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A theoretical description of the phenomenon, discovered by Khaikin and Khlyustikov [JETP 
Lett. 33, 158 (1981); 34, 198 (1981)l in tin crystals, of localized superconductivity (LS) near a 
twinning plane (TP) is presented. The behavior of LS in a magnetic field is investigated. It is shown 
that, as the temperature is raised, the phase transition in a type-I superconductor located in a 
nonzero field changes its character: it becomes a second-order transition in the vicinity of the 
temperature at which the LS sets in. The first-order normal-phase-LS transition curve and the 
normal-phase supercooling field are found. The effect of the dimensions of the twinning-plane 
region and that of the distance between parallel twinning planes on the temperature at which LS 
sets in are considered. The results obtained allow us to explain the available experimental data. 

PACS numbers: 74.55. + h, 74.10. + v 

Recently, Kha7kin and Khlyustikovl.' discovered the 
appearance of localized superconductivity (LS) near the 
twinning plane (TP) in tin crystals. The LS sets in at a tem- 
perature Tc somewhat higher than the critical temperature 
T, of the superconducting transition of the bulk metal (in 
tin T, = 3.72 K and T, = T, + 0.04 K). 

To describe the LS phenomenon, two of us (A. I. and L. 
N.)3 proposed for the superconductor a model with an elec- 
tron-phonon interaction constant R having a peak near an 
infinite TP in a region with thickness d4lO,  where 
lo = O0.18v,/T, is the superconducting coherence length. A 
similar model was independently considered by Nabutovskii 

be related, in particular, to the contribution of the two-di- 
mensional phonons to the electron-phonon interaction, or to 
the special nature of the electronic spectrum near a TP.' Let 
us note that the specific mechanism responsible for the in- 
crease in R is unimportant for our analysis below: it is only 
essential that the increase in R occur in a narrow region 
d4lO. 

The transition temperature is determined from the solu- 
tion to an integral equation for $(x) = A (x)/R (x). This equa- 
tion has the form: 

q(z) =h J K (r-r') $(XI) dr' + K (r-r') h (r') 0 (x') dr', 

and S h a p i r ~ . ~  In Ref. 3 the upper critical magnetic field Hc, (1) 
for a second-order transition into the LS state and the tem- where is the superconducting kernel (see, for example, 
perature dependence of the diamagnetic moment are deter- Ref. 6) .  
mined. At the same time, the transition into the LS state in a Solving (1) by going over to momentum representation 
nonzero field actually occurs as a first-order transition,'.' with allowance for the condition d4go, we find the increase 
and the measured temperature dependence in the critical temperature of the LS as compared to the criti- 
of the diamagnetic moment turns out to be significantly cal temperature of the bulk superconductor~.4~ 
stronger than the dependence obtained in Ref. 3. Further- 
more, as investigations with the aid of an electron micro- ~o=(Tc-Tco)lTco~l2Xi~d~Teo~~ho~~~~~(IO/hgZ) (Xid/hoEo)2, - 
scope the TP in tin is not homogeneous, but consists 
of regular TP sections separated by dislocated regions. 

In view of this, in the present paper we shall investigate 
the character of the phase transition in a nonzero field, find 
the critical field for the first-order transition, and consider 
the effect of the inhomogeneity of the TP on the properties of 
the LS. In the process, we shall, for completeness of exposi- 
tion, also give the results presented in Ref. 3, and directly 
used in the present paper. 

I. CRITICAL TEMPERATURE OF THE TRANSITION INTO THE 
STATE OF LOCALIZED SUPERCONDUCTIVITY 

1. The infinite twinning plane 

We assume that the Cooper-pairing constant R has a 
magnitude greater than the corresponding constant A, for 
the bulk metal in a region of the order of several interatomic 
distances in the vicinity of a TP, i.e., that A (x) = Ro + Rl(x), 
where2 ,(x) > 0 for 1x1 < d /2. The increase in2 near a TP can 

where 

In a dirty superconductor with a mean free path 14c0, T, has 
a higher value because of the smaller correlation length [an 
additional factor &/I> 1 appears on the right-hand side of 
(2)]. The increase in T, may also be caused by the anomalies 
in the electronic spectrum near the TP that make it difficult 
for an electron to go into the interior of the sample1; their 
effect also leads to a decrease in the correlation length near 
the TP. 

The expression (2) for T, contains the quantities A,  and 
d, whose direct determination is difficult, but, as will be seen 
below, the important role is played only by the quantity T,, 
which can be measured experimentally; it can be considered 
to be a phenomenological parameter of the theory. 
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Let us note that, qualitatively, the decrease of ro with 
increasing go, which follows from the expression (2), is clear- 
ly observed in experiment: according to Ref. 7, in tin 
~ , - 1 0 - ~  for fo=3.2~1O3 A, whereas in thallium 
ro- 8 X 10W4 for ,$ ,~4.2 x lo3 A, and in aluminum, in 
which go=: 16X lo3 A, the LS effect is not observed. 

A small magnitude of ro leads to a situation in which the 
characteristic dimension of the LS region is large compared 
to the correlation length, since 

E (zo) = 0 . 7 4 ~ ~ / ~ > ~ ~ g ~ .  

In view of this, we can use for the description of the LS the 
Ginsburg-Landau (GL) functional, which in our case has the 
form 

(3) 
where 

H is the external field, N is the electron concentration, and 
q = 7f (3)~~/6(.rrT,)~ in the case of a pure supercond~ctor.~ 
What makes the functional (3) different from the asual one is 
the presence of the term - y$'S (x), which describes the S- 
function increase in T, near the x = O plane. Notice that a 
similar functional has been used before9 to describe magnet- 
ic systems of finite dimensions near the Curie point. In this 
section we shall be interested in LS in the absence of a field; 
the GL equation then has the form 

and it is possible to find its exact solution 

$(XI = 
lgN(z0-z) I" exp[-lxl/f (z)] 

{I+(Z~/T) "'+[I- (zo/z)"lexp[-2lxl/g (z) (5) 

where,$ '(7) = q/4mr = 0.555 :/T. In the temperature range 
from T, to T, the characteristic scale of the decrease of $ is 
determined by the quantity 5 (7,). But if near T, this decrease 
is exponential with attenuation distance 6 (r,), as the tem- 
perature is lowered down to T,, the law of decrease goes 
over into a power law: 

$ (5) a [ I + X ~ / ~ ~  (TO)] -I1'. 

2. Effect of the finiteness of the dimension of the twinning 
plane on the critical temperature for the onset of localized 
superconductivity 

As has already been noted, the TP in tin is made up of a 
set of regular sections of different dimensions, separated by 
regions with dislocations. In view of this, there arises the 
question of the critical temperature for the onset of LS near a 
TP section of finite dimension. 

The shape of the TP section does not (unless it is fila- 
mentary) have a significant effect on the transition tempera- 
ture; therefore, we shall for simplicity assume the TP to be a 
circle of radius R)6, and denote the corresponding transi- 
tion temperature by TR . To determine TR , it is sufficient to 
solve the linearized equation (4) with the potential yS (x) re- 

placed by the potential yS (x)6 (R - I pl), where r = (x,p) and 
8 (x) = 1 for x > 0 and 0 for x < 0. The indicated equation is 
equivalent to the Schrodinger equation and the transition 
temperature is determined by the lowest energy level 
Eo = - 27, /q, where rR = (TR - T, )/T,. To facilitate 
the analysis of the solution, let us replace the potential 
- yS (x)e (R - IpJ) by the elliptic well (y/2q)8 (p,x), where 
8 (r) = 1 if the point r lies inside the ellipsoid x2/q2 + p2/ 

R = 1, and 8 (r) = 0 otherwise and q(,$,. Settingp' = ( q/ 
R b, and subsequently dropping the primes, we arrive at the 
equation 

where m, = mR 2 /q2~m.  Solving (6) with the use of the 
adiabatic approximation, i.e., separating the fast motion in x 
and the slow motion in the yz plane, we finally have 

Thus, the critical temperature for the onset of LS de- 
pends essentially on the dimensions of the TP: rR rapidly 
goes to zero for the sections of the TP that have dimension 
R < ,$ (7,). The result obtained indicates that, if the TP in tin 
consists of sections for which the range of variation of the 
quantity R /,$ (7,) is broad, then the transition into the LS 
state will be substantially smeared with respect to tempera- 
ture. The effect of this circumstance on the characteristics of 
the LS is discussed below. Notice that the analysis pertained 
to an isolated TP section. For large sections with R 2 ,$ (r0) 
located at distances greater than 6 (7,) from each other, the 
effect of the interaction with neighboring sections can be 
neglected (since $(r) decays over distances -6 (7,) from the 
edge of the TP in the p plane), and our approximation is 
justified. 

3. Localized superconductivity in a plate of finite thickness; 
closely spaced parallel twinning planes 

The localized superconductivity sets in at temperatures 
very close to the critical temperature T, for the onset of 
superconductivity in the bulk metal; this is caused by the 
departure of superconducting electrons from the region 
around the TP, i.e., essentially by a proximity effect. The 
effect in question may be weaker in films of finite thickness, 
and then the T, will be higher. 

Let us consider a film of thickness L. Let the x axis be 
perpendicular to the film, with - L /2 < x  < L /2; the TP is, 
as before, located in the x = 0 plane (in this section we as- 
sume the TP to be infinite). To determine the transition tem- 
perature TL, we must solve the linearized equation (4) with 
the boundary conditions JI'( + L /2) = 0. As a result, we find 

where rL = (TL - T,)/T,. The dependence T, (L ) is fully 
depicted by the curve 2 in Fig. 1. 
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sional 8-function well under the influence of the oscillator 
potential produced by the magnetic field. It is clear that for 
weak fields it is possible to use perturbation theory, and the 
field can be considered to be weak if fiw, ( - Eo = 2rd77, 
where o, = eH/mc. Thus, perturbation theory can be used 
for fields H(@,rdg i. For weak fields we can neglect the 
field-induced change in the form of the wave function $(x). 
Carrying out the perturbation-theory calculation, we find 
that near the critical point Tc for the onset of LS 

H , Z , ,  ( r )  =0.42t? (cDo/bZ) ( T , - T )  'I* ( r o - ~ ~ t o ) .  (9) 

The determination of H,,,I in the temperature region where 
ro - r is not small requires numerical computations, since 
perturbation theory is not applicable here. Figure 2 shows a 
plot of the function Hc,II(T); the value of Hc2(r = 0) 
~ 0 . 5 @ ~ r o / g ~ .  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
0 0.13 1.3 L/ t ( ~ c I  2. The screening of a weak parallel field 

FIG. 1. Dependenceof thecritical temperature for the onset of LS 
on the distance L between two parallel TP (curve 1)  and on the 
period L of an infinite series of TP, as well as on the thickness L of 
a film containing one TP (curve 2). 

Experimentally, it is more convenient to observe the LS 
in closely spaced parallel TP. In the case of two parallel TP 
we amve at the rL (L ) dependence depicted by the curve 1 in 
Fig. 1, where L is the distance between the TP. If we have a 
periodic series of TP with period L, then, solving the linear- 
ized equation (4) with a potential in the form of a periodic set 
of 6 functions, we find a rL (L ) dependence coinciding with 
(8) (the curve 2 in Fig. 1). Notice that the rL (L ) dependences 
depicted in Fig. 1 are valid for L>go; we cannot use the GL 
equations in the opposite case. As analysis of the integral 
equation (1) shows, for L(g,, the transition temperature for 
a periodic series of TP will be determined by the mean value 
(A ) = (A,d + AJ )/L of the electron-phonon interaction 
constant (see Ref. lo), which in the case of tin should give rise 
to a Tc significantly higher than T, . 

11. EFFECT OF MAGNETIC FIELD ON LOCALIZED 
SUPERCONDUCTIVITY 

1. The field H, for the production of a superconducting 
nucleus 

To determine the field H,, for LS near an infinite TP, 
we must consider the linearized GL equation (4), where the 
field is introduced in the normal fashion: 

A being the vector potential of the external field. In the case 
of an external field perpendicular to the twinning plane, the 
calculation is entirely similar to the standard method of de- 
termining H,, (Ref. 8), and yields 

Qo (Tc-T) 
HCzL ( T )  ~ 0 . 2 9  -- , 

EoZ T c o  
where @, = ~rcfi/e i; the flux quantum. 

In the case of a field parallel to the TP, the problem 
actually reduces to the level-shift problem in a one-dimen- 

Knowing the behavior of the order parameter $(x), and 
solving the equation for the field 

A " = (8ne2/m)  I$' ( x )  A 

with the boundary conditions A (x) = Hx for x+ + co , 
where H is the field at points far from the TP, we can deter- 
mine the character of the screening of a weak magnetic field 
in our system. An analytical solution can be obtained only in 
the region (r - rO)/rO( 1, where $(x) a exp[ - IxI/g (r)]. In 
this case 

B ( - x )  = B ( x )  =Hk exp(-- l x l / t )  [Kt ( u )  

whereA, (0) is the London penetration depth at T = 0, while 
I and K are the modified Bessel functions. In the case k> 1 
the field screening near x = 0 is practically complete; the 
screening is weak at small k values: 

FIG. 2. Phase diagram'of the localized superconductivity of the 
TP in tin for a parallel magnetic field (the field is in units of 
Ho = @ o ~ , , / l g ) .  HE is the critical field for the first-order transi- 
tion and H,, is the supercooling field. The inset shows the region 
around the tricritical point. 
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The diamagnetic moment per unit area is 

H-B f(.c)Hk2/8n, kK1, 
-M= s-dz- 

4n f(t)H[ln(k/2) +0.57]/2n, kwl. 

We have already noted above that the temperature depen- 
dence of the moment (12), obtained for the infinite plane, is 
nearly a power-law dependence, whereas an exponential de- 
crease of the moment is observed in experiment' as the tem- 
perature is raised from T,. The causes of this discrepancy 
will be discussed below. 

3. Nature of the transition in a magnetic field 

In this section we investigate the character of the transi- 
tion into the LS state in a parallel constant external magnetic 
field. As has already been noted, the analysis can be per- 
formed within the framework of the GL functional (3). 

In order to determine the nature of the transition, let us 
eliminate the field B (x) from (3) and obtain an expansion of 
the free energy in powers of @(0); then, as usual, a negative 
coefficient attached to 14~(0) [for H = Hc2 (t ) ] will indicate a 
first order transition. Of greatest interest is the behavior of 
type-I superconductors: it is precisely in their case that the 
nature of the transition can change under the action of a 
field. Analytically, it is possible to consider only the case of a 
superconductor that is of the first type in the extreme, i.e., a 
superconductor with x( 1, where x aA,(0)/60 is the Ginz- 
burg-Landau parameter (the case x( 1 is precisely the case 
that is realized in tin). 

For x(1, as will be seen from the results of the present 
section, the tricritical point r, differs from the critical tem- 
perature for the onset of LS in zero field only by a quantity of 
the order of the parameter xz, i.e., ro - r, (rO. This means 
that (see the expression of (9)) the transition field is weak 
Hc2 (r,)(Q0rd6 i, and we can neglect the effect of the field 
on the form of $(x) At the transition point r, the first-order 
transition field Hc(r,) coincides with Hc2 (7,). 

Thus, we can eliminate B (x) from the functional (3), us- 
ing the results obtained in Subsec. 2 of this section for the 
screening of a weak field, i.e., the expression (1 1) [in this case 
the amplitude qZ(0) should, of course, not contain the tem- 
perature]. Finally, eliminatingB (x) ,  and performing the inte- 
gration over x in (3), we find that the coefficient b ' attached 
to llr4(0) has the form 

b'a (1-H2/H,2), H02=0.23@,2~,2h~2 (0) / g o 8 .  (13) 

Substituting the upper critical field Hc2(r), (9), into (13), we 
find the following expression for the tricritical transition 
temperature from the condition b ' = 0: 

As follows from (14), all the assumptions underlying our 
analysis are fulfilled in the x(1 case. 

We can conclude that there exists in the ( H,T)  plane in 
the case of a type-I superconductor a tricritical point 

[H,, ( r , ) , ~ ,  ] at which the character of the transition changes 
(see Fig. 2). Qualitatively, this circumstance is explained by 
the fact that the effective screening distance in the case of LS 
increases as r--+rO, since A :, a A 2 (0)/(rO - r),  whereas the 
correlation length 6 depends weakly on the temperature 
6 a 6 '(r0] a ($/r,,, and the transition changes its character 
when A,, a 6, i.e., when r0 - r, a rdL 2(0)/60z. 

Thus, a characteristic of LS is the certain presence of a 
second-order phase transition region. In the case of type-I1 
superconductors the transition into the LS state in a magnet- 
ic field is of second order everywhere, while in the case of 
type-I superconductors with x( 1 the transition is of second 
order only in a narrow neighborhood of Tc . 

At temperatures T <  T, the transition is of first order, 
and the curve H,(T) of this transition lies above the curve 
Hc2 (T), which in this case has the meaning of a supercooling 
line for the normal phase. 

4. The transition field H, for a type-I superconductor 

The problem of the shape of the curve H,(T) can be 
solved for superconductors that are of the first type in the 
extreme, i.e., superconductors with x( 1. In this case, as not- 
ed above, the effective screening distance A,,({ (rO) every- 
where except in a narrow range of r a (AL/l0)' values around 
Tc . This circumstance indicates that the field decreases 
sharply at the LS boundary, practically not penetrating into 
the interior. Therefore, we can assume that the LS exists in a 
region - L < x < L (the dimension 2L of which is itself to be 
determined) where there is no field and the order parameter 
is equal to zero at the boundary: $( + L ) = 0. In this case we 
neglect the contribution to the energy (3) from the field-de- 
cay region; the calculation here is, as usual,8 accurate to 
within terms of the order of x " ~ .  

Introducing the dimensionless quantities8: 

we can write the approximate expression for the free energy 
(3) in the form 

wherea(H ) = (H 2/4a)(b /aZ), and Fis thedifference between 
the free energies of the superconducting and normal phases. 
The first integral of the GL equations has the form 

Neglecting the contribution to the free energy resulting 
from the penetration of the field into the LS region, we can 
write 
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Using the first integral (16), we have for the region 
- L < x < L (here and below we drop the bars over the let- 

ters): 

[Qz+I)'/2+a/2] -IhdI) =-xdx. 

Going over in (15') from integration over x to integration 
over $, and minizing with respect to $(0), we finally obtain 

0 

the dimension of the LS region is then given by the integral 

The relations (17) and (1 8) allow us, in principle, to solve 
the problem completely: from the condition F = 0 and from 
(17") we find the quantity $(O), from (17') we determine the 
transition field H = H,, and from (18) we get the dimension 
L of the LS region. The characteristic dimension of the LS 
region is, as can be seen from (1 8), of the order of6 (T~) .  Carry- 
ing out the requisite numerical computations, we find the 
dependence H,(T) shown in Fig. 2. Notice that our approxi- 
mation is inapplicable in the vicinity of Tc (see above). The 
quantity Hc at T = T, is given by H,(T = 0 ) ~ 2 . 2 ~ ~ ( N /  
q)'I2, and the ratio 

Her ( z = 0 )  lH, (z=O) =4.2hL (0) I&. (19) 

The field dependence of the diamagnetic moment is shown in 
Fig. 3 for different temperatures. 

5. The crltical current 

The method of computing the critical current in thin 
films with a constant value of the order-parameter ampli- 

tude is sufficiently extensively expounded in the literature. 
An interesting property of localized superconductivity is the 
fact that the method is suitable for determining the critical 
current in the case of a coordinate-dependent order param- 
eter as well, though only in a rather narrow neighborhood of 
the critical point T,. 

Let us consider the superconducting current flowing 
along the twinning plane; the Y axis is oriented along the 
current and the X axis is, as always, perpendicular to the TP. 
The coordinate dependences of the order parameter and the 
current have the following form 

I)= 10 (x )  1 exp (icp(y) ), j=ecoIO(x) 121m 

where co = aq, /dy = const, on account of the condition 
divj = 0. We can, taking into consideration the complexity 
of the order parameter, easily transform the GL equation (4) 
into the form 

where T ,  = T + c02q/4m. In the present equation we have 
dropped the terms containing the magnetic field of the cur- 
rent. The criterion for the validity of this approximation will 
be discussed below. 

The solution to the equation will be the solution (5) with 
T replaced by T,. Consequently, we have 

141 "x=0) = $ 0 1 = 2 N ( ~ ~ - ~ , ) ,  j (x=O) =j0=e~oI)02/m 

whence we find that 

lo= (2eZlmllN) "$01 (2N (.c0-.r) -QoZ) "'. 

It is easy to see from the present formula that the critical 
value of the current amplitude is attained at a value of & 
equal to 4N (7, - 7)/3. 

Let us give the dependence of the total critical current 
through a unit length in the TP: 

Z,=8Ne (.co-z)"/3m( (sto) '"+ ( 2 ~ + . c ~ )  'la). 

The condition for the applicability of the computational 
method used was assumed to be the weakness of the magnet- 
ic field of the current. Determining the maximum value of 
the field intensity from the equation 

3B/dx=-4nj ( x )  , B (0) =O , 

and requiring the fulfillment of the condition +b, 
< - Eo = ( 2 ~ ~  + qco2/2m)/q, we obtain the region of appli- 
cability of the relations derived: 

(To-T)  / T O ~ X " ' .  

FIG. 3. Dependence of the diamagnetic moment M = HL (H ), in 
units of M, = ( 2 r , , ~ r ~ / r n ) " ~ ,  H,  = 2r,,(n-N/~7)'/~, on the magnet- 
ic field at different temperatures for the infinite twinning plane. 

In this region of temperatures the LS is equivalent to a thin 
film with Asd  (d-{ (T~) ,  A - I$/ -'), therefore, the orbital ef- 
fects, which are of the order ofd /A, can be neglected. We can 
approximately estimate the I, for other temperatures, 
choosing the minimum current from the critical current 
computed above without allowance for the field produced by 
it and the current I, generated by the critical field H,(T). On 
this basis we obtain the estimate 

zc-Z~-Hc, for ( ~ ~ - 7 )  /zo>x2. 
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Ill. CONCLUSIONS; DISCUSSION OF THE EXPERIMENTAL 
SITUATION 

The above-proposed theory of LS near an infinite TP 
essentially contains only one "free" parameter (the quantity 
rO) that depends on the details of the electron-phonon inter- 
action and the characteristics of the electronic spectrum 
near the TP. The remaining important characteristics A, (0) 
and go, which describe the behavior of LS in a magnetic field, 
are entirely determined by the bulk metal, and are well 
known. Thus, there is the possibility of a direct experimental 
verification of the theory. The presently available experi- 
mental data"' allow us to carry out such a comparison. We 
must, however, bear in mind the inhomogeneous nature of 
the TP in tin (it is precisely for tin crystals, which we shall 
have in mind below, that we have the most complete 

The presence of dimensionally different TP sec- 
tions leads to a situation in which each such section has its 
own critical fields H,(R ) and Hc2(R ), which increase with 
increasing R, i.e., the greater the dimension R, the higher 
they are. 

In a strong field all the sections are in the normal state. 
As the field is decreased to a value below the Hc value, we 
can expect successive transitions into the LS state of the 
large, and then the smaller, TP sections. For the large sec- 
tions [the characteristic dimension of which is large com- 
pared to ,$ (T,)], the critical fields practically coincide with 
the critical fields for the infinite plane. But on account of the 
fact that for tin (x ~ 0 . 1 3 )  the transition in a nonzero field is a 
first-order transition, the activation energy barrier for the 
superconducting nucleus must be overcome, and there is ob- 
served a normal-phase "supercooling" in field terms. Figure 
4 shows a typical experimental' M (H) curve. In a nonzero 
field the normal state will be preserved until the spontaneous 
production of superconducting nuclei begins. It is important 
to note that the field Hc2 of the infinite TP will be the super- 
cooling field, since the larger TP sections have the highest 
Hc2 values, which coincides with Hc2 ( oc ). 

Thus, the field in which a jump occurs in the moment 
MD (Fig. 4) is the field Hc2 for the infinite TP. Let us point 
out an interesting circumstance: the irregular character of 
the TP does not prevent the experimental determination of 
the quantity Hc2 (a). As to the magnitude of the jump in the 
moment MD,  it depends essentially on the size distribution 
of the TP sections. 

As the external magnetic field intensity is increased 
from zero, the LS is gradually suppressed, beginning with 
the small TP sections. These transitions occur as first-order 
transitions when the field attains the Hc(R ) values. The "SU- 

FIG. 4. Typical field dependence of the diamagnetic moment Mas 
experimentally observed in tin.' 

perheating" in field terms of the localized superconductivity 
is possible in principle as a result of the existence of an activa- 
tion energy for the normal nucleation center. But in the case 
of LS the normal phase is always present near the TP (bulk 
metal), and there will not be superheating: the transition will 
occur precisely in the Hc field (our attention was drawn to 
this fact by M. S. Khaikin and I. N. Khlyustikov). The mo- 
ment should undergo a jump upon the destruction of the LS 
in the Hc(R ) field, but since only a small part of the TP goes 
over into the normal state in the field in question, the result- 
ing M (H ) curve will be smooth. The vanishing of the moment 
indicates the attainment by the field of the value Hc ( a, ): the 
superconductivity is destroyed in all the TP regions. The 
absence of a jump at H = Hc ( oc ) indicates a relatively small 
number of large TP regions. 

Thus, the inhomogeneity of the TP does not prevent the 
experimental determination of the quantities Hc and Hc2 for 
the infinite TP. The slopes dHc2/dT and dH,/dT at T = 0 
and the ratio Hc(0)/Hc2(O) are universal 7,-independent 
quantities. Using the parameter values go = 3 . 2 ~  lo-' cm 
and x ~ 0 . 1 3  obtained for tin, we find that dHc2/dT = 25 G/ 
K, dHc/dT = 55 G/K, and Hc (0)/Hc2 (0) ~ 2 .  The experi- 
mental data" are as follows: dHC2/dTz40 G/K, dHc/dT 
z 120 G/K, and Hc(0)/Hc2 (O)z3, which are in quite good 
agreement with the theory, considering the indeterminacy in 
the field orientation with respect to the TP and the tensor 
character of gw 

The results reported in Ref. 11 also indicate, in accord 
with the predictions made in Subsec. 3 of Sec. 11, the exis- 
tence in tin of a tricritical point where the Hc and Hc, curves 
meet. It would be of interest to experimentally investigate 
the region around T,, but the small values of the correspond- 
ing fields and moments in tin make such an investigation 
extremely difficult. A suitable object might be a supercon- 
ductor with A, (0) Sgo, for which r, -7'. 

A significantly higher r0 value is experimentally ob- 
served'' in the case of two close TP's. From the appropriate 
dependence in Fig. 1 we find that a TP spacing L of the order 
of lo4 A corresponds to a doubling to rW This value agrees 
with Kirzhnits and Maksimov's independent estimate for 
L." 

The experimentally observed1 rapid exponential de- 
crease of the moment with increasing temperature also needs 
to be explained, since the theory predicts a significantly 
weaker dependence (see Subsec. 11.2). The fact that the TP in 
tin in highly inhomogeneous allows a natural explanation of 
this discrepancy. Indeed, as shown in Subsec. 1.2, the transi- 
tion temperature depends strongly on the dimensions of the 
TP. The number of TP sections with LS decreases with in- 
creasing temperature, which is the main factor in the de- 
crease of the moment. In this case it is, of course, necessary 
that the TP sections be sufficiently far from each other [at 
distances large compared to 6 (ro)]. This condition is fulfilled 
for the samples investigated by Khaikin and ~ h l ~ u s t i k o v . ~ ~ '  
Indeed, it follows from the data presented in Ref. 1 that the 
absolute magnitude of the diamagnetic moment is much 
smaller than what we can expect in the case of an infinite TP: 
according to Ref. 1, at r = 0 the moment per unit area is in 
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order of magnitude equal to l,,H/4n-, whereas for the infinite 
TP it is, according to Subsec. 11.4, equal to 6 (rO)H / 4 ~ .  This 
indicates that the mean dimension of the TP sections is 
smaller than the distance between them. 

If the size distribution of the TP sections is such that the 
mean dimension is smaller than l (rO), then the decrease of 
the moment with temperature will be determined by the 
asymptotic form of the distribution function for large TP 
dimensions. As an illustration, let us consider the following 
model for a TP. We shall assume that the TP consists of 
small circles of radius R < 6 (rO) randomly distributed over 
thex = 0 plane. Let the mean distance between the circles be 
much greater than 6 (rO), i.e., let their concentration c be low: 
cR *<I. We are interested in TP regions with dimensions 
r>R. They are produced through the joining of n Z?/R 
small circles. The probability that a circle belongs to a clus- 
ter with dimension r>R is given by the Poisson distribution: 

This exponential dependence on the dimension r leads to an 
exponential dependence of the LS area, and, hence, of the 
moment, on the temperature. Using the dependence (7) for r, 
in the case r > 6 (rO), we arrive at the expression 

which is valid for Tc - T <Tc - T,. It is also clear that 
there will be a sharp exponential decrease in the region 
T , -TST, -Td .  

Thus, the inhomogeneous character of the TP qualita- 
tively explains the experimentally observed rapid decrease of 

the moment with increasing temperature. But it is not possi- 
ble to carry out a quantitative comparison with the experi- 
mental M ( T )  curve, since the size distribution of the TP sec- 
tions is not known. 

In conclusion, we thank M. S. KhaTkin and I. N. 
Khlyustikov for making their experimental data available to 
us before publication and for a useful discussion of the paper. 
We also thank I. M. Lifshits and A. S. MikhaYlov for valu- 
able comments. 
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