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The valence-band method is used to calculate the energy of an n-atom (n = 38) system of hydro- 
gen molecules located in an a-nitrogen-type lattice of solid molecular hydrogen at densities in the 
region of the metal-insulator phase transition. The limits of applicability of the approximation 
based on the cluster expansion of the energy, with allowance for three-particle interactions, are 
estimated. 

PACS numbers: 3 1.70.K~ 

An important factor in the problem of hydrogen metal- 
lization under strong compression is the properties of the 
molecular phase that is the precursor of the metallic state at 
low pressures. It is precisely the large uncertainty in the 
equation of state of the molecular crystal which causes for 
the most part large discrepancies in the predicted pressure of 
the transition from the molecular to the metallic phase. The 
general assumption in the study of the molecular phase is the 
paired character of the interaction of the molecules that 
make up the crystal. This leads to the four-electron problem, 
the solution of which is the subject of many papers.'-' Since, 
however the proposed phase transition takes place in the 
region of an appreciable compression of the crystal (its den- 
sity increases tenfold compared with the crystal density at 
zero pressure), it becomes clear that the use of the approxi- 
mation of pair interaction of "bare" molecules in the entire 
interval of the investigated densities is not sufficiently well 
founded. At densities of interest for the investigation of the 
phase transition, a larger role is assumed by the multiparticle 
effects. It was indicated in Ref. 6 that the non-additive three- 
particle interaction of hydrogen molecules increases when 
the distances between them are decreased. In the study of the 
non-additive interaction of three hydrogen molecules one 
encounters a six-electron problem. The energy of a molecu- 
lar hydrogen crystal having the structure of a nitrogen was 
calculated at zero temperature in Ref. 8, using the cluster 
approximation and considering clusters consisting of three 
molecules. The energy of a three-molecule cluster was calcu- 
lated by the method of valence bonds with account taken of 
all the covalent and of the most important singly, doubly, 
and triply ionized structures. It was shown that allowance 
for the non-additive three-particle interaction leads to a low- 
er energy than the pair-interaction approximation, and this 
leads correspondingly to a "softer" equation of state, i.e., to 
weaker increase of pressure with increasing density than in 
the case of pair interaction. At specific volumes less than 20 
a.u./atom, an important role is assumed in the cluster ex- 
pansion by clusters consisting of a large number of mole- 
cules, and this limits the applicability of the three-particle- 
interaction approximation. The present paper deals with the 
molecular phase of hydrogen at high densities, including the 
indicated region where multiparticle effects become sub- 
stantial. 

MULTIELECTRON WAVE FUNCTION 

The considered region of the specific volume (10-50 
a.u./atom) corresponds in the case of a lattice of the a-nitro- 
gen type to nearest neighbors separated by distances larger 
by 2-4 molecule sizes. We construct therefore the multipar- 
ticle wave function with localized atomic orbitals, using the 
valence-bond method. In this case the relatively large inter- 
molecular distances, compared with the distance between 
the nuclei in the molecule, allows us to confine ourselves to 
only one valence structure corresponding to the bonds pro- 
duced between electrons localized on one molecule, and neg- 
lect the bonds between electrons of different molecules. The 
normalized electron wave function of the ground state can 
then be written in the form 

Here A ,  + ' is the spin orbital localized on the nucleus A 
of molecule 1 and corresponding to a spin z-projection equal 
to + 1; B,-' is a spin orbital localized on nucleus B of mole- 
cule 1, with a spin z-projection equal to - 1; n + is the num- 
ber of s equal to + 1 (the number of spins on the orbitals 
centered on the nuclei A and directed upward); N is the num- 
ber of molecules. 

To simplify the calculations that follow, we consider a 
system of orbitals (Qii, pi ) (i = 1,2, ..., N )  such that 

This means that the atomic orbitals belonging to different 
valence bonds are orthogonal to one another, but the overlap 
integral of the orbitals of one bond differs from zero. This 
corresponds to the known Harley-Lennard-Jones-Pople ap- 
proximation for molecules. 
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CONSTRUCTION OF SYSTEM OF ATOMIC ORBITALS 

We shall construct the required system of atomic orbi- 
tals ( Qi,  pi ) out of initial Slater 2s orbitals, which we divide 
into two groups, (ai ) and (b i  1, corresponding in the a-ni- 
trogen lattice to the lower and upper nuclei in the molecule. 
We orthogonalize any one of these groups, say (ai ) , by Low- 
din's method. We obtain a system of orbitals ( Qi ) localized 
on the lower nuclei of the molecules: 

Here D is the square root of the matrix inverse to the overlap 
matrix a of the atomic orbitals (a,  ) : 

At the specific-volume values considered by us, the off-diag- 
onal elements of the matrix A .  are small compared with the 
diagonal ones. The system of orbitals (Qi ) is orthonorma- 
lized: 

( @ i l  @j>=6ij. (4) 

We form now a second system of orbitals (pi  ) localized on 
the upper nuclei of the molecules. This system of orbitals 
should satisfy the conditions 

<qilqj)=Gij, (qil @j)=O, i+j, (qil @ i ) f  0. (5) 

We shall construct the system [p i  ] out of (b i  ) and ( Qi ) . To 
this end we seek p, in the form 

q1=b,+ Z A , , ~ @ ~ .  (6) 
i+ 1 

We have left out of the sum the term with i = 1, i.e., the 
function a, does not take part in the formation of the orbital 
p,. The orthogonality condition (5) for the function p, takes 
the following form: 

Substituting here p, from (6) we obtain for j# 1 

Hence, since the functions ( ) are orthonormal, we obtain 

A,, ,=-(biI j+l. (8) 

We construct now the functions p,, p,, ..., pk . We seek the 
function pk + , in the form 

L 

The following system of orthogonality relation holds for the 
function pk + , 

The condition (lo), with allowance for the function pk + , in 
the form (9) yields ( j  = 1, 2, ..., k ) 

Hence, recognizing that for j = 1, 2 ,..., k 

we obtain 

(bk+,lqj)+B,+,, j ( ( ~ , ) ~ j ) + ~ , + , ,  j < @ i l ( p j ) = ~ ,  (j=i, 2 , .  . . , k). 
(12) 

Relation (1 1) yields for j# k + 1 

For j = 1, 2, ..., k these equations take the form 

Solving (12) and (14) simultaneously, we obtain ( j=  1, 
2, ..., k )  

Equations (13) reduce forj  = k + 2, k + 3, ..., N to 

From this we get 

Equation (9) together with (15) and (16) yields a recurrence 
relation for the function pk + , in terms of the functions p,, 
q,, ..., pk and the function (ei ). We now express the func- 
tions (pi  1 in terms of the initial systems of functions (ai ] 
and ( b i  ) :  

Here P and Q are still undetermined N X N matrices. We 
introduce recurrence relations for the elements of the matri- 
ces P and Q. From (6) we have 

I 

It follows therefore that 

Substituting pi from (17) in expression (9) for pk + , , we ob- 
tain 
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We have thus obtained the following recurrence rela- 
tions for the elements of the matrices P and Q: 

Together with expressions (18) for the elements of the first 
rows of PV and QV , they enable us to determine the elements 
of all the rows of the matrices P and Q from the coefficients A 
and B. In our case, in accordance with Eqs. (1 5), these coeffi- 
cients are expressed in terms of the functions ( Qi ] and (pi ] . 
We express them in terms of the initial sets of orbitals (ai 
and ( bi ] . We introduce in addition to the overlap matrix A ,  
of the orbitals (a, ] the overlap matrix A,, of the orbitals 
(ai ] and (b, ] as well as the matrix A, for the overlap of the 
orbitals ( bi ] with one another, so that 

(A,)ij=(aiI bj), (As)ij=(bi I bj), (20) 

Substituting in (1 5) the functions ( 0, ] and ( Qi ] from (3) and 
(17), respectively, we obtain forj  = 1, 2 ,..., k 

and for j=  k + 2, ..., N 

Here P is the transpose of the matrix P. It is necessary to 
add to Eqs. (21) the value of A , j :  

Now, knowing P, Q, A and B on the k-th step, we deter- 
mine on the next (k + 1)st step first A and B from (21), and 
from them next P and Q. It will be more convenient to use 
hereafter the functions (p i  normalized, just as { Qi 1, to uni- 
ty: 

  pi I q j )  j>=G<j. 

We normalize the functions (pi ] b y  introducing in place of 
the matrices P and Q the matrices Ta ( = 1,2): 

We also introduce a common symbol c" (a = 1,2) for the 
orbitals [ai 1 and ( bi ] : 

The orbitals (p, ) can now be written in the form: 

q,=T,Fcl" (25) 
(summation is carried out over a and j). 

ENERGY OF FACE CENTERED CUBIC LAlTlCE 

The Hamiltonian of a system of N hydrogen molecules 
has in the Born-Oppenheimer approximation with secured 
nuclei the usual form 

where ri and R, are the coordinates of the electrons and of 
the nuclei (i = 1, 2, ..., 2N). The nuclei make up a lattice ofa- 
nitrogen type, in which the centers of the molecules consti- 
tute a face-centered cube, and the molecular axes are direct- 
ed along the body diagonals of this cube. 

Calculating in the usual manner the mean value of the 
Hamiltonian (26) in a state with wave function (I), 
E =  ( ! P I H I ! P ) / ( Y l ! P ) ,  weobtain 

E=E,+E,d+EZe", (27) 
where 

N E,=Z (I+S:)-'{Dim[Din(amlan) +2SiTina (amIcna) I 
1= 1 

+TimaTins (cma 1 cnB) 

+DimTi? [DinTipa (aman I cPuc,B) 

+ TinaDip (amcna I ape:) I)  (28) 
is the sum of the renormalized energies of the individual 
molecules, 

E:= (14-S:) -' (l+S?) -l{DimDin[DjPDjq(aman lapaq) 
ic j  

+TjpTTj," (aman I cp7c,b) ] +TimaTcns[DjpDjq (cmacnBIapaq) 
+TjpTTj: (cmacnS I cpTc,d) I +2SiD,,TinS [DjPDjq (a,cna I apaq) 
+ TjPTTjq6 (amcns I cPTc,d) I + 2S,Dj,,,Tjna [ DipDiq (amcns I apaq) 
+TipTTIP6 (amcnBIcPTc,d) ] +4SiSPimTinBDjpTh6 (a,,,cns Iapc,d) ) 

(29) 
is the renormalized energy of the direct interaction of the 
molecules, and 
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P, Mbar 

FIG. 1. Energy of molecular and atomic phases of solid hydrogen: 1- 
energy of n-atom cluster of molecular hydrogen (n = 39); 2--energy of 
atomic phase 11; dashes--common tangent to the two curves. 

is the renormalized exchange interaction. 
In (28)-(30) summation over repeated indices is implied 

throughout. 
Here 

is the overlap integral of the orbitals !Pi and (pi 

is the single-electron matrix element, and 

is the two-electron matrix element. 
In this paper the initial atomic orbitals (ai ] and (bi  ] 

were taken in the form of a linear combination of two Gaus- 
sian 1s functions with the expansion coefficients obtained in 
Ref. 9. Equations (28)-(30) were used to calculate the energy 
of a system of molecules located in two coordination spheres 
(N = 19). The results of the calculation of the energy as a 
function of the specific volume of the crystal is shown in Fig. 
1. The same figure shows the metallic-phase energy calculat- 
ed by perturbation theory,'O." and this enables us to esti- 
mate the pressure of the transition from the molecular into 
the metallic phase, namely - 2 Mbar. The binding energies 
of both phases were reckoned from the free molecules and 
referred to one atom. The energy of the molecular phase, 
obtained in the multiparticle approximation considered 

FIG. 2. Dependence of the pressure of the molecular phase in the volume: 
1-result of present paper, 2--experimental curve." 

here, is in good agreement with the energy calculated in Ref. 
8 in the three-particle-interaction approximation at a specif- 
ic volume of the crystal larger than 30 a.u./atom. We can 
therefore conclude that the description of molecular solid 
hydrogen is adequately described in this region by a cluster 
expansion with three-molecular clusters taken into account. 
Numerical differentiation of the dependence of the energy 
on the volume in Fig. 1 yielded the dependence of the pres- 
sure on the volume. The corresponding curve is shown in 
Fig. 2 together with a number of points obtained in a recent 
precision experiment" in which molecular hydrogen was 
strongly compressed at low temperature (T = 5 K). The two 
curves are in good agreement. 
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