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The transverse diffusion coefficient of a gas of electrons scattered by charged centers in a magnet- 
ic field quantized to the limit is calculated without the use of perturbation theory (the slow- 
electron scattering is either quasiclassical or resonant). The value of D is shown to depend non- 
monotonically on the electron energy. The complicated character of this dependence in the case of 
slow collisions with attracting centers is due to the decisive role of the resonant scattering. It is 
found that slow electrons diffuse much more rapidly when scattered by attracting centers than by 
repelling ones. 

PACS numbers: 72.10.Di 

This paper deals with electron-gas diffusion, due to 
scattering by potential centers, in a plane perpendicular to a 
magnetic field. The magnetic field is assumed to be so strong 
that during the time between the scatterings the electrons 
manage to complete many revolutions around its force line. 
In a classical (nonquantizing) field the con-esponding diffu- 
sion coefficient is the mean square of the transverse displace- 
ment of the Larmor-orbit centers of the electrons per unit 
time (Ref. 1, p. 295). If, for example, the Larmor radius is 
small compared with the effective radius of the action of the 
scattering centers, it is convenient to regard the orbit dis- 
placement as a drift in the electric field of these centers (Ref. 
1, p. 308; Ref. 2). In a quantizing field, however, the classical 
concepts of Larmor motion are not applicable. Nonetheless, 
the character of the diffusion remains qualitatively the same 
as (see also Ref. 5). The meaning of the diffusion 
coefficient becomes in this case very clear if the Landau 
gauge A = H (0, x, 0) is used (the z axis is along the magnetic 
field H and the x axis is along the diffusion directionj4: 

D ( P ( ~ , - ~ ; ) ~ w ( N .  k,, ~ - + N I ,  kY1, k t ) )  . (1) 
N',k"',k' 

Here, N, k,, and k are Landau numbers, Wis the probability 
of the indicated transition, and R. is the magnetic length. The 
angle brackets denote averaging over the initial states of the 
electrons. Inasmuch - R. 2k,, is the mean value of thex coor- 
dinate of the electron in the state (k,), Eq. (1) can be inter- 
preted as the mean square of the displacement of the elec- 
trons across the magnetic field per unit time. 

The value of D was calculated for scattering in a quan- 
tizing magnetic field by many workers, in connection with 
finding the transverse magnetoconductance uxx (with which 
it is directly connected by the Einstein relation). It is well 
known that the use of perturbation theory leads in this case 
to a logarithmic divergence of a, because of too fast a 
growth of the diffusion coefficient when the electron energy 
is decreased (see the review by Kubo et aL4). It was possible 
to go outside the framework of perturbation theory, how- 
ever, only for the case of short-range centers with a charac- 
teristic dimension much smaller than A."' (See Ref. 9 con- 
cerning the limit of applicability of Refs. 6-8 for slow 
collisions). In the case of long-range centers, however, such 

as charged ones whose screening radius is large compared A, 
the scattering was calculated in the Born approximation 
(see, e.g., Ref. lo), which cannot be used for slow collisions. 
An exception is Ref. 11, where scattering of slow electrons 
by attracting charged centers is considered. The authors of 
that reference, however, confine themselves to citing some 
estimates, and have made a number of errors. 

The present paper is devoted to calculation of the diffu- 
sion coefficient for scattering of electrons of arbitrary energy 
by charged centers in a magnetic field that is quantizing to 
the limit. It is assumed that the processes of scattering by 
different centers are independent of one another. '' To calcu- 
late the value of D [Eq. (I)] it suffices then to consider elec- 
tron scattering by one center and to multiply the result by 
the total number of centers. 

The Landau gauge is convenient for the derivation of 
the general equations. Yet it is not convenient for a concrete 
calculation of a collision with one center, since it does not 
take into account the symmetry of this single scattering act. 
Indeed, not one of the Landau numbers, N, k,, and k is con- 
served in this case. However, scattering by a center whose 
potential is axisymmetric relative to the H direction con- 
serves the projection of the electron angular momentum 
( - M ) on this direction. It is therefore natural to use a gauge 
in which M is a quantum number, namely A = JH X r (Ref. 
12). Its convenience was pointed out already in Refs. 4 and 5. 
In Ref. 4 was obtained a general expression for the diffusion 
coefficient in the representation of the M numbers in an ex- 
tremely quantizing magnetic field, when all the electrons are 
concentrated on the lower Landau level. In the same paper, 
as well as in Ref. 5, it was shown that if the scattering by the 
long-range centers is quasiclassical then, even for an ex- 
tremely quantizing magnetic field, the classical interpreta- 
tion of diffusion is applicable within the framework of the 
treatment's2 of the drift of a wave packet in crossed electric 
and magnetic fields. The cited papers contain, however, no 
concrete results. These will be obtained below, using calcula- 
tions for arbitrary electron energies, including those for 
which the quasiclassical approach to the determination of D 
is not applicable. 

We consider scattering within the zeroth Landau band, 
neglecting all the higher bands. To this end it suffices to have 
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the cyclotron energy much higher than the Bohr energy, i.e., 
A4a, where a is the Bohr radius. These conditions are real- 
ized in semiconductors with narrow band gaps and in a num- 
ber of astrophysical objects. We assume that the potential 
energy of the electron in the field of the center is of the form 

V ( r )  =* (e2/r )  exp (-rlr,) 

(the long-wave approximation of screening theory). The 
screening radius r, is assumed to be much larger than A. In 
addition, it is assumed to be isotropic. The last approxima- 
tion ceases to hold for the case of degenerate electrons in a 
quantizing magnetic field, when the Fermi wave vector k, 
5: l/r, (Refs. 13 and 14) (or, equivalently, A /a 5: ( n ~ ~ ) - ~ " ,  
where n is the electron density). We shall not consider this 
case. 

Neglect of the virtual transitions to higher Landau 
bands makes the electron scattering by the center one-di- 
mensional. This is most clearly seen in an axisymmetric 
gauge, in which the transverse motion of the electrons is then 
entirely determined by the magnetic field, and the scattering 
alters only the longitudinal motion. We denote by FM(z) the 
longitudinal wave function of an electron scattered with a 
definite value of M. This function describes scattering by the 
one-dimensional potential. 

where the matrix elements is taken on the functions of the 
transverse motion (it can be said that the longitudinal mo- 
tion is adiabatically slow compared with the transverse). In 
one-dimensional scattering the electron has only two possi- 
bilities-to be scattered forward and to be reflected. The 
corresponding scattering amplitudes f & (k ), where k is the 
wave vector, are determined by the asymptotic behavior of 
the wave function: 

FM ( z + f  w )  =eihz+fM* ( k )  e*ikz. 

In terms of these amplitudes it is possible to express the dif- 
fusion coefficient D (k ) of electrons with longitudinal-motion 
energy #i2k '/2m. This is easiest to do by carrying out a gauge 
transformation in Eq. (1). Expanding the wave functions 
contained in this equation in the Landau gauge in terms of 
the wave function in the axisymmetric gauge, we obtain after 
straightforward but cumbersome transformations the diffu- 
sion coefficient 

D (k) = (nti 1 k 1 h4n,lm) (d+ ( k )  +d- ( k )  f , (3) 

where n, is the density of the scattering centers and 

.D 

f ~ * ( k ) =  - im dz emX vr ( z )  F~ (2) .  m -m 

The summation is over the values M = 0, 1, 2, ..., corre- 
sponding to the zeroth Landau band. In Ref. 4 was obtained 
an analogous expression in terms of the phase shifts of scat- 
tered waves of different parity. Equations (3) and (4), how- 

ever, are somewhat more lucid and convenient for calcula- 
tions. 

We note that from Eq. (1) it is possible to obtain also an 
expression for the diffusion coefficient of electrons scattered 
from an arbitrary state (Nk ): 

D= (nhh4n J m )  - 

where fM are the amplitudes of the scattering k-+k ', with 
change N-N' of the number of the Landau band, of elec- 
trons with angular momentum projection ( - M).  At 
N = N '  = 0 we obtain Eq. (3). 

At sufficiently large M, at which fM changes little when 
M changes by unity, the summation in (3) can be replaced by 
integration. ~ n t r o d u c i n g ~ . ~ ~ ' ~  at M) 1 a quasiclassical impact 
pararneterp = ( 2 ~ ) ' l ~ A  (which has the meaning of the dis- 
tance, in a plane perpendicular to the field direction, within 
which electron density is mainly concentrated), we obtain 
for the contribution to d * from such M: 

The one-dimensional potentials VM (z) take then at M) 1 the 
form 

vM (2) =+ [e2/ (p2+z2) 'Ir] exp [- (p2+z2) '/r.l, M>1 (6) 

We shall consider separately the cases of weak (r,sa) 
and strong (r,<a) screening. We shall also distinguish 
between attracting and repelling centers. 

Weak screening, r,,a 

A. Attracting centers 

We calculate first the quantity d + that describes the 
contribution made to the diffusion coefficient by the for- 
ward-scattering processes. 

1) At sufficiently large k (here and elsewhere k > O), the 
Born approximation is valid 

0. 

frf=- ( im/hzk) VM ( z )  dz. 

Substitution of (6) in (7) shows that atp>r, the amplitude f 2 
decreases exponentially with increasing p. Therefore the 
main contribution to the sum d + are made by p 5: r,. For 
these we have the estimate 

from which it follows that the integral (5) diverges logarith- 
mically at smallp. This means that it is necessary to use in 
place of Eqs. (5) and (6), which are valid for large M, the more 
accurate expressions (2) and (4). It then becomes possible to 
carry out the summation (4) exactly, after which we get 
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d+=2 ( k a )  In (2'"r./h), kBln (alh) la. (8) 

This result agrees with that obtained in Ref. 10. Its va- 
lidity is restricted to values of k at which the electron energy 
ii2k 2/2m is much larger than its binding energy in the poten- 
tial VM(z) for the determining p (perturbation theory). At 
p -2, according to Ref. 16, the characteristic binding energy 
is a maximum, - (ii/ma2)ln2(a/il ), from which follows in fact 
the presented inequality. 

2) Ifln(a/A )) 1, thereexists aregion l/a(k 5; ln(a/il )/a, 
in which the Born formula (7) is not applicable only forp(a 
(such that ln(a/p) 2 ka) 1). For suchp, however, Eqs. (7) can 
be modified in simple manner and corresponds to scattering 
by a Blike potential (see, e.g., Ref. 15, Appendix I): 

fM'=ikbM/ (k- ikbM) . (9) 

The quantity fi2kbM2/2m is the binding energy of an electron 
with angular-momentum projection ( - M ). With logarith- 
mic accuracy, l6 

kbM=2 1n (alp) la, In (alp)  i .  

Substituting the last equality in (9) and (5) we easily find the 
contribution to d + fromp 5; a (it is net-ary in this case to 
integrate in (5) fromp -A t op  -a). We thus obtain 

a + = -  [ kva 
1 2 2%' 

+arctg-] +-~n-, 
2ka ( k ~ a ) ~ + l  kva (ka)' a 

The last term describes the contribution fromp 2 a. 
3) Let now l/r, (k(l/a. It can be easily shown that the 

contribution to d + fromp 5; a is then of the order of 1. It will 
be shown below that the contribution from p>a is much 
larger. It was established in Ref. 9 that for these largep the 
scattering is quasiclassical at k> l/r,. This means that the 
coefficient of passage through the potential V,(z) is equal to 
11 +f ,+Iz l ,  sothat 

f,+=-1f exp t ie , ) ,  .. 
OM = J ( k ~ ( z ) - k ) d z .  

-m 

Here 8, is the change of the phase of the electron wave 
function due to its acceleration on passing through the po- 
tential well, and 

is the quasiclassical wave vector. Substituting Eqs. (1 1)-(13) 
in (5) we find that 

I OD ae, = I "  OD ak,(z)  = 
d + s T J  (dp) P ~ P = ~ J [  J - d z ]  P ~ P .  

0 0 -m dP 

We then have for the diffusion coefficient 
(14) 

(the contribution from the backward scattering is negligibly 

small, see below). Here p(z) is the classical momentum and 
p =p(  + a). This expression agrees fully with the classical 
drift-approximation fo rm~la ' .~  for the case when the diffu- 
sion is determined by the scattering of electrons withp much 
larger than the Larmor radius r,. In this case p should be 
taken to mean the impact parameter of the Larmor "circle." 
This correspondence was indicated in Refs. 4 and 5. It is, of 
course, not accidental. Indeed, even though the magnetic 
field is quantizing, the tranverse motion of the electron at 
M)1 is in a certain sense quasiclassical. Therefore in the 
considered range of energy variation both the longitudinal 
and transverse motions are quasiclassical, and the parameter 
p/il plays the role of the parameterp/r, is the theory of Refs. 
1 and 2. We note, however, that actual cal~ulations'.~ were 
made only for the case r,)r,) l/k 2a, when a substantial 
contribution to D is made also by p 5; r, . In our case, how- 
ever A(l/k 2a and the decisive p>A, so that the results of 
Refs. 1 and 2 are not directly applicable. 

The formulas cited are valid for l/r, (k( l/a. It is con- 
venient to calculated + separately in two regions of the indi- 
cated interval. We consider first the region l/(ar,)'/2<k( l /  
a. The values ofp that determine in d t in this case lie in the 
interval I/k 2a 5;p 5 r,. In fact, at p< l/k 2a it is possible to 
neglect k in Eqs. (12) and (13), and for 8, we have then 

i.e., in first-order approximation 8, does not depend at all 
on p. This means in fact that the contribution to d + from 
smallp is negligibly small. In the regionp) l/k 2a perturba- 
tion theory is applicable and .. 

OM=- ( m / h z k )  J VM ( z ) d z .  
-OD 

Forp)r,, the phase 8, is exponentially small and such large 
p likewise make no contribution to d +. If, however 1/ 
k 2a(p(rs, it follows from the last formula that 

meaning that the integral d + diverges logarithmically at the 
end points of this interval. Numerical integration makes it 
possible to find the d +(k ) dependence with accuracy higher 
than logarithmic: 

2 
d+ = -In (0.9 kzar,) , 1/ (ar,) ' laak< l / a .  

(kaI2 
(18) 

We consider now the region l/r, (k( l/(ar,)lJ2. The de- 
cisive value for it is p - r,, since at smallerp the value of 8, 
(16) is independent ofp, and at larger ones it is exponentially 
small. Neglecting k in (14) and integrating numerically, we 
obtain .. 

d+=t/ ,  J [ 90 ,  ( k - + ~ )  /3p l2p  dp=0.35r./a, 
0 

l / r s < k < ~ / ( a r s ) " ' .  
(19) 

The lower limit of the indicated inequality is connected with 
the fact that at smaller k the condition of quasiclassical scat- 
tering is violated for p - r, . 
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The transverse magnetoconductivity uxx was calculat- 
ed in Ref. 11 for r, )a. It is stated there that at a characteris- 
tic electron energy Z much lower than the Bohr energy one 
can regard the phase 19, as independent of k. It follows from 
the exposition above that this holds true only for much lower 
energies (mi?/#< War,). In the region War, <mZ/i?< l/a2, 
however, it is necessary to use Eq. (18). In the case of nonde- 
generate electrons it follows then from the Einstein relation 
that 

~,mH-~e-'  In (mear./tiz) . 
For a temperature higher than the Bohr energy, the 

authors of Ref. 11 assume that the contribution to the con- 
ductivity from the scattering of electrons of energy #k '/2m 
is determined byp 2 l/k 'a. It was shown above that this is so 
only for electron energy lower than the Bohr value (k 5 l/a). 
Therefore the expression obtained in Ref. 11 for uxx is incor- 
rect, nor is the criticism there of the known formula for u,, 
from Ref. 10. It is clear that at sufficiently high temperature 
(or in a sufficiently strong magnetic field) u, is determined 
by the values of k given in (8), and the equation of Ref. 10 is 
still valid: u, a H -2 In H. 

4) We investigate now the scattering of slow electrons 
with k< l/r,. In this case it is convenient to divide the range 
of variation ofp in two parts. It can be easily seen that in the 
first of them, when p>r, ln(rs/a), the potential well VM(z) 
contains only one shallow level. As will be established below, 
such large p contribute to the diffusion coefficient only at 
very small k. Therefore let firstp<r, ln(r,/a), for which the 
wells are deep and contain many levels. The characteristic 
energy spacing between the highest levels is of the order of 
#/me. The electrons, on the other hand, have a much lower 
energy. We shall show that in this case they are strongly 
reflected (f 2 ;: - I), with the exception of the resonance 
case, when the well contains a level with zero energy. Indeed, 
at resonant interaction with a level whose energy is 
fizk iM/2m (with I kbM 1 < l/r,), the scattering amplitude 
takes the form (9) (Ref. 12, p. 626). It can be seen that f 2 4 
as k ,4 ,  i.e., at exact resonance (at the threshold of cre- 
ation of the level) the slow electrons pass through the well 
with unity probability, but at a small detuning from reso- 
nance they are completely reflected. Thus, the transmission 
coefficient I 1 + f 2 12, depending on p, has periodically re- 
peating abrupt and narrow peaks that repeat whenever a 
level with zero energy appears in the well. The value of d + is 
determined by the derivative df 2 /dp, therefore the main 
contribution to it are made by just these peaks. Expression 
(9) is substantially different from - 1 when IkbM 1 5 k< l/r,. 
Using the standard quasiclassical method of matching in the 
vicinity of turning points, we obtain for such small kbM 

k b ~ =  [ON (k+O) -n  ( n + l / 2 ) ]  /2nr,, (20) 
where n is an integer. From this we have for the number of 
peaks in a unit interval of variation of p: 

' 30, ( k - 4  l a p  I 1 anlap I hbM-~=n- I 
and for the contribution to d + from each such peak 

J laj.+iap12 ap=(4k~ ) -~1ae . ( k -o ) i a~1 .  

Multiplying the last two expressions and integrating over all 
thep, we find that 

[doM (k+O)/dpI2p dp=0.06lka, 

(21) 
( I l r , )  (rsla)  '1'(Alr,)2KkKllr8. 

It can be seen that the decisive p - r,. The restriction from 
below on the values of k follows from the fact that at smaller 
k it is impossible for thesep to replace the summation (4) by 
the integration (5). Indeed, such a replacement is valid if 

I a f M + / a M I  - 1 afar+/+ 1 ( P I P )  a. 
The width of the peak, however, which determines the char- 
acteristic value of the derivative, decreases with decreasing 
k, and can be shown that it is of the order of krs(ars)"2 for 
p -rs . From this follows inequality (21). We note that deci- 
sive role of resonant scattering at k< l/rs was pointed out in 
Ref. 11. The estimate given there is of the same order as (2 I), 
but the region of its applicability cited there is incorrect. 

With further decrease of k most peaks make no contri- 
bution to d + (in other words, the greater part of the terms in 
the sum (4) pertains to the intervals between the peaks). The 
probability that some peak makes a contribution is propor- 
tional to its width. The latter is proportional to k (see above), 
from which it follows that d + a k. We confine ourselves to 
the estimate 

d+-kr. (r,/A) ', 

( 1  A '  1 l a )  k ( I , )  ( I r )  ( r .  (22) 

Thus, d +(k ) is a nonmonotonic function: it increases 
with decreasing kin region (21), and decreases in region (22). 
However, at still smaller k the value of d + again increases 
and tends to infinity as k 4 .  This divergence is determined 
by the contribution of the electrons with impact parameters 
p>r, ln(r,/a). Scattering by shallow wells corresponding to 
such large p is described by Eq. (9) with 

where fi2kbM2/2m is the binding energy of a single discrete 
level in the well VM(z). Substitution (9) and (23) in (5) shows 
that, with logarithmic accuracy, the contribution to d + from 
p)r, ln(r,/a) is equal to J ln(l/ka). Comparing this value 
with (22), we find the region where d + is determined by scat- 
tering by shallow wells: 

d+='l, ln ( l l k a ) ,  k e  ( l l r , )  (klr,)' ln (rs51A'a), 

In ( l l k a )  Bln (r.5/A6a). 
(24) 

The divergence of d + as k 4  is easily understood: the 
decisivep are such that kbM - k. Therefore the smaller k the 
larger the decisive p - r, In (l/ka) and the larger d +. We 
note that a similar divergence for the scattering cross section 
in a strong magnetic field was discussed in Refs. 9 and 15. 

We turn now to the contribution made to D (k ) by back- 
ward scattering. In the Born approximation 
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OD 

fr--- (imlvk) 5 srp (-2ikz) V. (z) dz, 
-- 

and in complete analogy with the calculation of d + we ob- 
tain for d - 

which coincides with the result of Ref. 10. The decisive im- 
pact parameters are in this case A 5 p  5 l/k. 

If ln(a/A )) 1, by repeating the entire reasoning that led 
to Eq. (lo), we find that d - is determined in the interval 1/ 
a(k 5 ln(a/A )/a by the same formula without the last term. 

For the values of k in the region l/rs (k( l/a the contri- 
bution to D ( k )  from the reflection processes is small (i.e., 
d - (d + ). Indeed, in this region the value ofd + is determined 
by largepsa for which the scattering is quasiclassical. In the 
quasiclassical approach, however, the reflection from a one- 
dimensional well is weak and can be neglected. Finally, scat- 
tering of slow electrons whose wavelength is much larger 
than the characteristic dimension of the center is isotropic 
and f, = f 2. Therefore d - = d + at k( l/r,. 

We have thus established the function d +(k ) + d -(k ) 
for the case of attraction centers at arbitrary k. This function 
is shown schematically in Fig. 1 (curve 1). 

B. Repelling centers 

Obviously, the results for attraction and repulsion 
centers coincide in the Born approximation when k>ln(a/ 
R )/a. At ln(a/R )) 1, however, the agreement region is wider, 
k) l/a, inasmuch as in the interval l/a<k 5 ln(a/A )/a the 
d * (k ) dependence is determined in fact by scattering from 
&like potentials (see above), the reversal of the sign of which 
reduces only to the inessential reversal of the sign of k, in 

(9). 
For smaller k, i.e., at 

as can be easily shown in the case ofan attraction center, D (k ) 
is determined by the quasiclassical forward scattering of 
electrons with p>a. For these p the coefficient of passage 
through the potential barrier VM(z) changes abruptly from a 
small value to unity when the electron energy exceeds the top 

FIG. 1. Plot of d +(k ) + d -(k ) (see Eq. (3)). 1-Scattering by at- 
tracting centers, 2-by repelling centers. Screening radius r, 
much larger than the Bohr radius a. 

of the barrier (this means also that the barrier is quasiclassi- 
cally high). In other words, for small p such that the top of 
the barrier exceeds fi2k '/2m, the amplitude f ,t is equal to 
- 1 with exponential accuracy, but in the opposite case it is 

described by Eqs. (1 1)-(13). Consequently d + is given by 
expression (14) if we replace in it the lower integration limit 
by the value ofp defined from the condition 

Let l/(ars)"2(k( l/a. It is easily seen that in this case 
the decisive impact parameters are in the range 2/ 
ka2 < p  5 rs. If the values ofp are far from the end points of 
this interval then, as follows from the derivation of (17), the 
value of JB,/Jp for repelling centers differs from this 
expression only in sign. Therefore the differences between 
the integrals d + for attraction and repulsion centers reduces 
only to replacement of the numerical factor under the loga- 
rithm sign in (18). Numerical integration yields for it a value 
6.5 instead of 0.9. 

We consider now the interval 

In this case the cutoff of the lower integration limit in (14) 
influence the result substantially. Indeed, condition (25) cor- 
responds then to a value p>rs for which the phase 8, is 
exponentially small. Since however, in this case the depen- 
dence (25) ofp on k is only logarithmic, namely p-rs ln(l/ 
k 'ar,), it follows that d + decreases with decreasing k in pow- 
er-law fashion: 

d+- (krd) ln2 (l/k2arg), l/r8 ln'l* (rs/a) <k&f/ (w,)"'. 

The lower limit on the applicability region is due to the 
fact that at small k the quasiclassical treatment for the deci- 
sivep is no longer correct, and the main contribution to d + is 
made by scattering from shallow and narrow barriers with 
largep>r,ln(r,/a). For these small k the d +(k ) dependence 
takes the form (24) with logarithmic accuracy; we note that 
ln( l/ka)>ln(rs/a). 

Finally, in analogy with the case of the attraction poten- 
tial, the reflection processes make no significant contribu- 
tion to D (k ) in the region l/rsln"2(rs/a)(k( l/a where the 
scattering is quasiclassical, and make a contribution equal to 
that for forward scattering at smaller k. 

The general form of the function d +(k ) + d -(k ) for 
weakly screened repelling centers is shown in Fig. 1 (curve 
2). It is remarkable that slow electrons diffuse much faster 
when scattered by attracting centers than by repelling ones, 
even though the scattering cross section in the former case is 
much smaller than in the latter.9 

Strong screening, /i(r,(a 

It is easy to see that in the case of strong screening (r,(a) 
all the potentials VM(z) are shallow (narrow). From this it 
follows directly that the diffusion coefficient does not de- 
pend on the sign of the charge of the centers. In the Born 
approximation (we assume that A(r,): 
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FIG. 2. Plotofd +(k ) + d -(k ) vs k for thecaseofstrongscreening 
(A<r,<a). 

The limit of applicability is imposed here by the condition 
that perturbation theory be valid forp -A; this corresponds 
to a binding energy of the order of (fiz/maz)ln2(rs/A ), rs 5 a in 
a potential V,(z) < 0 [see the paragraph that follows Eq. (8)]. 
If in (rs/R. )% 1, we find in analogy with the case (10) that d * 
= 1~/4ka in the region l/a<k<ln(rs/A )/a. Finally, at very 

low electron energies d * depends logarithmically on k, ex- 
actly as the function (24): 

* = I  1 ( I k a ) ,  k ~ l l a ,  In (llka) >I,. 

The function d +(k ) + d -(k ) for strong screening is 
shown in Fig. 2. 

CONCLUSION 

In conclusion, we describe qualitatively the physical 
causes of the behavior ofD (k ). We were able to go outside the 
framework of the Born approximation because scattering of 
slow electrons is either quasiclassical or resonant. Thus if the 
electron wavelength is much less than the characteristic di- 
mension r, of the center, the quasiclassical approach is cor- 
rect. In this case the diffusion is determined by forward scat- 
tering, which reduces only to acceleration or deceleration of 
the electrons, depending on the sign of the potential. The 
smaller the electron velocity the longer the time they stay in 
the range of action of the potential, and consequently the 
larger the diffusion coefficient. Therefore D (k ) continues to 
increase with decreasing k even outside the Born region (see 
Fig. 1). This dependence, however, continues only until the 
electron energy becomes of the order of the potential V(r) at 
r-r,. With further decrease of k the characteristic time of 
stay of the electrons in the field of the attracting center is 
determined not by the electron velocity but by the field of the 
center itself, and D /k ceases to depend on k. The factor l/k 
is connected here with the electron flux incident on the cen- 
ter. (If the center is repelling, the electrons begin to be 
strongly reflected from the potential barrier, so that the time 
of their stay in the field of the center decreases, and with it 
D /k.) 

At k- l/rs, resonant scattering begins and the time of 
interaction of the electron with the center increases (the elec- 
trons "stick" for some time to the resonant level). This leads 
to an increase ofD /k. Further decrease ofD /k with decreas- 
ing k is due to the narrowing of the parameter ( p)  regions in 
which the scattering is not resonant, the electrons are reflect- 
ed and do not contribute to D (k ). Finally, at very small k the 
main contribution to D (k ) is made by largep. The wells for 
these are shallow and at sufficiently low energies the scatter- 
ing is always resonant. In this region, D /k increases, since 
the effective cross section for resonant interaction increases. 
In the case of repelling centers this scattering mechanism 
determines the diffusion coefficient for all k smaller than 
those that admit of quasiclassical treatment. It is also re- 
sponsible for the diffusion of slow electrons scattered from 
short-range centers (see Fig. 2), for which the one-dimen- 
sional potentials are shallow at all p. 
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