
Theory of the low-temperature anomalies in the thermal properties of amorphous 
structures 

V. G. Karpov, M. I. Klinger, F. N. Ignat'ev 

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad; M. I. Kalinin 
Polytechnic Institute, Leningrad 
(Submitted 2 August 1982) 
Zh. Eksp. Teor. Fiz. 84,760-775 (February 1983) 

A general approach is taken to the description of local many-well atomic potentials in amorphous 
systems. It is shown that typical of this kind of system are double-well and critical potentials, the 
latter characterized by anomalously small quasielastic constants for the atomic motion. Expres- 
sions are found that describe the shapes of typical double-well potentials and the energies of the 
two-level tunneling states in them. The contribution of these states to the low-temperature specif- 
ic heat and thermal conductivity is examined, and questions regarding the coupling constants 
between the tunneling states and phonons and regarding the corresponding changes in the spec- 
tral structure are briefly discussed. The dependence of the measured low-temperature specific 
heat on the measurement time is briefly considered. 

PACS numbers: 61.40. - a, 65.40.Em, 66.70. + f 

1. INTRODUCTION 

Experimental studies undertaken in recent decades 
have revealed significant anomalies in the thermal and ultra- 
sonic properties of a wide class of glasses at low temperature 
T S  1 K. It has been established that in this temperature re- 
gion the specific heat c is proportional to T, the thermal 
conductivity x to T2, and the ultrasound absorption at fre- 
quency w to w2/T (see, for example, the reviews in Refs. 1 
and 2). These features have not found explanation in terms of 
the usual concepts. To interpret these effects, W. A. Phillips 
and Anderson, Halperin, and Varma postulated in their 
known papers3 the existence of two-level systems identified 
with the tunneling states in atomic-double-well potentials of 
the type shown in Fig. 1. To explain the observed behavior it 
was necessary to assume that the basic properties of the dou- 
ble-well potentials-the strength R of the interatomic barrier 
and the energy difference A, of the minima-are random 
quantities with an essentially uniform distribution over their 
respective intervals. The physical nature of the double-well 
potentials in glasses and the distribution of their parameters 
have remained for the most part unclear. Recent paperse 
have proposed different, though to a certain extent comple- 
mentary, approaches to this problem. In contrast to the ther- 
modynamics and qualitative structural6 models, the model 
developed in Ref. 4 by two of the present authors represents 
a concrete microscopic approach capable of revealing a 
number of important features of the tunneling states, at least 
in amorphous structures having a network of bonds with the 

FIG. 1. The two-level system in an atomic double-well potential. 

lowest possible coordination number z = 2 (chalcogenide 
glasses, for example). In that paper we also predicted the 
existence of special "critical" atomic potentials having 
anomalously small quasielastic constants. The main idea is 
that ordinary single-well atomic potentials are unstable to 
transformation to double-well potentials in certain local 
structures. In the present paper we develop in regard to this 
idea a more general approach to the problem of double wells 
and tunneling states, combining certain microscopic and 
model-independent features of the systems under study. 
This general approach is consistent not only with Ref. 4 but 
also with the models of Refs. 5 and 6, and it gives a unified 
description of double wells in amorphous materials without 
regard to their specific microscopic structure (Sec. 2). As a 
result, we are able to study the important dynamical features 
of atomic particles in double-well potentials (Sec. 3) and to 
calculate the aforementioned anomalous thermal properties 
of glasses (Secs. 6 6 ) .  

2. GENERAL DESCRIPTION OF LOCAL ATOMIC POTENTIALS 

Irrespective of the specific structure of an amorphous 
system, one can state some general arguments concerning 
the microscopic nature of the local (and, in particular, dou- 
ble-well) atomic potentials in it. Let us consider an ensemble 
of several local subsystems of the atomic system of a glass 
that are identical from the standpoint of composition and 
topological connections. The potential energy V(x) of each 
subsystem of the ensemble can be regarded as a function of 
the set of its internal variables x r  [xi ) for fixed values of the 
remaining, "external" variables x= [Xi ) , which play the 
role of parameters. The variables X describe the state of the 
set of atoms of the glass which do not belong to a subsystem 
of the given type. In fact, we take the variables X to mean the 
set of coordinates describing the equilibrium positions of the 
atoms which do not belong to the subsystem under consider- 
ation. Thus V(x) is a local potential which is to be minimized 
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on the set of internal variables and depends parametrically 
on all the remaining, external variables: 

In a disordered system the parameters X fluctuate from one 
realization to another. Since the form of the function V(x) is, 
generally speaking, determined by the values of these param- 
eters, it can be assumed that some of their fluctuations corre- 
spond precisely to double-well potentials V(x). Naturally, 
the parameters of the double-well potentials themselves are 
fluctuating quantities characterized by their respective 
probability distributions. 

To illustrate the foregoing, consider the case4 of an en- 
semble of one-dimensional triatomic fragments. In this case 
V(x) is the potential relief of the central atom (x is its dis- 
placement), and the role of X is played by the fragment 
length R which fluctuates within the ensemble; there exists a 
critical value R = R, such that the potential V(x) is a single 
well for R < R, and a double well for R > R,. 

The foregoing considerations permit one to describe 
quite generally the most prevalent and in this sense typical 
many-well local atomic potentials in amorphous structures 
by means of a function of a single effective coordinatex of the 
atom or group of atoms in question: 

Here A, B, and C are constants of the material, while qPO 
and t2O are parameters which fluctuate in space. The phys- 
ical meaning of these parameters and of the coordinate x 
depends on the specific type of local structure. What we have 
said is equivalent to the assertion that the typical many-well 
potentials in the amorphous structure are precisely the dou- 
ble-well potentials. 

Expressions of the form (2.1) are familiar in the theory 
of phase transitions and various other critical phenomena, 
where they describe the behavior near the critical point in 
complex systems with many degrees of freedom. From our 
point of view, double-well potentials arise in an amorphous 
structure because the form of a certain class of local poten- 
tials is unstable to fluctuations of the microscopic param- 
eters, and in this sense one may also speak of manifolds of 
critical points separating the regions in which the single-well 
and double-well potentials can occur. It is important to 
stress that the possibility of describing the vicinity of a tran- 
sition point by a function of a single variable is a general 
feature of the problem under consideration. In what follows 
we give a brief argument to substantiate formula (2.1) on the 
basis of the ideas of catastrophe theory (see, for example, 
Ref. 7). 

Let us first mention some formal relations of a math- 
ematical nature. The ensemble of subsystems under consi- 
deration can be described by a distribution function P ( X ) ,  
with JP  (X )dX = 1, in the phase space of the variables X. In 
this space there is a hypersurface S bounding a region R of 
values of X such that the potentialv (xlX E R 1 is a single 
well; on the other side of this surface are points correspond- 
ing to many-well potentials. Far from the hypersurface S, 
the potential V (x) can be represented in the neighborhood of 
its extrema by a quadratic form: 

On the hypersurface itself, the matrix Aij is degenerate, 
i.e., at least one of its eigenvalues li is zero (or becomes 
arbitrarily small in absolute value near S). In this case the 
quadratic approximation for the potential V(x) is inade- 
quate. In its mathematical aspects the problem of the local 
description of a function in the neighborhood of an extre- 
mum near a degeneracy of the matrix of its second deriva- 
tives is solved by means of the so-called splitting lemma (see, 
for example, Ref. 7), which enables one to write V(x) in the 
form 

where p is  a function only of the modes Z,, ..., 2, correspond- 
ing to the nearly degenerate eigenvalues l i ,  which by defini- 
tion are such that 11, I 4 at i<r and j > r; the coordinates 5i 
are related to the modes Zi by a transformatio$which is, 
generally speaking, nonlinear. The coefficients Ai  in (2.2), 
just as the parameters occurring in the expression for 
V(x,, ..., x,), are functions of the fluctuating variables X. 

It is convenient furthermore to characterize the small- 
ness of li by a small parameter a < l  and to say that the 
proximity of the potential V(x) to degeneracy in one mode 
corresponds to a phase volume v, a a in a narrow layer of 
thickness a near the hypersurfaces S. It is important that the 
dimensionalities d, of the manifolds of those points on the 
hypersurface S a t  which n) 1 linearly independent eigenval- 
ues of the matrix Aij vanish simultaneously are related by 
d, - d, + , = n + 1 (this is the difference between the 
numbers of independent terms of the quadratic forms of 
n + 1 and n variables). Consequently, the ratio of the phase 
volumes v, and v, + , in which n and n + 1 values 2i are 
small is v, /v, + , a an + I .  We now assume that V (x) is degen- 
erate only with respect to one mode (x,) and represent t ( x , )  
near hypersurface S by the expansion 

Considering the phase space of the coefficientsl,, B, and C,, 
we see that the smallness of the coefficient 1, in this space 
corresponds to a phase volume v ' a a  (along the plane 
2, = 0), while the simultaneous smallness of the coefficients 
2, and B, corresponds to a phase volume v" oc a2>v2. The 
simultaneous smallness of the three coefficients 2 , ,  B, and 
C, would correspond already to a phase volume of the same 
order as v2 a a'. 

Using the relations mentioned above, we can substanti- 
ate (2.1) in the following way. On empirical grounds we can 
asssume that the relative concentration of many-well poten- 
tials in the material is small, no< 1 (say,' no 5 In terms 
of our approach, this means that the many-well potentials 
are realized on the rapidly decaying tail of a distribution 
function P (X) centered in the region R around some point 
X = X corresponding to single-well potentials with param- 
eters close to those of the unusual atomic potentials in crys- 
tals. Because of the random nature of the disorder. the tail of 
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the distribution P (X) should, generally speaking, cross the 
boundary of the region R over many dimensions, as a rule far 
from the relatively small phase volumes v, for n)2. In this 
sense one can say that the typical critical behavior of the 
potential V(x) corrresponds to an instability with respect to 
only a single mode, i.e., the typical many-well potentials in 
an amorphous structure are double wells, potentials with 
zo)3 wells occur with a significantly lower probability, in 
accordance with the smaller phase volume in the space of the 
fluctuating variables X. At the same time, however, the van- 
ishing of the coefficient B, is still not atypical, since it corre- 
sponds to a phase volume v" sv,.  A typical many-well poten- 
tial in a glass should thus be described by an expansion of the 
form (2.3) or, equivalently, (2. I), where for obvious reasons 
one should assume C > 0. Since P (X) falls off rapidly outside 
region R, the major fraction of double-well potentials corre- 
spond to points in phase space near the boundary of this 
region, where expansion (2.3) is valid. 

To avoid misunderstandings, we should point out that 
in this approach we exclude from consideration right from 
the start the trivial kind of many-well character that results 
from features in the short-range order of an undistorted 
structure, such as that which arises when an atom is dis- 
placed from a lattice site to interstitial positions. A many- 
well character of this kind, which also occurs in a crystalline 
phase, is not due to fluctuations of the structural parameters 
and is typified by very large values of A and/or A, which are 
at odds with the values estimated from the empirical data on 
the low-temperature anomalies in amorphous materials. 
Our scheme also excludes the many-well character due to 
the possible presence of defects of the off-center type in crys- 
tals with well-defined (practically nonfluctuating) param- 
eters. We are thus discussing exclusively the kind of many- 
well character that result from fluctuations in the parameter 
of the ideal (far from defects in the short-range order) struc- 
ture of the amorphous material. 

It will be convenient to express the displacement x in 
(2.1) in dimensionless units, introducing as a length scale the 
characteristic atomic radius a, - 1 A. Then the constants A, 
B, and C have dimensions of energy, while the parameters q 
and t are dimensionless. Since for q - 1 and t - 1 the expan- 
sion (2.1) should correspond to atomic potentials of the usual 
form, we can assume A - B-C-~U;~ ;  - 10-30 eV, 
where m is a typical atomic mass and w, is the Debye fre- 
quency. 

In accordance with what we have said, the probability 
distribution H (7) for the parameter q should be consistent 
with a mean value i j  - 1, corresponding to single-well poten- 
tials with nearly nominal parameters (Fig. 2a). It is easy to- 

FIG. 2. The distribution for the parameters of the atomic double-well 
potentials in amorphous systems. 

show that expression (2.1) describes a double-well potential 
for 

The empirical requirement that the concentration of the 
double wells be small is therefore equivalent to the condition 
qO(l for the overwhelming majority of subsystems in the 
ensemble, i.e., the distributiong(t ) for the parameter t should 
have a rather small width. Since there are no preferred direc- 
tions in glass and asymmetries in V(x) of opposite signs are 
equally probably, the distributiong(t ) should be even as well. 
Shown schematically in Fig. 2b are two qualitatively differ- 
ent types of distributions g(t ) which satisfy these require- 
ments. The first type of distribution (curve 1) is character- 
ized by the fact that g(t = O)=gm,, =max[g(t )], while for 
the second type (curve 2) one has g(t = O)N(~,,, . In addi- 
tion to g(t ), we shall also make use of the distribution for the 
parameter 7,: 

In taking this approach, we must assume that the character- 
istic decay scales q, and q, for the distributions H (7) and 
Ho(qO) are rather small, in any case appreciably smaller than 
unity. At the same time, as we shall see, to match the experi- 
mental data these quantities should not be smaller than a 
certain characteristic value q, - lo-' determined from the 
dynamics of a particle in a double well. The specific form of 
the distributions H (7) and g(t ) turns out to be unimportant 
here, and in regard to these distributions we need only the 
information given in Fig. 2. 

Turning now to the Hamiltonian of an atomic system 
with typical double-well potentials, we notice that the qua- 
dratic form corresponding to the kinetic energy can, without 
loss of generality, be assumed to be diagonalized by the same 
transformation that diagonalizes the matrix Aij . The Hamil- 
tonian we seek can therefore be represented in the form 

%2 = +z (mi i i2+2~ , f i2 ) ,  Xi>lXll for i+i, 
isP1 

(2.4) 
where the terms A?, and A?, correspond to the double-well 
potentials (the critical mode that is singled out) and to the 
surrounding medium, and A?,,, describes their interaction. 
The Hamiltonian A?, is characterized by a wide spectrum of 
frequencies (w,] corresponding to the various modes of 
atomic motion. These include modes which describe vibra- 
tions encompassing small spatial configurations (the quasi- 
molecular type), whose frequencies, by virtue of the condi- 
tion 2,)12,I,  conform to w,)w,, where w, is the 
characteristic frequency scale of the Hamiltonian A?,. On 
the other hand, the spectrum (w,) also contains low fre- 
quencies w, 5 w, corresponding to collective modes-long- 
wavelength acoustical phonons, 2, + Jm,o:(q is the wave 
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vector) for o, <w,,m, >m. The interaction of a particle in a 
double well with surrounding-medium modes for which 
02>wl does not alter the essential form of Z, and can be 
taken into account in the adiabatic approximation by a re- 
normalization of the parameters J,, B,, and C,. Hereafter 
we shall assume that this renormalization has already been 
done. The interaction with long-wavelength acoustical 
phonons, on the other hand, whose coordinates are not in- 
volved in this renormalization, will be treated in Sec. 5. 

3. ATOMIC TUNNELING STATES IN DOUBLE-WELL 
POTENTIALS 

In this section we shall consider the energy levels of an 
isolated (not interacting with the surroundings) double well. 
The problem involves finding the first interlevel gap u as a 
function of the parameters q and 7,. In accordance with 
what we have said above, we shall assume that the Hamilton- 
ian of an isolated double well is of the form 

where m, is of the order of an atomic mass, the effective 
parameters q and tare small in absolute value, I q 1 < 1, It I < 1. 

For (q 1 ( 1, expression (3.1) is in fact the Hamiltonian of 
a highly anharmonic oscillator. In the general case it is a 
difficult problem to determine the energy spectrum of such a 
Hamiltonian, and there is no analytical solution. However, a 
solution can be obtained by the methods of perturbation the- 
ory in the case of a small parameter u/El=(E2 - El)/El< 1, 
which, as we shall see, corresponds to precisely the case of 
low temperatures (say, TS; 1 K), the actual situation for the 
phenomena considered here. 

In what follows it will be convenient to start from sym- 
metric double wells (A, = 0). Then the asymmetry can be 
taken into account by perturbation theory. One is readily 
convinced by direct calculations that expression (3.1) de- 
scribes a symmetric double well in two cases: 

~ l = q / q o - 8 / 9 = 0  for O<q<qo, 

f a s  ( r ~ o / q ~ ) ' ~ = O  for 6 0 -  

In (3.2b) we have introduced a parameter qL which charac- 
terizes the scale of q and q, in the problem; the value of this 
parameter is defined in (3.7) below. For the actual weakly 
asymmetric double wells obtained from the symmetric con- 
figuration at small but finite values of the parameter 6, in 
case (3.2a) or l2 in (3.2a), the potentials of the individual 
wells are described by expressions of the form 
VI (X I  =Arlo ( 8 1 e + E 1 ) ~ Z +  ( rq0) '"BxS+~x4,  

In (3.3) and (3.4) the disp1acement.x is measured from the 
minima of the respective wells. The shape V, (x) and height 
6V,  of the interwell barrier are described for symmetric 
double wells by 

Here and below we label expressions corresponding to cases 
(3.2a) and (3.2b), where necessary, by the indices j = 1 or 
j = 2 .  

Let us first consider the energy level of a particle in an 
isolated well of a symmetric double-well potential, neglect- 
ing the cubic anharmonicity in the well. The potential of 
such a well is of the form 

vi(o' ( x )  =A,"xz+CxL, 

where the displacement x is measured from the minimum, 
and A; can easily be determined from (3.3) forj = 1 or from 
(3.4) for j = 2. The energy of the lower level, measured from 
the bottom of the well, is 
E E O ) = E ( O )  (Ajll, C )  >E(') (0, C )  - w=C"*eY*, e=hz/2maot. 

(3.6) 
The harmonic component A;x2 turns out to be important 
only for rather large values A ; 2 E ' / ~ c  213 , in which case 

The characteristic quantities we have introduced have the 
following scales: E -  1 K, w - 10-30 K, qL - The con- 
dition that at least one energy level exists in each of the wells 
can be written 

where 6VBj is given in (3.5). This condition corresponds to 
the predominance of the harmonic component in each of the 
wells; the corresponding restrictions on the parameters are 

t4>f ,-9.2-'", c2>g,r25/1. (3.8) 

If the interwell barrier were high enough for each well to 
have several levels, the energy difference between the levels 
would be of order w or larger. Consequently, the actual small 
energy spacing u<w can only come about by the appropriate 
splitting of the levels in a double well (and not within a single 
well). 

Allowance for the cubic anhannonicity of the wells of a 
symmetric double-well potential leads only to a rather insig- 
nificant change in the numerical coefficients in the expres- 
sions for Ef" and c j .  In particular, the correction to the 
energy levels is approximately c j "'E 7'. Therefore, the 
conclusions about the restrictions on the parameters f, and 
about the impossibility of obtaining small interlevel gaps 
within a single well of a symmetric double well remain valid 
when the cubic anisotropy of this single well is taken into 
account. 

In view of what we have said, it is natural to choose for 
the zeroth approximation the states of a symmetric double 
well: 
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( 4 )  (2) (0)- (0) (0)  
I*; j )= lp:*) (x)  =2-"[9j  (t) *qj ( x )  1, u=uj -1, - K E ~  , 

(3.9) 
where @j') and $PI are the wave functions of a particle in an 
individual well, taken in the harmonic approximation. In the 
first order of perturbation theory (for nearby levels) we haves 

where V; + + , V,!, - - , and V,!, + - are the matrix elements 
of the excitation potential, which is here the contribution of 
the cubic anharmonicity to the potential. These matrix ele- 
ments have familiar expressions (see, for example, Ref. 8), 
through the use of which we find 

Aj=wIEjIj>(C>), 

In the expressions for the f,c ) the first terms are due to the 
difference between the harmonic components of the individ- 
ual wells of the double-well potential, the second terms are 
due to the difference between their anharmonic components, 
and the third terms represent the classical asymmetry A, 
(recall that A, is the energy difference between the minimaof 
the wells); if follows from (3.8) that these last terms are the 
dominant ones: A =A,. In regard to J'", we may use the well- 
known expression8 

where o, is the classical frequency of motion in an individual 
well, - x, and x, are the turning points, andp is the momen- 
tum. Integration yields 

where K,Cy) and K,M are complete elliptic integrals of the 
first and second kind. For future purposes the exact func- 
tions are not very important, and we will have in mind the 
expression 

( 0 )  E:O' J j  = 2 - e x ~ [ - S ( f j ) I  for L j ( ~ ) = ~ j ~ i ' v l ,  

X 

here, in particular, v =; 3 for E$I<6 V,, . 
In concluding this section we point out that the tunnel- 

ing states in the casesj = 1 andj = 2 exist in different regions 
of the parameter space of 71 and qO, separated by a discontin- 
uity. In other words, there is no possibility of going between 
these regions by a continuous change of parameters while 
preserving the condition u<w. The physical reason for this is 
that the double-well character of the potential is rather pron- 
ounced for 0 < q < q0 or q < 0, but not in the vicinity of the 
point q = 0, where the interwell barrier is very small 
(6 V,, = 0 at q = 0). In this sense we shall speak of two types 
of tunneling states for j = 1 and j = 2. 

4. LOW-TEMPERATURE SPECIFIC HEAT OF THE TUNNELING 
STATES 

The tunneling states considered above give the follow- 
ing contribution to the specific heat (see Ref. 3): 

where n(u) is the density of the u distribution. If the function 
n(u) is sufficiently smooth, 

this specific heat becomes 

c ~ s - ' l s n ~ n  ( T )  T for n ( T )  - -const (4.3) 

in agreement with experiment. Our next problem is to deter- 
mine the form of n(u). Using the results of the previous sec- 
tions, we may write 

where u ,(q, t ) is the expression for u in terms of the param- 
eters of a double well of the j-th type. Going over the varia- 
bles 6 and c, and integrating with the aid of the delta func- 
tion, we obtain after some manipulation an expression for 
n (u) of the form 

n, = 5 @l(C)dC 
610) 
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where the limits C Y k f  y(u) are determined from the condi- 
tions 

T j ( t )  =I- (ljl0' ( ~ ) / U ) ~ = O  at t = f )  (4.6) 

(the main contribution to the integrals in (4.5) is from the 
region q<l); Cy)(u) is a logarithmically weak function of u. 
For purposes of estimation we can assume [cf. (3.14)] 

Condition (4.2) is satisfied if 

for both n, when n, -n2 or for the larger of them when n, 
and n, are substantially different. The quantities on the left- 
hand side of (4.8) are determined by the form of the functions 
9 , (S ) in ( 4 4 ,  i.e., by the specific features of the distribution 
H (7) and g(t ). For the distributions in Fig. 2 there are two 
qualitatively different cases possible. In the first case 9 (S ) 
has a pronounced maximum at some 5 j, ,, > gy). Then the 
integral for nj(u) is detemined mainly by the region near 
Cj, ,, and depends only weakly on the limit (i.e., on u). In the 
second case 9 ,(S) is a monotonically decreasing function in 
the integration region," but the scale for its decay is rather 
large. As a result, the logarithmically weak shift of the lower 
limit c$" upon a change in u has a relatively small effect on 
the integral for n ,(u). The restrictions on the parameters of 
the distributions H (q) andg(t ) are set here by conditions (4.8) 
and are of the form 

for n, (u ) ,  (4.9a) 

] < (f:') ( l -va ) lv*  for nz(u) .  

(4.9b) 

In (4.9b) we have made use of the fact that 

%(br('+8t) k ~ j ( b : O '  )6 t  for 6f<t:O) , 
(4.10) 

Conditions (4.9) can be interpreted to mean that in the region 
of interest, u<w, the characteristic scale for changes in the 
dynamical properties of a particle in a double well are gov- 
erned primarily by the size of 7,. Accordingly, n ,(u) is little 
different from a constant if the distributions H (q) and g(t ) 
change slowly enough on this scale. The quantities 
(~f '))" - vJ"vf in (4.9) reflect the logarithmically weak depen- 
dence of this scale on the parameters of the double well. 

We note that although the expressions for n,(u) and 
n,(u) are similar, there are differences between them of a 
quantitative nature: The scale for changes in the functiong(t ) 
in the expression for n2(u) is greater by a factor of 

Therefore, for given distributions .H (q) and g(t ), both the 
identical and the alternative cases mentioned above for n ,(u) 
and n2(u) can be realized. 

The relationship of n,(u) and n,(u) also depends on the 
form and parameters of the distributions H (q) andg(t ). Cases 
with both n,(u)-n,(u) and nl(u)>n2(u) or n,(u)<n,(u) are 
possible. In particular, in the case where 9,([ ), j = 1,2, are 
monotonically decreasing functions in the integration region 
and 

and for a distributiong(t ) of the type shown by curve 1 in Fig. 
2b, we have the relations 

and son ,(u) =:n2(u). If conditions (4.11) hold andg(t ) is of the 
form shown by curve 2 in Fig. 2b, then n,(u)<n,(u)~n(u). 
Finally, if q, < qL and qoc < qL, but 

then we have the relation n,(u)<n,(u) =:n(u). 
Thus the behavioral features of n(u) depend on the spe- 

cific form and parameters of the distributions H (7) and g(t ), 
and several different cases are possible. It is seen, however, 
that in the majority of these cases n(u) is a weakly varying 
function and differs little from a constant (it is, generally 
speaking, a logarithmic function). In fact, in accordance 
with what we have said, n(u) can depend appreciably on its 
argument only if 9 , (S ) is a monotonically decreasing func- 
tion for both the n, (u) or for the larger of the two, and, simul- 
taneously, the conditions opposite to those of (4.9) hold. In 
terms of our approach, the experimental behavior c, a T is 
evidence that this latter possibility is not commonly realized. 

Naturally, it would be desirable to have independent 
estimates of the parameters of the distributions H (7) andg(t ) 
that would demonstrate that the relations for which 
n(u)=:const can be satisfied. One can obtain rough estimates 
of this kind from the experimental data on the concentration 
of tunneling states given the form of the distributions H (q) 
and g(t ) shown qualitatively in Fig. 2. A simple example is 

H ( q )  - ~ " q . - l  exp [- (y) ' 1 ,  

g ( t )  - N'"t,-' exp r- ($1 ' I  
where N is the total concentration of the subsystems de- 
scribed by the distributions H (7) and g(t ). On the basis of the 
results of Sec. 2, the total concentration of double wells can 
be estimated as 
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This quantity should obviously not be smaller than the con- 
centration of tunneling states with u 5 T measured in low- 
temperature experiments, typical values of which are in turn 
not smaller than 10'7-10'8 cm-3 at T- 10 K.'s2 Considering 
also that N should not be greater than the total concentra- 
tion of atoms in the material, we obtain the estimate q,? 0.1. 
If qk is of the same order of magnitude or larger, conditions 
(4.9) will be satisfied and n(u) =.const. If, on the other hand, 
q k a q c ,  then it is not hard to see that n(u)zn,(u)>n,(u), 
where n,(u)zconst for sufficiently small u(w, and, hence, 
n(u)zconst also. One can directly show that estimates such 
as the one just made are rather insensitive to the specific 
choice of the functional form of the distributions H (q) and 
g(t ) shown qualitatively by the curves in Fig. 2. In fact, such 
estimates show that the decay scale of the distribution H (7) 
cannot be very small, i.e., qc>qL, since the measured con- 
centration of tuneling states is not too small, and this cir- 
cumstance ensures the practical constancy of n(u), at least 
for sufficiently small u<w. 

5. THE ROLE OF TUNNELING STATES IN THE LOW- 
TEMPERATURE THERMAL CONDUCTIVITY 

The low-energy excitations that we have been studying, 
tunneling states with uaw, are scatterers of low-frequency 
acoustical phonon2 and thus contribute to the thermal con- 
ductivity. At the actual phonon frequencies o ,  which are not 
too low, resonant scattering is predominant over relaxa- 
tional scattering and plays the governing r ~ l e . ~ . ~  In this case 
the thermal conductivity is related in the usual way to the 
corresponding phonon free path I (a): 

x (T) ='/s~phsl ( a )  I mEiT/n, C~~CRY"' ,  Tqfi~D, 

where s is the speed of sound. The behavior x a T observed 
experimentally in amorphous structures corresponds to 
I(w) a o - I .  

In accordance with Ref. 3 we may write 

( a  = 1 (w) 1,-'(a) -0 ( a )  n,g' (o) cth (hw/2T), 
I-1.2 (5.1) 

where the resonant scattering cross section is 
a ( ~ ) z 4 1 z s ~ o - ~ .  The effective density of resonant scatters in 
(5.1) is 

where M, is the matrix element for a real transition of the 
particle between the levels of the tunneling states of type j on 
account of the interaction with the phonons, which have a 
density of states g, = 9w2/o; in the Debye approximation, 
and rj is the corresponding level width of the tunneling 
states. The angle brackets in (5.2) denote an ensemble aver- 
age over the tunneling states of type j; in the present ap- 
proach, this average is given by the relations [cf. (4.4)]: 

In (5.3) we have gone over from the variables q and q, to the 
variables 6, and 5,; the value 4, is determined by the condi- 
tion u([,, l , )  = h. We note that over and above the differ- 
ent notation used, expressions (5.1)-(5.3) differ from the cor- 
responding expressions of Ref. 3 in that here we have 
allowed for the existence of two types of tunneling states, and 
the average is taken over the distributions of the fluctuating 
parameters q and t (and not A, and A as in Ref. 3). 

To calculate the matrix elements M, =M, (7, q,, W)  one 
must establish the form of the coupling between the tunnel- 
ing states and the phonons, i.e., specify the Hamiltonian 
A?,,,, in (2.4). In the general case of an arbitrary tunneling 
particle it is difficult to determine e n , ,  and a complete solu- 
tion of the problem may involve the specific structure of the 
particle. For the tunneling states considered here, the main 
role in the interaction A?',,,, , as we mentioned in Sec. 2, is 
played by long-wavelength acoustical phonons. This cir- 
cumstance permits us to go over to the continuum approxi- 
mation, introducing the strain tensor elk. Keeping only the 
first nonvanishing term in the expansion of en, (x, elk) in 
powers of x and elk, one can assume, as in the theory of the 
deformation potential, that 

Z i , , r z ~ ~ a e u r ,  (5.4) 

where xik is a tensor coupling parameter. Since the tensor 
character of these quantities is not important in the present 
problem, let us for simplicity consider only a scalar interac- 
tion (xik -+ x, eik + e): 

where n denotes the (unit) polarization vectors, and b, and 
b ,+ are the annihilation and creation operators for phonons 
with wave vector q. 

With the Hamiltonian (5.5) we obtain 

h a  1: M$-62Djt -- 2ms2 ujt , Dj=xjGxi, j=i, 2, (5.6) 

where we have made use of the fact that 

where Sx , is the spatial separation between the minima of a 
double well of type j; the factor 9.- 1 comes from the averag- 
ing over the polarization directions. The coupling param- 
eters x ,  can in general be different for tunneling states of 
type j = 1 and j = 2 and may also depend on 7 and qO, i.e., 
x, = x ,(f j )  in (5.6) 
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In principle, relations (5.1)-(5.3) and (5.6) determine a 
solution to the problem of the phonon thermal conductivity 
and the mean free path of acoustical phonons for the case 
when their dominant scattering mechanism is resonant scat- 
tering by tunneling states. The detailed behavior of 1 (u) and 
x (T)  depend on the specific structure of the coupling param- 
eters x,. After straightforward manipulations, the result of 
the averaging in (5.2) can be written 

where we have introduced the variable A = [J, (c ,)/ffw ] 'I2; 
the functional dependence ( , (A  ) logarithmically weak. It 
can be assumed (and this agrees with the assumption of the 
phenomenological model3) that Dj(v, qo) is a rather slowly 
varying function, at least in comparison with an exponential. 
Then the integral in (5.7) differs from those in the expres- 
sions for n ,(u) only by the logarithmically slow factors 

in the integrand, and the analysis of the dependence of this 
integral on the form of the distributions H (1) and g(t ) is the 
same as that given in Sec. 4. In particular, it can be stated 
that the different possible cases are 1,lw)-12(u) and 
Il(o)>12(u) or I,(u)<12(w). It must be stressed, however, that 
generally speaking 

even for x, = x2 [see (5.6)-(5.7)], i.e., tunneling states with 
j = 1 and j = 2 interact differently with phonons. This cir- 
cumstance may be important in the experimental aspects of 
the problem (see Sec. 7). Based on what we have said, it is 
generally true that to logarithmic accuracy 1 (w) a w-I, i.e., 
x a T2, under the same conditions for which n(u)zconst, 
i.e., c, a T. The empirical data show that such a relation- 
ship is generally obeyed for a wide class of amorphous struc- 
tures. 

In concluding this section let us touch upon the prob- 
lem of the scale of the constants in the deformation potential 
D , . The change in the energy splitting of the tunneling states 
upon a dilation Su, - D ,e and also D , itself can be estimated 
crudely as the value of Su , for e - 1. This approach leads, in 
particular, to reasonable values of the constants in the defor- 
mation potential D for ordinary single-well atomic poten- 
tials: D- D ' O ' r f i u ,  ( - eV. However, the empirically 
determined values D- 1 eV for the tunneling states are 
anomalously large on the scale of D 'O'. The nature of these 
rather large anomalies remains an open question. They can 
be given a reasonable explanation based on the critical prop- 
erties of the double-well potentials that we predicted earlier 
in this arti~le.~' For this purpose we note that in an estimate 
of the type (see Ref. 10) 

the derivative dk /de is not anomalously small (unlike the 
quasielastic constant k itself). In point of fact,'' the small- 

ness of k is the result of a cancellation of a number of large 
terms, each of which depends on e in the same way as do the 
terms appearing ink 'O', and consequently, dk /de -dk 'O'/de. 
This circumstance permits us to estimate the value of D for 
the critical potential as 

where we have used the fact that for the double wells in 
question the characteristic values of k are of the order of 
k'O'q, ' (see Sec. 3); the quantity D'O' here refers to a hypo- 
thetical double well having the same energy splitting u but 
lacking critical properties. Our estimate thus yields a value 
D- 1 eV in good agreement with experiment. 

6. DEPENDENCE OF THE MEASURED LOW-TEMPERATURE 
SPECIFIC HEAT ON THE MEASUREMENT TIME 

In Sec. 4 we considered a specific heat defined in accor- 
dance with ordinary equilibrium thermodynamics. How- 
ever, if the interwell barrier strength A is large enough, the 
relaxation time r - 4 / r  of the tunneling states will be com- 
parable to or larger than the measurement time re,. The 
tunneling states available for tunneling are only those with 
r 5 re,,, with the result that the measured low-temperature 
specific heat depends on the measurement time, i.e., 
c, = c,(rCxp), as was first predicted in Ref. 3. For suffi- 
ciently smooth distributions PA (A ), the function c, (re,, ) 
should have a logarithmic character. In particular, for the 
uniform distributionp,(A ) = A, - '8 (A, - A ) used in Ref. 3, 
we obtain" 

where the minimum relaxation time rmin for tunneling states 
with a given u ( =: T )  corresponds to the maximum tunneling 
amplitude J = u. Repeated attempts have been made to ver- 
ify law (6.1) experimentally (see the recent papers of Refs. 12 
and 13). It was found that the behavior of c, (re,, ) is in fact 
logarithmic, but is more complex than (6.1) and does not 
reduce to it. 

Our theory leads to a c, (T,,, ) dependence that is differ- 
ent from (6.1). The functional form can be established by 
determining the conditional probability density p ,(rlu) that 
a tunneling state of type j with a given u is characterized by 
relaxation time r. Using the results given above, we find 

W 
OBS (T) =2 In - , 

(6.3) 
T 

It follows from (6.3) that law (6.1) obtains only for 
reXp <?, =(w/T)~T,~,,, ,, whereas for re,, S?, the dependence 
c,,(reXp) is substantially weaker and tends toward a satura- 
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tion which is unrelated to the boundary of the spectrum ofR 
values (for the actual values of the parameters we estimate 
that ?, - s). 

In papers on the study of the dependence of c, on re,, , 
law (6.1) is usually interpreted as an inevitable consequence 
of the model of Ref. 3. In regard to this we note the following. 
The possible predictions of that model are accurate only up 
to logarithmic corrections. This is due both to the use of a 
quasiclassical formula for the tunneling amplitude and to 
the actual neglect of the logarithmically weak deviation of 
the distributions of the parameters A and R from strict uni- 
formity (which, however, do not alter the main conclusions 
of Ref. 3 as to the existence of the dependence c,, a T and 
x a T2. The dependence given in (6.1) can be refined by in- 
cluding logarithmic corrections3' to the theory of Ref. 3. 
Therefore, on the basis of Ref. 3 one can only state that c, 
does depend on re,, , but one cannot determine its exact func- 
tional form [in this sense (6.3) in no way contradicts the gen- 
eral ideas of the phenomenological model of Ref. 31. For this 
reason the usual attempts to compare the empirical results 
with law (6.1), and also attempts to determine the specific 
physical causes of the deviation from this law (see Refs. 12 
and 13), would appear groundless. 

7. CONCLUSION 

The proposed theory is based on a general description 
found for the typical local many-well atomic potentials in 
amorphous materials in terms of a function of a single vari- 
able, corresponding to the critical mode of motion. The typi- 
cal many-well potentials turn out to be the double-well and 
critical potentials, and the tunneling states in them are two- 
level states. The ensuing conclusions about the nature of the 
low-temperaure anomalies of c(T), x ( T )  and I (o) in amor- 
phous materials agree with the experimental data. The pro- 
posed theory thus provides a foundation for the postulate of 
Ref. 3 attributing the anomalies observed in the low-tem- 
perature properties of amorphous structures to the presence 
of two-level tunneling states in double-well potentials, and 
reveals the definite physical content of this hypothesis. On 
the other hand the theory explains certain properties which 
have hitherto seemed anomalous of two-level systems of this 
kind. In particular, the anomalously large phonon-tunnel- 
ing-state coupling parameters D -  1 eV determined empiri- 
cally can be explained by invoking the critical properties of 
the double wells (see Sec. 5). We note that the anomalously 
high sensitivity to internal strains has been known earlier 
and was perceived as a general circumstance for defects with 
small values of the local quasielastic constants in crystals 
(see Ref. 10). This circumstance, however, was never related 
to the observed values of D for the tunneling states, since 
there was no understanding of the critical properties of dou- 
ble-well potentials. From this standpoint the values D>D 'O' 

observed for the tunneling states can be regarded as experi- 
mental support for the critical properties predicted above for 
the double wells. 

The anomalously large values of D also bear upon the 
question of the changes in the spectral structure of the tun- 
neling states on account of their interaction with phonons. 

The lowest-order correction to the "bare" interlevel energy 
u for the tunneling states, to account for the interaction with 
phonons, corresponds to the second order of perturbation 
theory and, on the basis of the results obtained above, can be 
estimated as 

where w, is the maximum frequency of the phonons involved 
in the interaction. In the model of Ref. 3, a, = w,, leading 
to values ~ S U ' ~ ' ~ > U  for the actual values J-u (in this sense 
the model of Ref. 3 is internally inconsistent). In the pro- 
posed theory the rapid modes of motion with f % > ~  are in- 
cluded in the definition of the "bare" splitting of the tunnel- 
ing states upon adiabatic renormalization of the parameters 
of the double well, and it should be assumed that 
w, - w/ii(o,, so that 

The high-order corrections are negligibly small; for example 

etc. Therefore all of the results obtained above remain valid 
if u is taken to mean its unessentially renormalized value in 
the various expressions. 

We should also stress in this regard that the proposed 
theory can also include the dynamical aspects of the nature 
of the double wells with adiabatic allowance for the fast 
modes of motion. For example, in the simplest model of a 
single-mode Hamiltonian for the surrounding medium, 

2i92=p:/2m2+1/2m2a22E?2 with 0 2 B  w/h 

(see Sec. 2), the adiabatic renormalization is of the form 

i.e., a potential which would be a single well if the surround- 
ing atoms were at rest can be transformed into a double well 
when their rapid motion is taken into account. We note, 
however, that this effect is not of practical importance at the 
actual values IS, 1 5 lo-* and 171 - 7,CjP) > 7,Cj for the rel- 
evant potentials in amorphous systems (cf. Ref. 14). 

In conclusion, we can point out several circumstances 
which follow from the above discussion and might be of ex- 
perimental significance. In the theory, the idea arises that 
there are two different types of tunneling states, which inter- 
act differently with phonons. This prediction may corre- 
spond to the hypothesis that both normal and anomalous 
tunneling states exist, which was made by Black and Hal- 
perin15 on the basis of analysis of the experimental data. 
Also, the predicted dependence of the measured specific heat 
on the measurement time found in the present differs from 
that indicated earlier by Jackle.'' Finally, the phenomenon 
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of local attraction between charge carriers of the same sign, 
which was predicted earlierI6 bytwo of us in their analysis of 
a specific model for the critical potential described by 
expression (2. l), can be said to be extremely general. This 
assertion follows from the general grounds for expression 
(2.1) given in the present paper and the derivation given in 
Ref. 16. In other words, local attraction between carriers of 
the same sign and the anomalies in the low-temperature 
thermal properties, both being due to the critical properties 
of the structure of amorphous materials, can be observed in 
the same substances. 

We wish to thank M. A. Krivoglaz, V. L. Gurevich, and 
D. A. Parshin for helpful discussions. 

"The case of a monotonically increasing function @,(g ) need not be con- 
sidered here, since it follows from Sec. 2 that Qj(g) must fall off at 
sufficiently large values of g. 
Without going into details, we remark that attempts to explain the large 
values of D as being due to a strong change in the barrier penetrability J 
upon dilation have not been successful at the actual valuesA SI 10 and are 
at odds with the 0bSe~ed dependences I a o- ' and x a T2. 

"We note that (6.2) differs from the corresponding expression in Ref. 11 
by the presence of a logarithmic factor. 
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