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It is shown that the basic properties of carriers in the subsurface layer of the semiconductor in 
metal-insulator-semiconductor (MIS) structures are determined by electrostatic-potential fluctu- 
ations that result from the random distribution of the charge centers contained in the insulator 
near the interface with the semiconductor. A quantitative theory is developed for the charge of the 
inversion layer and its conductivity, based on a rigorous and consistent account of the small-scale 
character of the fluctuating potential in the subsurface region of the semiconductor. The electron 
states localized at the minimum of the fluctuating potential relief are surface states. Comparison 
with experiment has demonstrated that it is precisely states of this type which dominate in the 
measured spectra of real MIS structures based on silicon. Correct allowance for the fluctuation 
potential has made it possible to explain qualitatively the behavior of the conductivity of the 
inversion layer near the threshold, find the connection between the conductivity and the charge 
density of the inversion layer, as well as the dependence of the conduction activation energy on the 
charge density at low temperatures. The theory constructed demonstrates the essentially three- 
dimensional character of the electron motion in inversion layers of MIS structures. 

PACS numbers: 73.40.Qv, 73.20.C~ 

INTRODUCTION 

Ideas concerning the motion of electrons in disordered 
two-dimensional systems are now being intensively devel- 
oped.' The two-dimensional state occupies a position inter- 
mediate between the one-dimensional one, where an arbi- 
trarily weak potential leads to complete localization of the 
states within the confines of the entire electron spe~ t rum,~  
and the three-dimensional one, where localized and deloca- 
lized states coexist (the demarcation energy level that sepa- 
rates the corresponding sections of the energy spectrum is 
called the mobility threshold). This is the cause of the purely 
cognitive interest in two-dimensional disordered system, in 
which a stronger manifestation of localization effects than in 
the three-dimensional case is expected. 

No less considerable a stimulus to the study of two- 
dimensional disordered systems is the suggested practical 
significance of research of this type. We have in mind the use 
of the theoretical results to explain the electric characteris- 
tics of metal-insulator-semiconductor (MIS) structures that 
play a dominant role in modern microelectronics. Indeed, 
electrons located in the MIS-structure inversion layers and 
quantized by the transverse electric field at the interface 
between the semiconductor and the (in most cases) amor- 
phous insulator appear at first glance to be an adequate phys- 
ical model of a two-dimensional disordered electron system, 
and the circumstance that by varying the voltage on the 
MIS-structure electrode it is possible to vary the charge of 
the inversion layer, and hence the position of the Fermi level, 
makes this structure ideal for the study of phenomena near 
the mobility threshold (in the vicinity of the so-called metal- 
insulator junction.) 

Owing to the tremendous mathematical difficulties, 
however, attempts at an abstract analysis of two-dimension- 
al disordered electron systems led to no significant results 

that might be used for MIS structures. At the same time, 
there actually exist in the theory of MIS structure a number 
of "blank spots," principal among which is the question of 
the surface states on the semiconductor insulator interface. 
The energy spectrum of such states is determined from the 
degree of the deviation of the characteristics of real devices 
with MIS structure from the calculated relations that corre- 
spond to an ideal (without surface states) MIS structure. Sur- 
face states are, first, nonconducting, so that they cannot be 
related to the Tamm levels; second, the experimental spectra 
of the surface states of MIS structures are so continuously 
"smeared out" over the band gap that they do not resemble 
even remotely discrete levels initiated by broken bonds 
(Shockley states) or by foreign atoms on the interface. It is 
this smearing of the energy spectra that suggests the possible 
fluctuating nature of the surface states in real MIS struc- 
tures. 

The main part of the present paper is the construction of 
a theoretical model of fluctuating surface states in MIS 
structures. We shall investigate also the conductivity of MIS 
structure in the vicinity of the threshold voltage, and obtain 
the connection between the conductivity and the charge den- 
sity of the inversion layer and the corresponding dependence 
of the conduction activation energy. The source of the disor- 
der will be considered, as b e f ~ r e , ~  to be static fluctuations of 
the density of charged centers contained in the insulator lay- 
er of the MIS structure. The crucial aspect that distinguishes 
the theory proposed here is a definite rejection of two-dimen- 
sional concepts as the zeroth approximation of the problem. 
The point is, as we shall show, that the fluctuating relief of 
the potential in the subsurface region of the semiconductor 
of the MIS structure is of such small scale that at those dis- 
tances from the semiconductor-insulator interface that are 
significant for electron motions exceed the homogeneous 
electric field that tends to "two-dimensionalize" the electron 
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trajectories by crowding the electrons towards the surface. 
The MIS-structure theory advanced here is ab initio three- 
dimensional. 

In the first section of the article we present the results of 
a study of the characteristics of the fluctuating potential re- 
lief in the subsurface of the semiconductor, a relief due to the 
random distribution of the built-in charge centers in the in- 
sulator layer near the interface with the semiconductor. The 
second section contains an exposition of the theory of sur- 
face states in MIS structures. In the third is investigated the 
conductivity of the inversion layer. The fourth and last sec- 
tion is devoted to a discussion of the results and to their 
comparison with experiment. 

1. CHARACTERISTICS OF A RANDOM POTENTIAL IN THE 
SUBSURFACE OF THE MIS-STRUCTURE SEMICONDUCTOR. 
PERCOLATION LEVEL 

We shall assume that the semiconductor-insulator in- 
terface is ideal in the sense that it has no bare surface states 
whatever. We assume furthermore that the built-in charge, 
whose surface density we shall designate 2 (r), is located di- 
rectly on the interface z = 0 (positive z correspond to the 
semiconductor region of the MIS structure, r is the coordi- 
nate in the interface plane). We shall be interested in the so- 
called depletion and inversion regimes, when an external 
voltage applied to the electrode of the structure repels the 
majority carriers into the interior of the semiconductors. 
This produces at the interface a depleted layer whose aver- 
age thickness is connected in a known manner with the sur- 
face potential @, : 

where N is the impurity density and E, is the dielectric con- 
stant of the semiconductor. The fluctuations 6w = w(r) - w 
of the depletion depth, which are due to fluctuations of the 
charge2 ((r, are usually small, i.e., 6w2/w2( 1, and the influ- 
ence of the inhomogeneity of the depletion depth on the po- 
tential relief in the depleted layer can be taken into account 
with the aid of a fictitious surface charge located in the plane 
z = w (Ref. 4). The potential in the subsurface region is then 
the sum of the potential of the homogeneous field of the 
depleted layer, q, - E, z, where E, = &,/w, and of the 
fluctuating potential 6q(r,z). The latter is calculated as the 
potential initiated by the non-uniformly charged layer 
2 (r) - 1 located between the two capacitor electrodes 
z, = w and z2 = - d (d is the thickness of the insulator lay- 
er). In this calculation it is necessary to use in the semicon- 
ductor region z> 0 the Laplace equation rather than the 
Poisson equation, since the charge of the ionized acceptors 
(donors) is already "busy" forming the r-independent deplet- 
ed-layer field E,. Taking the foregoing into account we ob- 
tain for z > 0 

eikr sh kd sh k ( w - Z )  
6 q  (r ,  z )  =4n J h k 6 2  (k)-  

k  ~ . s h k d c h k w + e ~ c h k d s h k w '  

where E, the dielectric constant of the insulator and 

6E ( k )  = (2n)  -' I h r  ( Z  ( r )  -8) e-'*' (2) 

is the Fourier transform of the fluctuating built-in charge. 
We obtain now the correlation function of the random 

potential, assuming completely random distribution of the 
charged centers on the semiconductor-insulator interface, 
i.e., 

(62  ( k )  62 (k') >= (e/2n) '06 (k+k l ) .  (3) 

Here a = a+ + (T- is the sum of the average densities of the 
positively and negatively charged centers located on the in- 
terface. It follows form (1)-(3) that 

K (r ,  z, z') =<6q (0,  z )  6q  (r, z ' )  > 
eik' sh2 kd sh k  (w-z)  sh k  (w-z')  

= 4 e b  j d2k - 
k2 (E' sh kd ch kw+ei ch kd sh k ~ ) ~  

' (4) 

We note that in our problem, in contrast to three-dimension- 
al Coulomb systems, the integrand in (4) does not diverge as 
k + 0. This absence of the Holtsmark divergence is the con- 
sequence of the screening of the charge of the large-scale 
fluctuations by the image charges induced on the capacitor 
electrodes. In the region 0 <z<w of interest to us the princi- 
pal role is played in this screening by the charges induced on 
the metal, since usually wsd. Expression (4) can therefore be 
simplified by letting in it w + m .  For z s d  (but, naturally, 
ZNW) the correlator (4) has then the following asymptotic 
form 

d2 Z+Z' 
K (r ,  z, z') =8ne20 - 

E~~ [r2+ ( Z + Z ' ) ~ ] . ' ~  ' 

So sharp a decrease ofK (O,z,z) with increasingz is due to the 
dipole character of the potential (1) at zsd .  On the contrary, 
at small z, r, (d, the main contribution to the correlation 
function is madeby smallscale fluctuations82 with k > d -I, 
which have a pure Coulomb potential. At z, r<d the correla- 
tor (4) tends therefore to 

ez 2d 
K(r ,  z, z') =2no - ln 

x2 z+z'+[r2+ ( z + z ' ) ~ ] ' ~  ' (6) 

where K = ( E ~  + ~ , ) / 2  is the effective dielectric constant and 
takes into account the bound charge induced on the interface 
between media with different E. ' The logarithmic divergence 
of the correlation function at z, z', r + 0 is due to localization 
of the built-in charge in the plane of the interface. Despite 
this "lateral" location of the fluctuating charge, the poten- 
tial relief in the subsurface layer of the semiconductor is es- 
sentially three-dimensional, since the character of the 
change of the correlation function (6) relative to r is approxi- 
mately the same as relative to z. The fluctuating electric 
fields in the directions tangential and normal to the interface 
are likewise approximately equal. Indeed, differentiating (6), 
we get 

We compare now the characteristic amplitude of the 
fluctuating field ( w)1'2 with the homogeneous space- 
charge E;. We replace, for example, z in (7) with the so-called 
thermal thickness I = T/eEs of the inversion layer of an 
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ideal MIS structure (Tis the temperature in energy units). It 
turns out that the ratio 

does not depend at all on the homogeneous field E,. As will 
be made clear later on, the fluctuating relief influences sub- 
stantially the motion of the electrons when the quantity A, 
which represents in this expression the characteristic energy 
scale of the fluctuation, exceeds the thermal energy of the 
electrons. In the temperature region T<A of interest to us 
the three-dimensional fluctuating fields at a depth on the 
order of the thickness of the unperturbed inversion layer are 
therefore larger (and by many times at T(A ) than the homo- 
geneous field of the depleted layer. It is clear that in this 
situation the use of the notion of a homogeneous inversion 
layer as the zeroth approximation in the problem of the in- 
fluence of fluctuations on the electron states is utterly unten- 
able. It is necessary instead to construct a physical model 
that would take into account initially the three-dimensional 
character of the fluctuating potential relief in the subsurface 
region of the semiconductor of the MIS structure. 

Before we proceed to implement this program, we shall 
describe the qualitative picture of the potential relief, sum- 
marizing the relations (1)-(7) above. This three-dimensional 
relief can be imagined to comprise branched "ravines" sepa- 
rated by "ridges" against the background of a uniform vari- 
ation of the average potential G(z) = Gs - Es z. The charac- 
teristic depths of the ravines and the heights of the ridges 
increase as the surface is approached [Eq. (6)]. At distances 
z > d the amplitude of the fluctuations decreases sharply [Eq. 
( 5 ) ]  and the potential relief becomes smoothed out. It is im- 
portant that the maxima and aminima of the potential relief 
are located only on the semiconductor-insulator interface, 
while only saddle points can exist in the volume of the semi- 
conductor. This exact statement follows from the fact that 
the random potential (1) is a solution of the Laplace equa- 
tion. 

This leads to a conclusion of importance in what fol- 
lows, mainly that the so-called percolation level for the con- 
duction along the semiconductor-insulator interface is equal 
to the average potential G, on this interface. Indeed, if we 
consider the class of two-dimensional electron motions in 
planes parallel to the interface z = const, each of them is 
characterized by its own percolation level, equal to the aver- 
age position of the bottom of the conduction band in the 
given plane. The minimal among them is the level of percola- 
tion over the interface G, (see the band scheme in Fig. 1). We 
consider now an electron located at a certain distance z from 
the surface and having an energy lower than the level of 
percolation in the given plane, but higher the level of the 
percolation over the interface. The specific feature of our 
problem is that nothing prevents this electron from reaching 
the surface without change in energy and participate there in 
the longitudinal conduction. The point is that a level line of 
the potential relief ( 1), in accord with the known property of 
the Laplace equation, can be closed only on the interface. 
Therefore any spatial equal-energy trajectory with energy 
higher than the percolation surface level is infinite. 

FIG. 1 .  Band scheme of MIS structure in the inversion regime. 

So far we have not taken into account the screening 
effect of the electrons on the fluctuating relief; this is justified 
at a low electron density. Just as in Ref. 3, we take this influ- 
ence into account within the framework of the concept of 
nonlinear ~creening.~ According to Ref. 3, in the presence of 
electrons the region of integration in (4) must have as the 
lower limit the wave vector R ; ' = Q ( ~ / n ) - " ~ ,  inasmuch 
as at a given electron surface density Q their redistribution 
compensates for the charge of all the fluctuations with scales 
larger than R, (in which the mean squared fluctuation of the 
density of the built-in charge is less than Q ). Since, however, 
in an MIS structure the charge of the large-scale fluctuation 
is anyway screened by the charges induced on the electrodes, 
the electron screening becomes significant only at relatively 
large Q > (u/nd 2)"2, when R, <d.  From the formal point of 
view, the imposition of the lower limit in (4) affects the value 
of the correlator (6) only at R , ' > d - I ,  inasmuch as the 
main contribution to this integral is made at z < d only by the 
region of large wave vectors k > d -I. At small R,(d, with 
allowance for electron screening, we have 

At Q < (a/nd 2)"2, when R ,  > d, we shall use the previous 
expression (6). 

We note that even in the presence of inversion electrons 
the preceding exact statement concerning the percolation 
level remains in force, since the sign of the electron charge is 
such that the electrons can contribute only to the appearance 
of maxima of the potential in the interior of the subsurface 
layers, from which the electrons are pushed out. Therefore 
under conditions of substantial electron screening of the 
fluctuations the topology of the equal-energy conducting 
trajectories remains the same as before. 

We note that at large Q it is also necessary to take into 
account the contribution of the electron charge itself to the 
formation of the uniform field E, that presses the electrons 
towards the interface. This supplementary field is due to the 
purely electrostatic attraction of the charge to the metallic 
surface. With allowance for this circumstance we have 
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We shall need also the distribution function of the ran- 
dom potential in the subsurface region of the MIS structure. 
By definition6 

Here G ( r s )  is the influence function, whose Fourier trans- 
form was already used to write down (1), and the6 function is 
averaged over the ensemble of the realizations of the random 
distribution2 (r). It is easy to show that at z)u- 'I2 the distri- 
bution function (9) tends asymptotically to the Gaussian 
form 

- - 
P ( q ,  z )  = ( 2 n 6 q Z ( z )  ) - I "  exp {- ( ~ - ~ , + E , z ) ~ / 2 6 q ~ ( z ) } ,  (10) 

which we shall use in the subsequent calculations. 

2. LOCALIZED CHARGE. DENSITY OF SURFACE STATES 

Taking into account the three-dimensionality of the po- 
tential relief in the substrate layer, it is necessary to calculate 
the surface density of the inversion charge by averaging, over 
the area of the interface, and integrating, with respect to the 
normal coordinate z, the fluctuating volume concentration 
of the electrons 

P 

Q=s-' J 5 d W c p  (r, z ) , ~ ) ,  
0 

whereS> d and wZ is the averaging area. Assuming ergodi- 
city, we have 

Here n( p,p) is the known quasiclassical expression for the 
density 

where E and p are the energy and the chemical potential 
reckoned from the position of the bottom of the conduction 
band in the volume of the crystal ( p  is negative). In dimen- 
sionless energy units we have2 

where is the characteristic density (a = fi2x/me2 
is the Bohr radius), and 

is the Fermi integral. Substituting (12) and (10) in (I  1) we 
obtain 

l o "  Q=dz) 

where in accord with (6) 

u ( z )  =In ( d / 2 z ) ,  Z8=e I E .  1 /A>O. 

To find the dependence of the inversion-layer charge on 
the average surface potential ;,, the so called band bending 
(in our notation the depletion and inversion correspond to 
negativeGs, see Fig. l), we must evaluate the integral (14). At 
high temperature T< 1, the Gaussian function in (14) is much 
narrower for practically all z than the smooth Fermi integral 
F 'I2, and consequently plays the role of a S-function in this 
expression. The integration with respect to q, yields simply 
the value of F 'I2 at the average value of the potential, i.e., 
exp[(p - is - 8, z)/T], integration of which with respect 
to z leads to the known dependence of the inversion-layer 
charge on the band bending in an ideal MIS structure.' As 
expected, at -1 the influence of the fluctuations on the 
inversion layer vanishes. In the opposite TN 1 of interest to 
us, the main contribution to the electron density (14) is made 
by the occupation of the potential fluctuation minima deeper 
than the Fermi energy, and the Boltzmann tail of the Fermi 
integral can be neglected. After making the change of varia- 
blesz=ide-"andip= p --$wethenhave 

where $ = @, - p is the distance from the average position 
of the bottom of the conduction band on the interface to the 
Fermi level. 

We consider first not too large bends of the bands, 8% 1, 
when in the integration of (15) with respect to $ we can neg- 
lect the quadratic term $2 in the argument of the Gaussian 
exponential. Then 

Expression (16) was written under the assumption that 8, z 
<$ at the characteristic distances from the interface. The 
validity of the inequality will be verified later. The integrand 
in (16) has a maximum. In fact, with increasing variance of 
the distribution (u -+ co as z -+ 0) the probability of the re- 
quired deep fluctuations $ > ? increases. Then, however, the 
effective thickness of the layer, where the distribution func- 
tion has this variance, decreases in proportion to e - ". Con- 
sequently, the integral (16) can be evaluated by the saddle- 
point method. Calculating the corresponding derivatives, 
we obtain the position of the saddle point 
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(since $) 1) and the characteristic width of the maximum 

(this justified the use of the saddle-point method). As a result 
we get 

Obviously, the condition that allows us to neglect in the cal- 
culation of (17) the term with the uniform field 8, in the 
argument of the exponential is 

We have set here the field 8, equal to the field 2I@, I/w of the 
depleted layer. This inequality is satisfied with a good mar- 
gin, inasmuch as at $) l the surface potential Ips I -$. We 
note that (18) is a mathematical formulation of the statement 
made in the introduction, that at those distances from the 
interface which are important for the electron motions the 
fluctuating electric field is much stronger than the homogen- 
eous field Es. It is clear that Q in (17) is a localized charge, 
since the energy of the electrons is lower than the percolation 
level. 

In the derivation of the quasiclassical formula (17) no 
account was taken of the quantum-mechanical localization 
energy fi2/mzi, equal to the distance between the energy of 
the electron state and the bottom of the potential well. This is 
justified when the localization energy is less than the energy 
scale A over which the probability of the potential fluctu- 
ations changes: 

Consequently, expression (17) does not hold and yields much 
too large values of Q at 

The exposition above leads in natural fashion to the 
concepts of optimal  fluctuation^,^^' within the framework of 
which we now see clearly the physical meaning of the inte- 
grations (15) and (16) performed in the derivation of (17), as 
well as that of the quantum restriction (19). Taking into ac- 
count the three-dimensional character of the fluctuations 
[Eqs. (6), (7)], the potential relief in the subsurface layer of 
the MIS structure should be regarded as a superposition of 
three-dimensional potential wells and of maxima of all possi- 
ble amplitudes $A and scales R. The probability of a fluctu- 
ation of scale R and depth $A is proportional to exp[ - $'/4 
ln(d /R )I. Given the band bending ($ = const), the electrons 
fill quasiclassical states in wells of depth larger than $A. In 
each of them is concentrated a charge ( ~ / a ~ ) ~ ' ~ ( $  - $ ) 3 / 2 ~  

proportional to the volume of the well. (Here (u/ 
~ ~ ) ~ / ~ = ; ( r n A  /fi2)312 is the characteristic density). Referring 
this quantity to a unit interface area, i.e., dividing by R ' and 
multiplying by the corresponding probability, we obtain the 
average partial surface charge corresponding to the filling of 
the fluctuation minima of the given type ] $,R ] : 

O($, R, $) = (cs/a2)"&($-$)"R e s p  [-$'/4 111 ( d l R ) ]  . (20) 

It is easily seen that the maxima surface density at a given $, 

Qm ($) = ((sla2) 'I4 ( 3 / 2 )  'I2d e x p  ( - $ - 3 / , ) ,  

which agrees, apart from a numerical multiplier in the pre- 
exponential factor, with the relation (l7), is given by the fluc- 
tuations 

{Qm=$-t3/ , ,  R,=d e x p  (-$/2-3/ ,)  ) , 
whose parameters were determined by the equations 

In these optimal quasiclassical fluctuations ( $, ,R, 1, the 
best related (with respect to the average surface density), at a 
given $, are the probability exp[ - ?/4 In(d /R )I, of their 
existence, which decreases with increasing R, and the num- 
ber R 5, -e  - 3'2$, of the electrons localized in such 
a fluctuation. With increasing $, the dependence of the prob- 
ability of the optimal fluctuation on the scale R becomes ever 
stronger therefore its radius decreases. It is clear that these 
concepts cease to hold as soon as the employed quasiclassical 
expression for the number of electrons in the optimal fluctu- 
ation begins to yield values less than unity, i.e., when (ud 4/ 
a 2 ) 3 ~ 4  exp( - +$) 5 1. This is in fact the cause of the restric- 

tion (19) above. 
At $> ln(d 2fi/a) the optimal fluctuations for Q are 

those with relatively small scale, in which the distance 
between the electron levels is larger than (of the order of) the 
characteristic energy A. In this case the principal role in the 
organization of the surface charge is played by the filling of 
the ground state at the bottom of a potential well of suitable 
depth, and the contribution of the excited states of the deeper 
wells is exponentially small.' Therefore at $ > $th it is neces- 
sary to write for the partial charge Q (R,$) in place of (20) 

Q ( R ,  $1 =R-2 e x p  { - [$+(a l l ; )  R--z]  2 /4  ln ( d l R ) ) ,  

where the term ( U / ~ ) R  -' in the exponential is the electron- 
state localization energy. By varying this expression we ob- 
tain 

dQ --2 - -- [ $ + ( a / ~ z ) R - ~ ] '  + [ ~ $ ( ~ I Y ~ ) R - ' ]  a I --=o. 
dR 4 lr2 ( d / R )  ln(d1R) Ys R2 

(21) 
Hence at 1 < $/$,, < 4 

and the average surface charge is 

Qm ($) = ( l ' z /a)  e x p  (-ij7/211.rh). (22) 

Such a Gaussian expression can be obtained also from the 
quasiclassical integral (14), by using the lower limit of inte- 
gration with respect to z the quantum dimension G/u'/~. 
At $ > 4$,, it follows from (2 1) that 
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Such deep and small-scale fluctuations, however, are opti- optimal fluctuations, which are small-scale clusters of at- 
ma1 only if the potential has a Gaussian distribution, an as- tracting centers that form quasiatomic electron states. In 
sumption valid only in the extremal (and unreaslistic) situa- this case3 
tion ua2) 1. 

In fact, let us verify now, knowing the parameters of the 
optimal fluctuations, whether it was correct to use in our 
calculation the Gaussian asymptotic form (10) for the distri- 
bution function (9). The exact relation obtained by averaging 
(9) over the Poisson distribution of the built-in charge 

expresses the distribution function in terms of the autocorre- 
lators of the potentials of all orders. In our case 

and all the autocorrelators are easily calculated. As a result 
we have 

The Gaussian asymptotic form (1) corresponds to neglect of 
the sum of the higher autocorrelators. To check on the Gaus- 
sian behavior it is necessary to compare the value of this sum 
at the value 

which corresponds to the Gaussian saddle point, with the 
second autocorrelator, i.e., to check on the satisfaction of the 
inequality 

d 9 1 -) 2 1n (d/2z)  (noz ) ' 

Naturally, the most dangerous to the Gaussian hypothesis is 
the quadratic section (22) of the function l n ~ ( $ ) ,  where the 
dominant role is played by relatively deep, $> $,,,, and 
small-scale, z zR ,  z,6/0"~, fluctuations. Substituting 
these values in (23) we obtain 

We have written out this expression in terms of effective 
rydbergs e2/Ka = me4/fi2~2, in which the fluctuation energy 
is A = ( ~ u a ~ ) " ~ .  In the same units, Fig. 2 shows plots of 
ln[a2Q ($)I calculated from Eqs. (17), (22), and (25) for three 
values of the dimensionless parameter ( ~ u a ~ ) " ~  = e- ' ,  
e-2,e-3 and for d /a = 100. 

Even though in all these cases ua2( 1, each of the curves 
shown has a well pronounced section with a linear In Q (@) 
dependence; this section corresponds to multiparticle filling 
of large-scale Gaussian fluctuations. The slope of these sec- 
tions, which are shown by dashed lines, is proportional to 
A -' - ( . r r a~~) - ' /~ .  They are followed by more or less ex- 
tended sections of the Gaussian relation (22), where relative- 
ly small-scale (R = G/ulJ4) ,  but also Gaussian fluctuations 
predominate. This section gives way to the Poisson depen- 
dence (25). We note that the proposed criterion (24) for a 
Gaussian relation indicates fairly well the position of the 
transition region between the relations (22) and (25). In fact, 
the only restriction on the validity of our theory is the condi- 
tion ad 2> 1, violation of which leads to the loss of the linear 
section (17). It  follows also from (23), if we substitute in it the 
parameters z = de - and $, which are responsible for this 
section. 

We note also that whereas the transition from the linear 
relation (17) to the Gaussian (22) takes place for perfectly 
reasonable (and observable) values Q z ( ~ u a ~ ) ' / ~ d a  = 10' I- 
lot2 ~ m - ~ ,  the transition from (22) to the Poisson relation 
takes place at unusually small values Q, which are simply not 
commensurate with the accuracy of the experimental meth- 
ods of determining the value of the surface charge. A de- 
tailed investigation ofsuch deep sections of the function Q (q) 
can hardly make sense. 

Of much greater importance is a generalization of Eq. 
(17) to the region $ < ln(d 2u'14/a312), where the electron 
screening of the fluctuations is important (R, < d ) .  It is 
achieved by replacing in (14) the unscreened variance of the 
fluctuations (6) by expression (S), which takes the screening 
into account. If we next make z in (14) nondimensional with 
the aid of R, rather than d /2, we are left with the same 

We note first of all that in our problem qht, = ln(d 'G/a)  is a tn(a2Q) 

large quantity. At typical parameter values d = lop5, 
a = lo-', and u = 1012 cm-2 we have qhth = (7 to 8)) 1. It is 
precisely to the extent of the validity of this condition that 
the linear section (17) of the function 1nQ ($) is investigated. 
Substituting Ilth = 8 in (24) and tabulating the functionF, we 
obtain the following condition under which the considered -20 

optimal fluctuations are Gaussian 
-30 

$< (3-4) Ipth (naa2) '". 
FIG. 2. Resultant theoretical dependences of the surface charge density of 

At large $ satisfying the opposite inequality, the main the inversion layer on the band bending. The dash-dot lines demarcate the 
contribution to the surface density Q is made by the Poisson linear, Gaussian, and Poisson sections. 
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integrals (15) and (16), but multiplied by R, instead of d /2. 
[We note that at large $we can neglect the unity in the loga- 
rithm of (8).] We therefore obtain in place of (17) taking 
screening into account, 

Hence 

The self-consistent expression (26), which is valid in a rather 
large energy interval 2 < $ < ln(d 2u"4/a3'2) =: $, , describes 
the dependence of the density of the localized surface charge 
on the band bending in the inversion region-in the most 
interesting operating region of the MIS structure. We note 
that our "basic" equation (17) shows in fact no applicability 
region, inasmuch as ( U U ~ ) ' / ~ = :  1 in the situations of practical 
interest. Therefore Eq. (26) simply replaces (1 7) over the en- 
tire interval $ < $,, , as shown in Fig. 2. 

Finally, we consider the influence of the fluctuations on 
the majority carriers-the holes. Despite the fact that the 
average field E, repels them from the interface (we consider 
as before the depletion and inversion regimes) the maxima of 
the fluctuation relief capture and localize the holes on the 
surface just as the minima do the electrons, inasmuch as at 
the vital (of the order of a ( ~ a * ) - " ~ )  distances from the inter- 
face the fluctuating fields are much stronger than the aver- 
age field Ex.  The surface density Qp of the captured holes is 
calculated in the same way as the electron density Q,, with 
the obvious difference that the energy must in this case be 
reckoned down from the top of the valence band. As a result 
we obtain for the hole density Qp expressions similar to (22) 
and (26). 

QP= ( 2 ~ ~ ) - ~ / ~ ( 0 / n ) ~ / a  e x p  [- (E,-$) / 2 ]  (27) 

at E, - $ < ln(d ',b/a, ) and a Gaussian expression of type 
(22) at E, - $ > $,, . Here a, is the Bohr radius of the hole 
and E, = E, - E,. The total bound surface charge is, of 
course, equal to the difference Qp - Q,. 

As a rule experimenters cite the dependences of the der- 
ivative of the surface charge with respect to the Fermi level 
relative to the edges of the allowed bands on the semiconduc- 
tor-insulator interface. We shall also calculate this deriva- 
tive, which has the meaning of the density of the surface 
states. If E, < 2 In (d ',b/a), the regions of applicability of 
expressions (26) and (27) overlap and the Gaussian tails (22) 
can be disregarded. Then 

(28) 
The position of the minimum of N,,($) is 

- I $ ~ = E , / ~ + ~ / , A  In ( m n / m p )  ; (29) 

it is shifted from the center of the forbidden band towards 
the band with lower effective mass. The relation (28), which 
is cited for convenience in dimensional units, is similar to the 

broad U-shaped spectra Nss of real silicon MIS structures. A 
detailed comparison with the experimental data, which will 
be made in the last section, will show that the function (28) is 
close to them not only qualitatively but also quantitatively. 

3. CONDUCTIVITY 

Assuming the possible energy dependence of the mobil- 
ity to be weak, we refer to the conductivity as the density of 
electrons with energies higher than the percolation level (the 
average surface potential qS), multiplied by a certain con- 
stant, the effective mobility. In this formulation, the prob- 
lem of the dependence of the surface conductivity on the 
temperature and the total density of the electrons reduces 
again to an investigation of integrals of the type (14). 

We consider first the nondegenerate situation corre- 
sponding to finite temperatures and not too high a surface 
density of the electrons, when the Fermi level lies below the 
percolation level G,, i.e., G, - p = $ > 0. The density of the 
localized electrons is then determined by the Fermi filling of 
the deep fluctuations [Eq. (26) or (22)], and the density of the 
delocalized electrons having an energy higher than Gs is giv- 
en by the Boltzmann tail of the distribution function: 

Whence 

5, ( 2 / Y ' )  [ (T,-cp) /T I"', cp<F., 
nd (cp, p) =n, exp - - ( T I {  exp[- ( ( p - ~ . ) / T l ,  cp>T8, 

where n, = 2( rn~ /27Tf i~ )~ /~  is the effective state density in 
the conduction band. Averaging (30) over the distribution 
function (10) and integrating with respect to z, we obtain 

The temperature dependence of the conductivity is set 
by exp( - $/T), and the curly brackets with the integral de- 
termine the effective localization depth, at the interface, of 
the electrons delocalized in directions parallel to this inter- 
face. This length, multiplied by n,, gives the effective surface 
density of the delocalized electron states. Just as before, q, in 
(32) is dimensionless, and the average normal field 

has the dimension of reciprocal length, while kln(1 + R f /z2) 
= u(z) is the dimensionless variance of the fluctuations with 
allowance for the screening (8). In the considered nondegen- 
erate situation the density of the mobile carriers is much less 
than that of the localized ones. In the calculation of (3 1) there 
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is therefore no need for self-consistency, and it is necessary 
to substitute in g, and R, the density (26) of the delocalized 
 electron^.^ In contrast to (14)-(16) the integrals (31) depend 
significantly on the average field g, and diverge as 69, --+ 0. 
At T< 1 the major role in (3 1) is assumed by the first integral, 
which takes into account electrons with energies higher than 
G, and located in those subsurface regions where 9, < G,, i.e., 
just where the localized electrons are concentrated. Making 
the change of variables e, -+ - e, and z%', = [, this integral 
takes the form 

The integral I ,  depends weakly (logarithmically) on the pro- 
duct 

R a e =  ( l+e i /& , )  ( I + ? N w I Q , ) ,  

which tends to (1 + E,/E,)- 1 at Q, > 2Nw (when a notice- 
able conductivity can be expected). Here I ,  = (2512/3)1" ($) 
z 2, where 1" ( x )  is a gamma function. The second integral in 
(31), which sums the total density of the electrons in the 
sublayer regions with e, > g,, becomes the principal one at 
T )  1. It tends then to T/g,-the effective thermal thick- 
ness of the inversion layer of an ideal MIS structure, while 
Qd becomes much larger than the bound charge Q, (at D 1 
the electrons can hardly feel the fluctuations). Thus, in the 
low-temperature region T41 of interest to us we have 

the order of the temperature of the average surface poten- 
tial--of the percolation level. Their volume density is Fro- 
portional to the product of the temperature by the square 
root of the character depth A of the ravine. Since the uniform 
field E, raises the average level of the potential relief with 
increasing distance from the interface, the effective length 
A /eEs of such an electron "puddle" is finite. The effective 
surface density of the delocalized electron states is therefore 
proportional to TA 312/e~s.  Their filling is determined by 
the Boltzmann factor exp( - $/T). 

Corresponding to the second integral in (3 1) are elec- 
tron in a narrow (once T4A )belt near the edge of this puddle. 
Its relative narrowness T/A is offset by its length A /eE,, so 
that the characteristics A and R, of the fluctuation relief are 
no longer present in the resultant surface density. This 
charge component (31) prevails at 7bA, when the thermal 
length T/eE, is much larger than the fluctuation length A / 
eE,. In this case the individual electron puddles nierge also 
in the interior of the semiconductor, so that only crests of 
individual ridges project from the common electron sea near 
the surface. To prevent misunderstanding, we note that at 
low temperatures the puddles in question are interconnected 
by saddle regions at the interface-after all, it is precisely 
from this condition that we have determined the percolation 
level. 

We consider now the degenerate situation that arises at 
TN 1, when the electron density Q exceeds the threshold val- 
ue 

This is the so-called maximum localized charge, defined by 
the following condition: the Fermi level is equal to the perco- 
lation level. Its value turned out to be somewhat smaller than 
the pre-exponential factor of (26), and the minimum screen- 
ing radius corresponding to Q ;" is 

The character of the spatial distribution of the delocalized 
electrons in the subsurface region of the MIS structure is 
shown in Fig. 3, where the "cross section" of the mean statis- 
tical potential ravine is shown arbitrarily. The conducting 
electrons are concentrated in a layer having a thickness of 

FIG. 3. Schematic picture of the potential relief in the subsurface layer of 
the semiconductor of an MIS structure. 

It is clear that (34) should be approached with some skepti- 
cism in the case n d R  ,")' = 2(n3aa2)314 5 1, when the em- 
ployed concept of nonlinear screening of the fluctuation is 
not valid. 

At a total electron density Q> Q ;" the density of the 
conducting delocalized electrons is Q, = Q - Q ;". General- 
ly speaking, it would be possible here to confine oneself to 
this statement, i.e., dispense with the calculation of the de- 
pendence of Qd on the Gs band bending in the region where 
F, <p (the Fermi level is higher than the percolation level). 
The point is that the average surface potential g, and ac- 
cordingly G, - p = $ are internal parameters of the prob- 
lem, which determine the relation between the localized and 
delocalized charges whose total value is set by the voltage on 
the structure electrode. The measured quantity is the mobile 
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charge Qd, and the task of the theory is to establish the con- 
nection between this mobile charge and the total charge Q. 
At Q < Q ;l, when the Fermi level is below the percolation 
level, we establish this connection from the manner in which 
the two components of the surface charge (mobile and immo- 
bile) depend on 3 [Eqs. (26) and (33)l. In the opposite the 
connection between them is trivial: Qd = Q - Q 7, and at 
first glance the Q&,) dependence at Fs < p is of no particu- 
lar interest. We shall nevertheless find it, primarily to estab- 
lish the character of the spatial distribution of the mobile 
electrons in the subsurface layer of the semiconductor, i.e., 
the structure of the inversion layer. 

To this end, just as in the derivation of {31), we sum ihe 
electrons with energies higher than i s ,  using now a Fermi 
distribution function with T = 0. As a result we obtain again 
the density of the delocalized electrons in the form of a sum 
of two integrals: 

Qd=l(e)%LPa-4 J ,  ' g  
3n nu ln'" ( l +g -2 )  

the first of which takes into account the delocalized elec- 
trons located in those regions of the subsurface layer where 
q, < G,, and the second where q, > i s .  In  (3S), just as in (32), 
Rx %', = 1, and the transverse coordinate c is made nondi- 
mensional relative to the field length %';I. Here - - 
P =  P-Ps .  

Just as in (32), when calculating (35) we can neglect the 
change of the variance of the distribution function with 
changing f .  ~ t i < l  the main contribution to (35) is made by 
the first integral. Approximating in it the expression 

which coincides exactly with the corresponding expression 
for an ideal MIS structure in the case of degeneracy. Adding 
(36) and (37) we get 

We have left out here the second term in the parentheses of 
(36), since at fi< 1, it is smaller than the first, and at fi> 1 the 
charge (37) is larger than both. Just as all the final expression, 
(38) is written in dimensional units. The spatial distribution 
of the delocalized electrons under degeneracy conditions is 
of the same character as in the nondegenerate situation con- 
sidered above. The reader can visualize it qualitiatively by 
using Fig. 3 in which the energy thickness Tis replaced by;. 

4. DISCUSSION OF RESULTS. COMPARISON WITH 
EXPERIMENT 

Surface states. By now a tremendous number of mea- 
surements of the density of surface states in silicon, mainly 
MIS structures, have been reported. Despite the great var- 
iety of the experimental methods employed, the observed N, 
spectra are quite alike. Typical plots of N,($) [in 
~m-~.eV-'] taken from Sze's monograph? are shown in 
Fig. 4. These and other empirical laws can be naturally ex- 
plained within the framework of the theory expounded here. 
We note that Eq. (28), which expresses the entire spectrum of 
the surface states in terms of a single parameter u, the sum- 
mary density of the charged centers on the semiconductor- 
insulator interface, is close also quantitatively to the experi- 
mental results. Indeed, if A is determined from the slopes of 
the exponential sections of the spectra of Fig. 4 at the edges 
of the allowed bands (A, = 0.05, A, = 0.035 eV, which cor- 
responds to o, = 2X 1012 and u, = 1012 cmP2), and (28) is 
then used to calculate the density of states at the minimum of 

(in this case we overestimate it somewhat at large q,, but this 
is of little importance since large q, are suppressed by the 
Gaussian function), we obtain 

The characteristic thickness of the layer occupied by this 
component of the moving charge is %'; I.  ti> 1 the second 
integral in (35) is much larger than the first. Its value can be 
easily estimated by noting that at ;> 1, at the vital distances 
j/%',, the variance ln(1 + c -') is much less than the square 
of the characteristic potential p-i. This enables us to re- 
place in it the distribution function by a S function against 
the background of a smooth density of states (ji - p)3'2. 
Then FIG. 4. Typical spectra of the surface states of silicon MIS  structure^.^ 
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ruv, we obtain N,"'"(l) = 3-10" and N,"'"(2) 
In this calculation we used the values 
m,, = 2m, = mo inasmuch as the 

e W i v e  masses of the density of states are used in (28). Tak- 
ing+iqt~~acq~unt the exponen4ial chara~ter of (28), such an 
a g r ~ f t f ~ ~ ~ f ~ e e n  theory and experiment should be regard- 
ed & good. We note that at these values of A at the center of 
the forbidden band of silicon Eq. (38) is at the borderline of 
i t ~ ~ ~ l i c a b i l i t y  region, since the required inequality pg 
<A ln(d26/a)  is not satisfied (Ed2  =0.55 and . - 
A k(d '~;;,J1~;,0.05-8 = 0.41, .consequently (28) overesti- 
m!@ pcp~cjy&&q;, at the ceoter of the band. At still lower 
A qne , %<..  shoujd < - , <  . , '  gpect at the center of the forbidden band of 
s i l j w  a.q*&~t dip of the density of states, corresponding 
to $ & , s e ~ # . ~ ) , o f  the fwction Q (q), as is indeed observed 
in kig)-g@&&$@ptruct~lres with low surface-state density. 
It +j@pjbi_,ifttmsible to measure N, in the center of the 
bax$d,&tgg&$@@ures,10 and usually one draws there a 
dashed line corresponding to the experimental accuracy (at 
the level of WI'%~Q'-. t9&r 2 . k ~ '  9: 

Thus, the surface states in MIS structures are mainly 
t h r ~ d i - d  potent* wells s t  the interface with the 
ins?&%& T~WI,~FB dw le topatial fluctuations of the density of 
t h e j h v i ! k ~ c k g d  m t w s  in the insulator near the inter- 
f q e ( ~ & m i ~ o p d v ~ .  The cbaracteriati~ dimension 
of k$9e qi'jtip &ctqation potgntial wits with dlowance for 

tiki% 

1 t " ~ ~ ~ f l a ~ h ~ o n e  to [uu~)~" exp(3gkf2/2) electrons. 

cov=Q=Q~ (Vf +Qd(W 
and express the density of the mobile chart Q, in terms of the 
total charge Q. At T<A the mobile charge Q, (Q e - *IZA 

z Q, whence follows a logarithmic dependence of the sur- 
face-conduction activation energy on the total charge (vol- 
tage) 

which is also in quantitative agreement.wi& the experimen- 
tal results cited, for example, in AdkinV re.view.'' Substitut- 
ing (39) in (33) we obtain the of the conductivity of the inver- 
sion layer on the voltage on the transistor junction; 

which is valid at V <  Vth (the voltage Vth is sometimes called 
the threshold of the metallic conduction). This rather wide 
segment (up to several volts according to estimates) can be 
easily observed by replotting the corresponding graphs in log-iog f;&. ' 1 !  : " '. 

In conclusion, a few qualitative ideas concerning the 
surface mobility. At small charges Q < Q ;" (when $ > 0) the 
conductivity of the inversion layer has a clearly pronounced 
percolation character. In this case electrons that are mobile 
in principle and have energies of the order of T above the 
percolation level G, move mainly within the confines of 
three-dimensional potential "bags" of depth A and charac- 
terize dimension R,. Since the area of the saddle regions at 
the interface, that connect them with one another, are (T  /A )2 

times smaller than the total surface of the bag. Consequent- 
ly, the effective mobility determined by the transitions of the 
electron from one bag to another will be suppressed in pro- 
portion to the ratio (T/A )'. This situation will remain in 
force until the total charge Q becomes comparable with the 
quantity Q ;"(l + T/A ), when the Fermi level exceeds the 
percolation level by an amount of the order of the thermal 
energy. With further increase of the charge, ji becomes larg- 
er than T and the effective area of the "necks" joining the 
bags increases. Therefore the effective mobility can increase 
until ji reaches a value of the order of A (Qe2Q ;") and such 
topological restrictions on the conducting trajectories be- 
come insignificant. These qualitative arguments explain, in 
our opinion, the decrease of mobility as the threshold is ap- 
proached from the high energy side, observed in MIS struc- 
tures with the aid of Hall-effect" and other13 methods, as 
well as the noticeable decrease of the mobility on this des- 
cending section when the temperature is lowered. 

'Strictly speaking, the quantity under the logarithm sign in (6) should be 
some effective thickness d that depends on the ratio E ~ / E , ,  but does not 
differ too much from d. We shall not pay attention to this difference, since 
even if d does enter in the final expression, it will do so only under the 
logarithm sign. 

'Except for specially stipulated cases, we use below dimensionless energy 
parameters (normalized to A ), and retain for them the same notation as 
for the dimensional quantities. 

'This expression is derived in the same manner as the Poisson section of 
the density of states in ordinary statistically uniform three-dimensional 
 system^.^^^ We therefore present it here without a detailed discussion. 
Our situation differs only in that the ground statemust be taken here to be 
the first excited state of the three-dimensional quasi-atom, since it is the 
latter which satisfies the boundary condition-zero of the wave function 
on the interface with the insulator. This circumstance accounts also for 
the corresponding factors 2 in the argument of the exponential in (25). 

4The density of the localized electrons will be designated hereafter by Q,. 
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