-temperature kinet- 
ics anomalously sensitive to deviations of the crystal from 
ideal. Even at a low impurity density the level shift becomes 
comparable with A and static destruction of the band takes 
place. Consequently, as T-tO, a true particle localization of 
the Anderson type appears. Now, as the temperature is 
raised, the interaction with the phonons should, on the con- 

trary, eliminate the localization and consequently the local- 
ization should increase rather than decrease with T. How- 
ever, when the scale of the dynamic level shift begins to 
exceed the characteristic static shift, the diffusion picture 
becomes the same as in the dynamic destruction of the band 
of an ideal crystal. The diffusion coefficient now decreases 
with increasing T, going through a maximum at a certain 
intermediate temperature. The qualitative aspect of this pic- 
ture can be deduced even from the results of Ref. 4, devoted 
to two-well kinetics in a phonon field, and is expounded ex- 
plicitly in Ref. 5. 

We develop in this paper a general theory of quantum 
diffusion in nonideal crystal with static level shift. The anal- 
ysis is based on the formalism of the equation for the density 
matrix, a formalism similar to that used earlier in Refs. 2 and 
4, with thorough account taken of the distinguishing fea- 
tures of the inhomogeneous problem. Even at this point we 
wish to note two results that follow from the general analy- 
sis. We find that in a wide range of low temperatures, at an 
arbitrary level shift the coherent diffusion is found to be larg- 
er (or at least not smaller) than the incoherent diffusion (tun- 
neling with simultaneous excitation of the phonons). Ac- 
cording to the second result, at a fixed scale of the level shift, 
when the temperature is lowered the two-phonon kinetics 
typical of the problem with an extremely narrow band gives 
way to one-phonon kinetics, and this entails a radical change 
in the dependence of D "Oh on T and SE, and in many cases 
also in the very picture of the kinetics. 

Among the typical problems of quantum diffusion there 
exists a large class of phenomena suggesting that the diffus- 
ing particles approach one another to within interatomic dis- 
tance. In this case the particle must inevitably pass through a 
region in which, by virtue of the interaction between the 
particles, the level shift ~SE~>A.  Clearly, as the particles 
come closer the local diffusion coefficient will decrease 
strongly. However, after a certain critical distance r. is 
reached, when the level shift S&(r. ) exceeds a certain critical 
value, the leading role is assumed by one-phonon interac- 
tion. The latter, however, is characterized by an increase of 
D with increasing SE, meaning acceleration of the diffusion 
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in the region r < r.. It turns out as a result that the kinetics is 
determined by the rate of passage through the critical radius 
r., a rate proportional to D (r,). According to the results 
above, at low temperature this diffusion coefficient increases 
with increasing T. The theory of such a process, which estab- 
lishes in particular the temperature dependence of the kinet- 
ics in this case, is developed in Sec. 5 of the present article. 
Recently (see Ref. 6), quantum below-barrier diffusion of 
atomic hydrogen in a matrix of molecular hydrogen, with a 
power-law increase with increasing temperature, was ob- 
served for the first time. The kinetics of recombination of 
atomic hydrogen was experimentally investigated in the case 
when the limiting process is just the diffusion occurring 
when the particles come close together. 

A special role is played in the problem of quantum dif- 
fusion by the interaction of the diffusing particles with one 
another. By virtue of the smallness of A, even at low particle 
density conditions are realized when the interaction at an 
average distance exceeds A. In the case of random particle 
distribution, a level-shift picture is produced similar to that 
in the case of point defects, and the band character of the 
motion of the individual particles is suppressed. As a conse- 
quence, in a defect-free crystal strong localization takes 
place as T 4  at a certain particle density x i .  The possibility 
of collective effects does not negate this statement, since the 
transition amplitude for a cluster of n particles inevitably 
contains the individual-particle overlap integral raised to the 
power n. The elimination of the localization on account of 
interaction with phonons should lead in this case to a sharp 
increase of the diffusion coefficient with increasing tempera- 
ture (see Ref. 5). This problem is analyzed in detail in Sec. 4, 
with a solid solution of He3 in He4 as an example. In a just- 
published paper by Mikheev and co-workers7 are cited re- 
sults that demonstrate for the first time the localization of 
He3 at x, 2 4% and the D- T dependence predicted earlier 
in Ref. 5. 

Many aspects of quantum diffusion in irregular crystals 
were clearly revealed recently in experiments on depolariza- 
tion ofp+ mesons in matter (see, e.g., Refs. 8,9 and 10). The 
comparatively small mass of the particles made it possible to 
observe quantum diffusion in metallic matrices with large 
potential barriers (Coulomb interaction) and to observe the 
manifestation of both localization and motion under condi- 
tions of strong static and dynamic level shifts and finally, 
pure band motion. We shall not discuss these experiments in 
the present article. A partial analysis can be found in Ref. 5. 

2. COLLISION MATRIX 

In the eigenfunction representation of the particle Ha- 
miltonian 

the particle motion is described by the kinetic equation for 
the particle density matrix 

fmncSp @n+lS,, 

which takes the form 

in which the "collision matrix" is a linear functional, nonlo- 
cal in time, o f j  (see, e.g., Refs. 2 and 11): 

h h h  h 

Here H, = H + Hph gPh -exp( - pH,,, ),,8 = 1/T; the in- 
dex ph pertains to the phonon subsystem; the supmation Sp, 
extends over all the states of the Hamiltonian H,. Here and 
elsewhere f i  = 1. 

The interaction Vof the particle with the phonons, after 
separating the polaron effect (which can be taken into ac- 
count in the definition of the parameters of the particle Ha- 
miltonian) is assumed weak, and it is this which enables us to 
confine ourselves in the collision matrix (2.3) to an approxi- 
mation quadratic in V. We retain in the expression for Vonly 
the one-phonon and two-phonon interactions. It is conven- 
ient then to write the one-phonon interaction in the form 

where w, is the limiting frequency, No is the number of sites 
in the lattice, k is the phonon momentum, and s is its polar- 
ization. The two-phonon interaction is written in similar 
form, but 

BII~= ' /~  ( o ~ ~ o ~ ) " ' N ~ - '  (gq,+%-ql+) (8pr+%-PI+) , q=q,, QI. (2.6) 

The integral with respect to time in (2.3) converges on 
the interval AT = B .  The density remains practically un- 
changed over such times. Neglecting the retardation in (2.3) 
and integrating with respect to time we obtain 

Here P and Q number the states of the Hamiltonian & We 
have left out the terms that contain integration in the sense of 
the principal value; these terms reduce to a renormalization 
of the particle energy. By writing the interaction in the form 
(2.4) we are able to sum in (2.7) over the states of the phonon 
subsystem. Introducing the notation 

aa' 

we reduce the collision matrix (2.7) to the form 

where E,, = E, - E,. All the elements of the matrix (2.9), 
including the off-diagonal ones, vanish for the equilibrium 
distribution f,, a S,, exp( - BE, ). This can be easily veri- 
fied by using the detailed-balancing principle 

Mq(-E) =Mq(E) e-PE. (2.10) 

The diagonal element of the matrix (2.9) goes over into the 
usual collision integral in the particular case when the den- 
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sity matrix is diagonal, i.e., f,, = SmJm : 

m { f m m f n m  ~ m n = 2 C  IAmnq12Mq(~mn). 
n 'I 

(2.1 1) 
The collision matrix takes the form (2.11) only in the 

eigenfunction representation (2.1). It is more convenient, 
however, to describe the particle diffusion through an irreg- 
ular crystal in the site representation Ir), in which the coordi- 
nate r has a direct physical meaning and in which such con- 
cepts as tunneling and the intra- and intersite interactions 
A 2 and A :, with the phonons are distinctly defined. In the 
site representation the particle Hamiltonian is 

where&, is the ground-state energy of a particle in a potential 
well with center at the crystal lattice site r and h,, is the 
amplitude particle tunneling from the state Ir') to the state 
Ir). We neglect the excited states of the particles in the poten- 
tial wells, and regard the states Ir) as orthonormalized: 

(r 1 r') =&=,. 

We assume that the amplitude h,,, differs from zero only for 
a jump into the nearest neighboring wells, and does not de- 
pend on the location of the site r at an arbitrary configura- 
tion of the particles and of the defects 

Here and elsewhere a cubic symmetry of the crystal is as- 
sumed for simplicity. 

In this model, the irregularity of the crystal reduces 
only to a dependence of the energy E,  on the particle posi- 
tion. 

The basic interaction oQhe particle with the phonons is 
that part of the interaction V (2.4) which is independent of 
the overlap integral, is diagonal in the site number, and is 
responsible for the shaking of the level. In this case 

(r 1 Aq 1 r') =Aq (0) eiq'6rr.r (2.14) 

where q = k for one-phonon processes and q = k, + k, for 
two-phonon processes. We assume that the amplitude A, (0) 
does not depend on the number of the site. The part of the 
interaction A g, (r #rl) that is not diagonal in the sites leads to 
a noncoherent hopping r'--+r of the particle. This process 
will be considered a t  the end of this section. 

An expression for the collision matrix in the site repre- 
sentation can be obtained directly from (2.9) when 

(SE is the scale of the level shift in neighboring sites and z is 
the number of nearest neighbors) at an arbitrary relation 
between A and SE. In this case the function (2.8) is equal to 

Mq(E) =Mq(0) (1+'/2pE) i2.16) 
and, substituting (2.16) and (2.14) in (2.9) we get 

The trace (Sp) denotes here summation over the particle 
states. Since the trace of the matrix is independent of the 
choice of the representation, this summation can be carried 
out in the site representation: 

where 

In the calculation of the second term of (2.17) we have left 
out corrections that contain off-diagonal density-matrix ele- 
ments, inasmuch as generally speaking f,, a (A,)", where n is 
the number of the coordination sphere corresponding to the 
difference r - r'. 

If the inequality (2.15) is violated so that the expansion 
(2.16) can no longer be used, the matrix J,. is equivalent to 
the general expression (2.9) in which the projection operator 
8: 8, is replaced by the operator 8 f A,, and the summation 
must be carried out in the representation of the eigenfunc- 
tions of the Hamiltonian (2.12). In the general case, the latter 
are unknown. 

In the most important case, however, of a strongly inho- 
mogeneous crystal, when 

the eigenfunctions of the Hamiltonian (2.12) have the site 
nomenclature and are equal to 

Using (2.20) we can transform in the matrix J,. , in the 
approximation linear in A,, to summation over the site 
states, if it is recognized that in this approximation the eigen- 
values of (2.12) remain unchanged, and the matrix elements 
in the eigenfunction representation (2.2 1) are connected with 
the matrix elements in the site representation by the relation 

(rlX[r1)=(r[Xlr')+(r1 [H', XI lr'). (2.22) 

Substituting this expansion in (2.9), we obtain 
( 0 )  (a) (*) J,, ,=lr,* +I,., +I.., , (2.23) 

where 

We emphasize that all the matrix elements in these ex- 
pressions correspond to the site representation. The formula 
for Jta' [or J (*) ]  is the result of the correction (2.22) to the 
first (or second) factor in J (0). 

For the intra-site interaction (2.14) of a particle with 
phonons, J'O', J'"), and J'b) are equal to 
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In the course of the calculation of the corrections J'"' and 
J'b', only the diagonal density-matrix elements were re- 
tained. The subscripts of the functions 0,. (&,, ) were left out 
for brevity. 

It is important that at T BSE the matrix (2.23),(2.24) 
goes over into (2.18). 

Thus, expressions (2.23),(2.24) are applicable in a much 
wider range than that defined by the inequality (2.20). This 
range remains valid also when (2.20) is violated, provided 
that the inequality (2.15) holds. 

We now take into account the contribution made to the 
collision matrix by the noncoherent hops of the particle from 
site to site in the course of the interaction of the particle with 
the phonons: 

(rIAql r+g) =Aq(g) e'qr, Aq(g) =Ao/oD,  I g 1 =a. (2.25) 

Since this amplitude is proportional to the overlap integral, 
it suffices to calculate its contribution to the diagonal ele- 
ment J,. , with account taken of only the diagonal part of the 
density matrix. The answer is given by Eq. (2.1 I), in which 
the indices m and n should be taken to mean the site repre- 
sentation: 

sncoh3= E {fry (~r,r+g) - f r + g ~  (&r+s,r) 1 7  
(2.26) 

9 

where 

3. QUANTUM-DIFFUSION EQUATION 

The kinetic equation (2.2) takes in the site representa- 
tion the form 

We write down in explicit form the equations forf, and 
+ , (g is the distance to one of the nearest neighbors), using 

the explicit collision integral in the form (2.24),(2.26) 

We have left out of (3.3) the term 

This is certainly justified if one of the following inequalities 
holds: 

A<&, A a Q .  (3.5) 

After a time of the order off2 - ' the elementf,,r + , relaxes to 

its quasistationary value that is adiabatically attuned to the 
values of the diagonal elements: 

where a = 1 [O (E., + B) + O ( E ~  + O,r)]. Substituting this 
expression in (3.2) we obtain the diffusion equation 

Here 

This probability of the jump r-tr + g per unit time satisfies 
the detailed-balancing principle 

The first and second terms in (3.7) correspond respectively to 
coherent and noncoherent diffusion. In the first case the par- 
ticle tunnels without participation of the phonons, and the 
inelastic interaction with the phonons takes place in the site 
wells. In the latter case, conversely, the tunneling itself is 
accompanied by excitation of the phonon subsystem. 

At SE = 0, Eq. (3.7) goes over into the known expres- 
sion of the theory of quantum diffusion in an ideal crystal2*': 

W=2Ao" (Qph)-'+'fo, Qph=Q (6&=0), 'fa='f (6&=0), (3.9) 

with the quantity W = Wr,r +, independent of both r and of 
the direction g, and connected with the diffusion coefficient 
by the formula 

D='/6za2 W, (3.10) 

where z is the number of nearest neighbors. As shown in 
Refs. 2 and 3, this expression remains valid also when the 
second inequality of (3.5) is violated, provided that the 
weaker inequality 

A (alL) <Q (3.1 1) 

holds, where L is the scale of the distribution inhomogeneity 
[as before, it is possible here to discard (3.4)]. Actually the 
inequality (3.11) means the requirement that the mean free 
path be small 

compared with L. 
In a weakly nonideal crystal, when S E ~ A  but SE > a,, , 

expression (3.7) is incorrect even if the inequality (3.11) is 
satisfied. The reason is that by virtue of the quasi-band char- 
acter of the particle motion the mean free path A is in this 
case much longer than a and an averaging-out of the random 
level spread takes place over the scale A. All that remains is 
the scattering effect which is quadratic in 6.5. 

The most direct way of taking this scattering into ac- 
count is to transfer the second term of (3.1) to the right-hand 
side and to use the same iteration procedure2v4 as in the deri- 
vation of the collision integral (2.3) due to the interaction 
with the phonons. The summation over the phonon variables 
is then replaced by averaging over the random configura- 
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tions of the level shifts. It is convenient to carry out the direct 
calculation by changing over to the representation of the 
Bloch functions Ip). Using the results of Ref. 2 we have, after 
returning to the site representation 

im 
Jr,r+g=Qtmfr,r+g* (3.13) 

Here a,, is the frequency, averaged over the band, of the 
scattering by the static inhomogeneities of the medium. The 
frequency of the damping of the off-diagonal elements of the 
density matrix is now equal to the sum L? = O,, + a,, and 
the mean free path (3.12) changes correspondingly. If it is 
assumed that the condition (3.11) is satisfied for the renor- 
malized value ofO, we can still neglect (3.4) and the diffusion 
coefficient is given by Eq. (3.10) with 

W=2AO2/ (Qph+Slim) +yo. (3.14) 

As T 4  this quantity reaches rapidly the static limit 
Wo=2Ao2/Qim. (3.15) 

In the case of point defects we have approximately 

Slim= (aA,) (x/as) beff. (3.16) 

The first factor in this expression is the particle group veloc- 
ity averaged over the band (T> A ), and x is the relative den- 
sity of the impurities. For extremely narrow bands, the effec- 
tive cross section ue, is determined in fact by the size R,>a 
of the region around the defect, where the level shift exceeds 
the band width A (Ref. 3): 

~ ~ f f m a R o ~ ,  1 8 (Ro) 1 =A. (3.17) 
At small values of A the dimensions R, are set by the 

most slowly decreasing interaction between the particle and 
the defect. In the case of point defects this interaction is an 
elastic-force that yields, at large distances from the defect, 

I E ( r )  I =uo (air) 3, (3.18) 

where u, = XE,,E, is an energy parameter of the order of the 
matrix binding energy per atom, and x is a dimensionless 
factor proportional to the product of the relative changes of 
the unit-cell volume due to introduction of a defect and of a 
diffusing particle into the matrix. It is easily seen that in this 
case [bearing (3.15)-(3.18) in mind] 

'I. Q ~ ~ ~ A ~  , D,~A:/:  (3.19) 

By virtue of the inequality R,>a spheres of radius R, 
begin to overlap already at low defect density. We arrive at a 
picture that is typical of the percolation problem (see, e.g., 
Ref. 12): at a certain critical defect density xc< 1 the coherent 
band motion is blocked and spatial localization of the parti- 
cles sets in in regions of limited size. For the law (3.18) we 
have 

xC=v (A/u0), (3.20) 

where v is a numerical factor. 
When the critical density is approached from below, the 

law that follows from (3.10), (3.15), and (3.16) 

Do a l/x, (3.21) 

is replaced by the relation 

Do= (xc-x) q (3.22) 

which is typical of the critical behavior near a localization 
point. 

So far, we have paid no attention to the sign of the inter- 
action of the particle with the defect. At the same time, in the 
case of attraction or of alternating-sign attraction (that de- 
pends on the direction relative to the crystallographic axes) 
there will exist in the system, even at T - 4 ,  besides the strong 
elastic scattering, also a channel of weak inelastic scattering 
that leads to capture by a "trap." (The kinetics of motion 
towards such a trap is considered in Sec. 5.) The expressions 
given above then again describe adequately at x < xc the dif- 
fusion motion on a scale of the order of the so-called diffu- 
sion length. 

In those cases when the level shift ~ ( r )  has a small-scale 
character with a correlation length of the order of the atom 
size, we have for a,, an expression different from (3.16). If 

denotes the mean square level shift, aim at z(d is 
described by an expression of the form (3.16) with 

f f a z ( / ~ ) 2 ,  x=l. (3.23) 

In contrast to (3.19) we have then 

Q~,=S/ZA, D , = ~ / , ~ % ~ / ~ ~ A ~ .  (3.24) 

When the parameter 6 = %/A increases and becomes 
comparable with unity, the band mechanism of diffusion is 
destroyed and relation (3.24) does not hold. The classical 
regime of Anderson localization sets in at a certain 6, > 1. 
Near this value, the diffusion coefficient should behave like 

Doa (Sc-C) "'9 S<f c. (3.25) 

We consider now the temperature dependence of the 
diffusion coefficient. We determine for this purpose in ex- 
plicit form of the temperature dependences of a,, and y. In 
an ideal or a weakly nonideal crystal ( S & 4 4 w D )  only two- 
phonon interactions of the particle with phonons are possi- 
ble, inasmuch as for one-phonon processes it is impossible to 
satisfy simultaneously at A (a, the energy and momentum 
conservation laws in emission (absorption) of one phonon by 
a particle. 

For two-phonon processes, the function (2.8) is equal to 

MII'(E) =nNo-zolwz (Ni f l )  N26 (oi-or-E), 

where N (o) = (eB" - I)-'. Accordingly, in the Debye model 
the expressions (2.19) and (2.27) at E = 0 are equal to 

*D 

Q.(O, T) -1OB. J do (o/wD)'N(r) (I+N(o)), (3.26) 
0 

mD 

yI1 (0, T) =iOBh(A/mD)' I do  (o/oD)'N(o) (i+N(m)). 
0 

(3.27) 

At low temperatures T < 0.1 w, we have 

PI1 (0, T)m1OeBcon (T/oo)O, 

7x1 (0, T) Z~O'B~OD (A~oD)'(T/oD)'. (3.28) 

Here Bc and 3, are constants of the order of unity. 
The quantities O,, (E,T) and y,, (E,T) satisfy the de- 

tailed-balancing principle. In particular, at I E I < T  we have 

QI, (E, T) =QII (0, T) (l+'/zSE) 

711 (E, T) = ~ I I  (0, T) (1+'/2PE). (3.29) 

It follows from (3.14) and (3.27) that in a weakly noni- 
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FIG. 1. 

deal crystal (x<x, or &(d ), when band motion takes place, 
the diffusion coefficient decreases with rising temperature 
from its value (3.15) and rapidly changes to the form1-' 

DaT-@. (3.30) 

By virtue of the small value of A, the band character of the 
particle motion takes place only in a narrow temperature 
interval 

However, as shown in Refs. 2 and 3, this law is in fact pre- 
served in a wide temperature interval also after the dynamic 
destruction of the band takes place (A <#,TI < T),  see Fig. 
la. Moreover, the character of the coherent-diffusion tem- 
perature dependence, determined by the first term of (3.14), 
remains valid in the entire temperature interval, including 
temperatures T 2 w, . 

We note that in an ideal crystal, at extremely low tem- 
peratures (T<A ) the T -9  law gives way to T -' (cf. Ref. 13). 
This is due to the simple fact that at T 4  it is necessary to 
take into account the temperature dependence of the particle 
velocity. 

In the absence of the polaron effect the inequality 

remains in fact valid all the way to temperatures T=. w, . As 
a rule, however, at lower temperatures (T> T,) an alternate 
particle-motion channel opens up and is connected either 
with classical above-the-barrier diffusion or, as in the case of 
quantum crystals, with the vacancion diffusion mechanism. 
In both cases the temperature dependence has (at T >  T,) an 
activation character. This leads to the diffusion-coefficient 
behavior shown in Fig. la. 

So far we have considered in fact the problem in the 
absence of the polaron effect. The presence of a strong po- 
laron effect introduces a temperature-dependent renormal- 
ization of A and enhances substantially the role of the inco- 
herent processes (see, e.g., Ref. 3). In particular, even at 
limited temperatures, y acquires an activation dependence 
(see Refs. 14 and 3). Under these conditions there can appear 
two activation regions with different energies (T<  T,) and 
T3 < Tin Fig. la). 

We consider now the opposite case, when static destmc- 
tion of the band takes place (x > xc). We assume that the 
impurity density corresponds to the case of strong localiza- 
tion, when SE >A for the overwhelming part of the space. 
Strong localization corresponds in principle to a certain 
critical density xc'(xc' >xc). In the case of point defects this 

density is obtained from the condition that there be an over- 
lap of spheres of radius R ;, defined by the conditionS 

where the form of ~ ( r )  is set by expression (3.1 8). 
In the case of a small-scale spread of the levels, the 

strong-localization condition coincides in fact with the lo- 
calization condition 

Under conditions of strong localization, the diffusion cou- 
pling of the sites r and r + g is governed by the probability 
(3.7). 

If the level shift is due to point defects separated by 
distances I>a, the value of SE changes little over a distance 
-a. This makes it possible in principle to go over in (3.6) to 
the differential form (at T >SE) 

a j  a f  - f div j=O, ju=-Dub- f Vuj 
d t 8 re 

with a local diffusion tensor 

and with a "hydrodynamic" velocity 

We note that the "hydrodynamic" term in the current en- 
sures evolution to thermodynamic equilibrium and has at 
T >SE little effect on the diffusion process. 

To describe particle diffusion over macroscopic dis- 
tances it is necessary to change from the local tensor Dd to 
the macroscopic diffusion coefficient D. The problem of dif- 
fusion under conditions of a strong shift reduces in fact to the 
problem of percolation on a three-dimensional regular grid 
with diffusion bonds (3.7) distributed in accordance with a 
definite law. It is clear that, just as in the classical percola- 
tion problem, we are interested in the minimum value of SE* 
corresponding to an infinite cluster with SE* 2 ISE I. 

We consider now the temperature range SE*(T(O,. In 
this region, the incoherent diffusion is small compared with 
the coherent one, and we shall confine ourselves to an analy- 
sis of just the coherent diffusion. The character of the aver- 
aging of D "h depends substantially on the investigated prob- 
lem. A number of general considerations can be advanced, 
however, from the very beginning. 

The most radical change in the behavior of the diffusion 
coefficient takes place at sufficiently low temperatures, 
when a,, <SE*. In this case, in contrast to (3.9), expression 
(3.36) yields 

Obviously, this temperature dependence is directly trans- 
ferred to the macroscopic diffusion coefficient D regardless 
of the character of the averaging. In a matrix of cubic sym- 
metry, the macroscopic diffusion coefficient is 

Dc0h~=1/S~a'Ao2Qppd (68') '. (3.39) 

Similarity considerations for the law (3.18) lead to the 
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extremal value 

G E * = C I U ~ X ' ~ ~ .  (3.40) 

In the case of small-scale shifting of the levels 

6e*=a'&. (3.41) 

Actually, only the factors a and a' depend on the character 
of the averaging. 

In nonideal crystals, when SE k A, not only two-phonon 
but also one-phonon processes can take place in the forma- 
tion of a,, . The point is that, in contrast to the band case, 
under strong level-shift conditions the momentum conserva- 
tion law no longer imposes any restrictions whatever. 

According to (2.8) we have 
MIq(E) = X O ~ O ~ N ~ - ~ [  (Nq+l) 6(aq-E) + Nq6 (aq+E)] 

and at T<o, the integral (2.19) is given in the Debye model 
by 

BI(E, T)=B,~D(~E~~UD)~[N(IE~)+@(E)I. (3.42) 

We note that a,( I E I always, and if I E I < T, then 0, a TE 4. 

The one-phonon and two-phonon scattering mecha- 
nisms make identical contributions to a,, = 0, +a,, 
when [cf. (3.28),(3.42)] 

6e=6ez, ~ E ~ = ~ O T ~ / U ~ ,  (3.43) 

or 

T=Ta,, T a p  (oD6e/30) '. (3.44) 

In a system with a broad distribution of the level shifts, 
at a given temperature, the hops between sites with level 
shifts exceeding S E ~  are of the one-phonon type, while those 
with SE <SE= are of the two-phonon type. Bearing in mind 
the extremal character of the transport picture, it can be 
assumed that the diffusion in the crystal is determined by 
two-phonon processes at T >  T *, where T *=T,,. , and by 
one-phonon processes at T <  T *. 

At T <  T * the temperature dependence of the local dif- 
fusion coefficient (3.36) takes in place of (3.38) the linear 
form 

~ : ;~o : i2~  (Ge, T)/6e2aTGeZ, (3.45) 

where SE = lad~/drl. A fundamental circumstance is that 
now the diffusion coefficient is proportional to and con- 
sequently the transport accelerates with increasing level 
shift. Consequently the diffusion picture changes at T <  T *. 
The particles move primarily towards larger shifts, up to 
shifts of the order of [SE~ z T, after which, according to (3.7) 
and (3.42), the sign of E,,, , becomes significant in W , ,  + , 
and an important role is assumed in the expression (3.35) for 
the particle flux by the "hydrodynamic" velocity (3.37). Un- 
der these condition the diffusion proceeds in different man- 
ners, depending on the character of the interaction between 
the particle and the defects. 

If the defects act as repulsion centers, we again encoun- 
ter in the calculation of the macroscopic diffusion coefficient 
the problem of percolation of an infinite cluster with 
IS&\ > a&**, but now already with the maximum permissible 
&**(a&* <SE** < T), SO that 

D=i/,za2Ao' (613.') 'T/~D'.  (3.46) 

With further lowering of the temperature, the value of SE** 

joins up with T, after which SE** depends on T, and the 
diffusion coefficient acquires a stronger than linear depen- 
dence on the temperature. For motion over large distances at 
T < SE* it is necessary to overcome shifts SE < T, and accord- 
ing to (3.42) the diffusion coefficient should decrease expon- 
entially as T 4 .  

A diffusion of an entirely different kind takes place at 
T < T * in the case of attraction of the particle to defects. An 
important role is assumed by the capture of the particles by 
the defects (see Sec. 5), especially if it is assumed that 
T 4  ~SE,,, 1, where SE,, is the shift in the coordination 
sphere nearest to the defect. Obviously, in this case the diffu- 
sion has in this case the usual activation character with an 
activation energy equal to the energy of binding the particle 
to the defect. 

At T < T * the one-phonon processes are of decisive sig- 
nificance also in incoherent particle transport, for which a 
direct calculation of (2.27) in the Debye model yields 

71 (E, T) =BIroD (Ao/oD) ( 1 E 1 / ~ D ) " N (  I E 1 ) +@ (E) 1 43-47] 

Comparing this value with the first term in (3.36) (we recall 
that 0, <SE), we see that in the case of one-phonon processes 
the probabilities of coherent and noncoherent hops are of the 
same order and must be taken into account simultaneously. 
Since, however, both hopping mechanisms depend exactly in 
the same way on the temperature (and incidentally on the 
remaining parameters), allowance for the noncoherent hops 
reduces in fact to a renormalization of the numerical coeffi- 
cient in (3.46). 

Thus, in a relatively large interval of low temperatures, 
where two-phonon processes predominate, the interaction 
with the phonons eliminates the localization and leads to the 
power-law increase (3.38) of the diffusion coefficient with 
increasing T. In the region of extremely low temperatures, a 
transition to the one-phonon regime takes place and the dif- 
fusion coefficient becomes linearly dependent on the tem- 
perature [see (3.46)]. With further decrease of temperature 
this dependence becomes exponential. If the defect attracts 
the particle, irreversible capture by the defect becomes sig- 
nificant at sufficiently low T. 

Conversely, with increasing T, when a,, ( T  1 becomes 
larger than SE, the dynamic level shift exceeds the static one, 
and the diffusion coefficient (3.36) acquires the same tem- 
perature dependence (3.9) as in a defect-free crystal. Now the 
diffusion coefficient decreases with increasing temperature 
like T - 9  and this dependence has again a universal charac- 
ter. In the intermediate temperature range the diffusion co- 
efficient goes through a maximum (see Fig. lb) at a tempera- 
ture Tm determined approximately from the relation 

QIr(T,,) ~ 6 s ' .  (3.48) 

The position of the maximum changes little with density: 
T,  , and the maximum value of the diffusion is 
Dm,, ar x - 4/3. The behavior itself is not universal near the 
maximum, since the result of the averaging depends on the 
temperature. In particular, on sections with small SE the 
transition from the T 9  to the T -9 law takes place earlier than 
on sections with larger SE, and this obviously flattens the 
D (T)  plot in the region of Tm . Disregarding this, we can write 
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a general expression for D at x > xc: 

4. LOCALIZATION AND PHONON DELOCALIZATION IN A 
SYSTEM OF INTERACTING PARTICLES. DIFFUSION OF He' 
IN SOLID He4 

In systems with extremely small tunneling amplitudes, 
as is typical of atomic particles, the interaction between par- 
ticles begins to exceed A at an average distance 2 even at 
quite low densities x, of the diffusing particles. If the parti- 
cles are randomly distributed, the picture of the level shift 
for each individual particle is similar to that in a crystal with 
point defects. It is clear that, just as in the last case, there 
should exist a critical density x i  above which there is no 
band motion and localization sets in5 (see also Ref. 3). The 
difference is that as T 4  a thermodynamic-equilibrium 
state should correspond either to phase decay or to spatial 
ordering of the particles. For ordering to be absent, however, 
even temperatures T >A (more accurately, T >Z) are already 
sufficient, and if the phase-decay temperature is at the same 
time low enough, we should observe to full degree a picture 
of quasilocalization (f2 (T)<S ) and phonon delocalization 
similar to that described in the preceding section. 

The most adequate system for revealing such a quasilo- 
calization is a weak solid solution of He3 in He4. In this sys- 
tem, according to Ref. 15, the bandwidth is A =: K and 
the interaction between two He3 atoms is asymptotically de- 
scribed by relation (3.18) with luol =: K (see, e.g., Ref. 
16). At these values of the parameters the localization condi- 
tion (3.20) should correspond to a concentration xi  of the 
order of several percent. It is known that at such He3 concen- 
trations the temperature stratification of the phases in a solid 
solution of He3 in He4 is of the order of tenths of a degree. 
This means that even at very low temperatures there will be 
neither ordering nor decay of the phases. Since T > luol in 
this case, all the particle configurations turn out to be practi- 
cally equiprobable, and the problem of bound-pair produc- 
tion is at the same time totally nonexistent. Thermodynam- 
ically speaking, the He3 subsystem will remain a weakly 
interacting lattice gas also at x, >xi .  From the kinetic point 
of view, however, this system is strongly interacting, a fact 
predetermined by close-to-critical character of the behavior 
of this system at x, =:xi. It must be noted that in the tem- 
perature region in question we always have T,,<T, where 
T, is defined in accord with (3.44, and the kinetics is deter- 
mined exactly by two-phonon processes. 

At x, <xi, in the absence of defects, the motion of the 
He3 atoms is of the band type. The diffusion coefficient is 
described then by expressions (3.10) and (3.14), with x in 
expression (3.16) for a,, replaced by x,, and with R, deter- 
mined from (3.17) using parameters typical of the interaction 
of the He3 atoms. The corresponding dependence of the dif- 
fusion on x, and T was observed in Refs. 15, 17, and 18, in 
which band quantum diffusion of He3 atoms in a solid He4 
matrix was observed for the first time, and the initial ideas of 
the paper by Andreev and Lifshitz' were confirmed. 

At x, > x i  the picture of the quantum diffusion could 

FIG. 2. 

change radically. In accord with the results of the preceding 
section, the diffusion coefficient D will obey relations (3.39) 
and (3.40) with x+x, in the large interval 0.2 < T <  1.5 K, 
where O,, ( 6 ~ .  and the activation diffusion still plays a very 
small role. In place of the rapid decrease with rising tem- 
perature in accord with (3.30) (curves 1 and 2 of Fig. 2), an 
abrupt increase of the diffusion coefficient should be ob- 
served 

D Q Tg (xp) -'Is (4-1) 
(curve 3 of Fig. 2). 

When account is taken of (3.28), practically complete 
localization takes place on the low-temperature end of the 
indicated interval of T. When the temperature rises above 
1.5 K, the diffusion coefficient, after passing through a maxi- 
mum, goes over into the regime of dynamic band destruc- 
tion, so that D a T - 9  on the right-hand slope of curve 3. The 
entire behavior is described by relation (3.49). 

Phonon delocalization, however, should manifest itself 
already when x, approaches x i  from the region of lower 
concentrations. The point is that when the difference x i  - x 
decreases a sharp decrease of the relative number of the par- 
ticle configurations A (x,) that ensure the possibility of long- 
scale diffusion at T = 0 begins in the immediate vicinity of 
xi.  At finite T, the diffusion for these configurations satisfies 
Eq. (3.14), but at the same time diffusion sets in for the re- 
maining configurations and is described already by relations 
of the type (3.49). As a result, the general expression for the 
diffusion coefficient can be approximately written in the 
form 

(4.2) 
The function Q (x,) vanishes at x, = xi ,  and it is just its 

behavior which ensures a critical behavior of D (x,) of the 
form (3.22) at T = 0. With increasing difference x, - x i  the 
function Q reaches rapidly its limit, equal to unity, and (4.2) 
goes over into a formula that describes the band motion. At 
x, > x i  the diffusion coefficient takes on the value (3.49), as it 
should. It is important that when the dynamic level spread 
becomes predominant, i.e., at L?,, > 6 ~ .  , and f2,, > 4,, Eq. 
(4.2) takes at arbitrary x, the form (3.9),(3.10) which is typi- 
cal of the diffusion of isolated particles, a behavior with a 
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FIG. 3. 

lucid physical meaning. Thus, relation (4.2) provides a rea- 
sonable description of the coherent quantum diffusion coef- 
ficient on the entire plane of the parameters x, and T. 

At x, close to xi  (xi - x, > 0) the dependence of D "Oh 
on T, as follows from (4.2), takes the form shown by curve 4 
of Fig. 2. It is interesting that with increasing x, the role of 
the interaction with the phonons varies continuously even in 
the subcritical region, from the onset of additional resistance 
(curves 1 and 2) to the formation of parallel channels of mo- 
tion (curve 4). Equation (4.2) is least accurate, in all likeli- 
hood, when going from one regime ofx, to another. We note 
that although the second term in (4.2) differs from zero in 
only a very limited interval xi  - x, > 0, the quantity a in 
relation (3.40) for 6 ~ .  (x,) is not universal and can vary in this 
interval. It must be taken into account here, however, that 
(Se.),, = A ,  The reason is that the second term pertains to 
configurations on which the band character of the motion is 
suppressed. We note also that in a solid solution of He3 in 
He4 the difference between x i  and xz (see the preceding sec- 
tion) is not very pronounced. 

The form of the function Q (x,) can be established from 
the D (x,) dependence at T = 0. A general form of this de- 
pendence is shown in Fig. 3. 

The change from the l/xp law to a sharper decrease 
with concentration near xz is due to destruction of the band 
motion on the average and to the progressive decrease of the 
number of configurations on which the remnants of such a 
motion are still preserved. In this sense is clear that the plot 
of D wh(T) will be close in this case to that of the diffusion 
coefficient near xc in the case of level shifts on account of 
static defects. At the same time one cannot exclude the possi- 
bility that in a system of interacting diffusing particles there 
will remain, in a certain interval x, >x i ,  a small tail (dashed 
line in Fig. 3) due to the weakly pronounced effects of the 
collective motion. 

In a just-published interesting paper by Mikheev and 
co-workers,' quasilocalization of He3 atoms in an He4 ma- 
trix was observed in experiment (xi 2 4%) and it was con- 
firmed that phonon localization obeys the law (4.1). 

5. PARTICLE CAPTURE BY A FORCE CENTER. DIFFUSION 
RECOMBINATION OF ATOMIC HYDROGEN IN AN Ht MATRIX 

There exists an entire class of phenomena connected 
with capture of a particle by a potential center or with the 
need for particles to approach each other to within interato- 
mic distance. In the latter case one can speak of a chemical 

reaction in the solid phase, in particular, of recombination at 
low temperatures, or of formation of cluster states, which 
are readily detected by methods such as, e.g., NMR. The 
main feature of such problems is that the particle must inevi- 
tably pass through the strong shift produced by the potential 
center itself. It is physically obvious that the characteristic 
time of the reaction is determined in such a case by the time 
of passage through the strong shift. Therefore, when consid- 
ering the kinetics of the falling on the center, it is possible to 
disregard the time of meander of the particle far from the 
force center (trap) and, on the other hand, one can study the 
kinetics of falling on an individual center without consider- 
ing the remaining centers. 

We assume for simplicity that the potential ~ ( r )  pro- 
duced by the trap is spherically symmetrical. At large dis- 
tances from the center there is always a slowly varying part 
of the potential, connected with the deformation field (3.18). 
At close distances an important role is played by direct inter- 
action of the particle with the center. The small value of A, 
typical of motion of atomic particles in a crystal, makes the 
particle to subject to the conditions of a strong shift of the 
levels SE > A  even at large distances from the center. At 
T >  T, [Eq. (3.44)] the motion in this region is determined 
by two-phonon processes and is described by the local hop- 
ping probability (3.7) with O,, determined in accord with 
(3.28). On moving to the center at low T, the condition 
~E>O,,  is realized rapidly and 

Wr, r+g=2A92Q~~l(er, r + A 2 -  (5.1) 
This probability decreases sharply with decreasing distance 
r to the center. Once the shift at a certain distance r, reaches 
the value 

6e (r.) z30T2/on, (5.2) 

the condition T >  To is violated and the one-phonon interac- 
tion becomes decisive. 

Replacing in (5.1) a,, by 0, (3.42) we obtain 

Wr. r + g z A o 2  (E,  r+g) Z T / o ~ 4 -  (5.3) 
It is seen therefore that with further decrease of r the hop- 
ping probability increases rapidly. Thus W(r) behaves as 
shown in Fig. 4a, with a very sharp minimum at the point 
r = r.. Indeed, if the level spread depends on r like 
SE a r - " - ' ( ~ ( r )  = u,(a/r)",n>3), then 

It is physically clear that the kinetics of the falling on 

FIG. 4. 
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the center is actually determined by the time of passage 
through the bottleneck in the vicinity r = r., where, in ac- 
cord with (5.2) and (5.3) 

W'=103 A , ~ T J / ~ ~ R .  (5.5) 
This expression is valid at sufficiently low temperature, 
when the inequality &&(re) < T is satisfied (see (5.2)). 

When moving in the region r < r., the particle ends up 
under conditions of so strong a shift, that SE > T. In this case 
the subsequent motion depends substantially on the sign 
Er.r+g and in final analysis on the sign of ~ ( r ) .  At ~ ( r )  < 0 and 
6.5 < T the probability of a one-phonon hop towards the cen- 
ter ceases to depend on the temperature [see (3.42)] and a 
really irreversible capture takes place, at a rate limited by 
expression (5.5). At e(r) > 0, further motion to the center has 
an activation dependence on Tand the time of capture by the 
center is determined by the competition between the time of 
passage through the bottleneck and the activation region. 

The character (5.4) of the behavior of W leads in fact to a 
homogeneous distribution of the particles in the region 
r > r.. In the case of attraction to the center the gradient of 
the distribution function is directly concentrated near the 
bottleneck on a scale that is most frequently of the order of 
interatomic, and the time of capture by the center can be 
estimated at 

l / z=4n (r,/a)ZW*x,o: TS-'/(n+l), (5.6) 

where xp is the relative concentration of the particles. It is 
always assumed here that xp (r. /a)3< 1. 

With rise in temperature, the radius r. increases con- 
tinuously until S&(r. ) decreases to a value equal to A. This 
takes place at TA zO.l(w,A ) ' I2;  as before, we have here 
O,, <SE(~. ) and A < T. From this instant on, further lowering 
of T leaves this radius r. = r, unchanged-at r > r, the diffu- 
sion remains fast all the time. As a result, a change takes 
place in the temperature dependence of the reciprocal time 
of capture by the center: 

l / r=4n(r0/a)  2A,"Txp/oD4, T<Ta. (5.7) 

If, conversely, the temperature is raised, an increase of &(re ) 
(5.2) can cause r. to decrease to a distance corresponding, for 
example, to the second coordination sphere. In this case the 
discrete character of the structure becomes significant, and 
r. remains rigidly tied to a definite coordination sphere 
when Tis increased in a certain temperature interval. In this 
T interval, relation (5.7) will again be valid. Thus, the law 
(5.6) is replaced on both ends of the low-temperature region 
by a linear dependence on T. 

It is of interest to trace the influence of the extraneous 
defects on the considered process. It is readily understood 
that if the characteristic scale of the shifts due to the 
defects is less than &~(r.),  all the results remain practically 
unchanged. If, however SE"" > ), the picture is signifi- 
cantly changed. One-phonon processes now predominate in 
the entire r interval. We denote by r';" the value of r obtained 
from the relation &(r) = Naturally, at r > r!" the diffu- 
sion of the particles is determined in practice by the level 
shifts on account of the defects. It is easy to imagine (see Fig. 
4b) that the limit for capture by the center will be imposed by 

just the motion in this region, and for the reciprocal capture 
time we have approximately 

l / z=4n (r;'"'/a) A,Z ( ~ E ~ " ' ) ~ T X , / ~ ~ ~  (5.8) 

(a linear dependence on #F rather than a quadratic is due to 
allowance for the gradient of the particle distribution func- 
tion near r';"). It is important that in the presence of a random 
level shift on account of extraneous defects, with 6 ~ ' "  >A, 
lowering the temperature will always cause a transition to a 
regime described by relation (5.8), and by the same token to a 
linear dependence on T. 

The results above, to within a factor of 2, are fully appli- 
cable to the case when the force centers are the particles 
themselves. It follows from these results that at sufficiently 
low temperatures the reaction between the particles in a sol- 
id neutral matrix will be limited by below-barrier diffusion 
under conditions of a level shift that is due primarily to inter- 
action within an individual pair of reacting particles. 

Such a picture was first observed in experiment in Ref. 
6, in a study of the recombination of a weak solid solution of 
atomic hydrogen in a matrix of molecular hydrogen. By in- 
vestigating the kinetics in such a system with the aid of ESR, 
the authors have observed that at T < 4 K the recombination 
rate loses its activation character (classical diffusion) and 
goes over into regime of slow decrease with decreasing T. 
The same authors (to be published) have established later, 
that the decrease is very close to linear. If it is taken into 
account that the relative concentration of the hydrogen was 
xp -- to and that the reaction calls for approach to 
within interatomic distance (after which it proceeds very ra- 
pidly), there is no doubt that the observed characteristic re- 
combination-time scale, - lo4 sec, is connected just with the 
time of approach of the individual particle pairs. It is clear 
from the foregoing discussion that a linear dependence on T 
occurs in principle in several cases. If it is assumed that the 
condition T < TA holds for the experimental interval 1.5 
K < T <  4 K, it is possible, using (5.7), to obtain the estimate 
A0z0.  1 K, which in turn leads to a noncontradictory esti- 
mate of TA . If, however, it is assumed that in this interval of 
T the radius r. is practically fixed on the third or second 
coordination sphere, or that the kinetics is limited by the 
level shift on account of the defects (in particular, since the 
matrix is a mixture of ortho- and parahydrogen), we arrive 
similarly to the estimate ( A J E ) " ~ ~ o . ~  K. In the first case 
the shift SE will be of the order of several degrees on account 
of the direct interaction of the two atoms, and as the lower- 
bound estimate we have A,=: K. It is little likely that 
6~'"' can cause a large shift. It can therefore be assumed that 
actually A, lies in the interval 

K<A,<O.l K. 

It is interesting that a direct estimate of the tunnel exponen- 
tial, which takes into account the obtained values of the acti- 
vation energy for classical diffusion (E, - 100 K, Ref. 6) and 
the geometry of the crystal matrix, yields values that lie in- 
side this interval. 

We note in conclusion that at the obtained scale of A, a 
pure band diffusion would yield for the estimate of the re- 
combination time a value smaller by many orders of magni- 
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tude than observed in experiment. In this case the experi- 
ment reveals very vividly the peculiarities of quantum 
diffusion in an inhomogeneous system, when the delocaliza- 
tion exists at all only to the extent that there is interaction 
with phonons. 
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