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The effect of the scattering potential of nonmagnetic or magnetic impurities on the critical super- 
conducting temperature T, is considered for superconductors with partial or total dielectrization 
of the electron spectrum. It  is shown that T, increases with increase of the nonmagnetic impurity 
density, i.e., the Anderson theorem does not hold for such systems. Scattering by magnetic impur- 
ities lowers T,. The decrease, however, is weaker than in ordinary superconductors, owing to the 
presence of a dielectric gap B on the Fermi surface. 
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1. INTRODUCTION 

Immediately after the advent of the Bardeen, Cooper, 
and Schrieffer (BCS) theory of superconductivity of pure iso- 
tropic metals, theoretical studies were initiated of the influ- 
ence of impurity scattering on the critical temperature T, of 
superconductors. It was shown, in particular, that within the 
framework of the isotropic BCS model nonmagnetic impuri- 
ties do not change the value of Tc (the Anderson theorem).' 
At the same time, magnetic impurities, which violate the 
invariance of the system Hamiltonian to time reversal, lead 
to suppression of the supercond~ctivity.~ The Anderson 
theorem is violated also outside the limits of the simplest 
BCS model, i.e., when account is taken of the possible ab- 
sence of translational invariance (the proximity e f f e~ t )~  or in 
the presence of close coupling, when the imp~rity renormal- 
ization of the electron-phonon kernel of the Eliashberg inte- 
gral equation becomes significant. In the latter case, accord- 
ing to Ref. 4, T, should increase with increasing density n of 
the nonmagnetic impurities. There exists, however, a com- 
peting and stronger effect, consisting of the decrease (as a 
result of the "ineffectiveness" of the low-frequency phon- 
ons5) of the phase-space region accessible to electron- 
phonon interaction, and this leads in final analysis to degra- 
dation of T,. There are also fluctuation corrections to Tc 
(generally speaking of arbitrary sign), which depend on the 
carrier mean free path, i.e., on the degree of contamination 
of the sample.6 It  was recently indicated7 that degradation of 
T, is possible on account of quantum interference of the elec- 
tron-electron interaction with the impurity scattering (the 
Al'tshuler-Aronov effects); this possibility was investigated 
in greater detail in Refs. 9 and 10. In addition, nonmagnetic 
impurities influence T, in superconductors having a compli- 
cated Fermi surface (FS)" or in multiband s-d (s-f) met- 
a l~ . '~ ."  Finally, as shown in Refs. 14 and 15, in compounds 
having a fine structure of the density of the electron states 
N ( E )  (such as A 15, Ref. 16) the nonmagnetic impurities 
change the superconducting critical temperature in one di- 
rection or the other because of the smearing of the N (E) 
peaks near the FS. 

All the foregoing causes of violation of the Anderson 

theorem cause T, to decrease with increasing n. [An excep- 
tion is the model situation applicable to low-temperatures 
superconductors, when the Fermi surface is located near the 
minimum of N ( E  ).] At the same time, in experiments on 
bombardment with neutrons and fast ions17-20 and on disor- 
dering of crystalline superconductors,21 as well as on irradia- 
tion of amorphous systems,22 a rise of T, with increasing n is 
observed in addition to a decrease. 

It is shown in the present paper that this phenomenon 
can be explained by starting from the concept of partial die- 
lectrization of the electron spectrum of these states. This 
follows from an aggregate of measurements of the tempera- 
ture dependences of the electronic heat capacity, of the mag- 
netic susceptibility, of the Hall constant, and of the electric 
resistivity in compounds with C 15 structure (Laves pha- 
se~) , '~ . '~A 15 s t r ~ c u r e , ~ ~ ' ~ ~  ternary molybdenum chalcogen- 
ides (Chevral and layered dichalcogenides of 
transition metals.28 The effect of dielectrization on the criti- 
cal parameters of superconductors is well described by the 
models of an isotropic semimetalz9 and of a metal with partly 
dielectrized ~pectrum,'~ in which the FS (or part of it) has 
besides the superconducting gap also a dielectric gap B of 
collective origin. These are precisely the models used below 
to investigate the joint effect of the singularities of the elec- 
tron spectrum and of the scattering potential of the magnetic 
and nonmagnetic impurities on the critical temperature of a 
superconductor. As will be shown below, the simultaneous 
action of these two factors is not additive, so that the results 
are not trivial. In particular, the interference between the 
impurity scattering and the dielectrization effects manifests 
itself in an increase of T, with increasing n.  

The plan of the article is the following. In Sec. 2 we 
derive and solve, on the basis of the Harniltonian of the elec- 
tron-impurity system, the Dyson-Gor'kov equation for the 
matrix Green's function of a superconductor with partial 
dielectrization of the electron spectrum. In Sec. 3 we obtain 
equations for the critical superconducting-transition tem- 
perature in systems with singlet and triplet electron-hole 
pairing, while in Sec. 4 these equations are solved for differ- 
ent limiting cases. The discussion of the results and compari- 
son with experiment are given in Sec. 5. 
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2. BASIC EQUATIONS 

In the absence of impurities, the Hamiltonian of the 
electron system of a metal is of the form ( f i  = 1) 

The Hamiltonian k, of the superconducting electrons is 
described by the expression 

a p i  a6 i j lm P , P ' , ~  

whereaz,, (a, , ,  ) is the creation (annihilation) operator of an 
electron in the ith band, with momentum p and spin projec- 
tion a = f t;gi (p) is the electron energy reckoned from the 
Fermi level, and V-g,,m (p,pr,q) is the matrix element of the 
four-fermion interaction and contains electron-phonon and 
Coulomb contributions: 

Vij, (rn(P, P', q)=V(q)Fq(i, l l ~ ) F - ~ ( j ,  mlp'). 

Here F,(ij(p) is the Block form factor (see e.g., Ref. 3 l), 
which is determined by the transformation properties of the 
single-electron wave functions of the ith and jth bands. The 
impurity Hamiltonian Him, is of the form 

where S, is the spin of the magnetic impurity located at site a 
of the lattice and U(q) is the Fourier component of the ex- 
change interaction of the localized spins. As we neg- 
lect in Eq. (3) the interaction in the system ofthe nonmagne- 
tic impurities. 

The interaction of the conduction electrons with the 
magnetic and nonmagnetic impurities is characterized by 
the Hamiltonian 

Here I (q) and VSO (q) are the Fourier components of the ex- 
change and spin-orbit interactions of the impurity center 
and of the electron, while Wo(q) describes the nonrelativistic 
potential scattering. We note that in view of the smooth de- 
pendence of the Block amplitudes uip (r) on the quasimomen- 
tum p the form factor F, (i jl p) can be regarded as a function 
of only the momentum transfer q. Therefore the quantities 
V,,,,, Ig, V y ,  Wog depend only on q. 

The Dyson-Gor'kov equations for the normal 
G ;@(p,pl,un) and anomalous F;@(p,pr,w, ) Green's function 
of a metal with impurities, corresponding to the Hamilton- 
ian (I), take the form (the functions G ;Dand F ;@are defined 
in accord with Ref. 32) 

x F$ (k, p', on) - (p, k) G: (k, P', on) =O 
m.T.k (7) 

(on= (2n+l)nT,  k s = l ) .  

The normal Br (p ,k )  and anomalous A F(p,k) self-energy 
parts are determined, in the weak-coupling approximation, 
by the self-consistency conditions 

with the quantity 2 ?(p,k) renormalized in account of the 
impurity scattering described by the matrix 

We use hereafter the matrix forms of Eqs. (6) and (7) and 
supplement them with equations for the space- and time- 
inverted functions G and F. Using the symmetry properties 
of these functions and the condition that the matrix (10) be 
Hermitian, we obtain 

= && (p - p') = e: 

The symbol A denotes a matrix in ordinary spin space (CT~,U) 
i~ the isotopic space of the electron bands. The unit matrix 
Eo is the tensor prodyct of the unit matrices from these sub- 
spaces. Finally, E = Eo @Po, whereb, is a unit matrix in two- 
dimensional isotopic electron-hole space.33 
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So far the formalism was quite general in the sense that 
the band structure of the object considered could be arbi- 
trary. We, however, are interested only in those systems 
whose band structures admit of the appearance of a dielec- 
tric gap2  3 of collective nature on that part of the FS where 
the condition g,(p) = - g2(p + Q)re(p)  is satisfied on the 
electron and hole branches of the spectrum.29 On the re- 
maining part of the FS with spectrum g,(~)  there is no degen- 
eracy. Such a models0 is based on Gor'kov's idea24 that the 
electron spectrum is quasi-one-dimensional in compounds 
of the A 15 type and is suitable also for the description of 
Laves  phase^^^.^^ and Chevrel phases.27 The mutual repul- 
sion of the spectrum branches {,(p) and 12(p + Q) in this 
model is the consequence of the Peierls in~tabi l i ty .~~ In addi- 
tion, the dielectrization can be due to exciton pairing29 and 
hybridization of the electron and hole branches on account 
of single-particle interband tran~itions.~' 

Thus, in the model assumed the matrix (p) can be rep- 
resented in the form (we shall omit hereafter the matrix ten- 
sor product symbol e ) 

i.e., the complete electron-band space introduced above is 
split in this case into a direct sum of a two-dimensional and a 
one-dimensional subspace with the aid of the projection op- 
erators (see, e.g., REf. 36): 

The matrix 

is a Pauli matrix in the two-dimensional subspace of the de- 
generate electron bands l l(~) and g2(p). 

Introducing the matrices 

, (p, k) = (f - (f) 
O 1 ,  0 -(f+-<f+)) (13) 

--I 
go (pi k; an )  

=(trianh -~(p)~o16@-k)-;Il(p1k)} A@, k) 

- A+ (P, k) ([ia,.@o + +(PI 601 6 (p - k) + $+ (P, k)) 

(14) 
we rewrite Eq. (1 1) in compact form 

+ Z & ( P ,  k; wn)v(k1 k')g(k',pti 0.1. (15) 
kk' 

5 (13) and (14) account is taken of the renormalization of 
P (p,q) by the electron-impurity interaction 

5 (p, k) =% (p, k) +(^r (p, k) >, 

where ( ) denotes averaging over the possible spin configu- 
rations and positions of the impurity atoms. 

Averaging in (1 5) over the random configurations of the 
scattering centers, we obtain within the framework of a self- 
consistent perturbation t h e ~ r y l ~ . ~ '  

+L(P; a n )  C (G(plk)g(k; an)v(k1p) )i(p; an). 
k 

(16) 
To solve this matrix integral equation it is convenient to 

use the Gor'kov-Rusinov unitary-transformation methods3 

where c?~, bi, and .ii are tetrads of Pauli matrices in spin, 
electron-hole, and band spaces, respectively. The transfor- 
mation properties of Eq. (16) relative to the transformation 
(17) are determined by an appropriate choice of the symmq 
try structur%of the matrices of the order parametersJ and B 
(the matrix 2 can be regarded as real without loss of genera- 
lity): 

- A 

~ = i ( ~ d ~ ~ ? d + ~ ~ d y ~ d ) ~ ~ ,  

The wave vector Q of the resultant charge- and (or) spin- 
density wave is determined by the singularities of the consid- 
ered band structure. The (l2X 12) matrix zero Gren's func- 
tion go(p;on ) can be easily obtained by inverting Eq. (14). 

For a concrete application of the transformation (17) we 
express the scattering matrix b(p,q) in term of 64 basis matri- 
ces (&,CO) e (@Go) @ (F,?,), the projection operators fd and 
h d ,  and the operator 

which connects the degenerate and nondegenerate sections 
of the FS: 

(p, k) =- { [ I *  (p-k) ;o+T~ (p-k) ;t 1 % + l n d  (P-k) ?nd 

x [pk] {[vd80(p-k) ;o+~dq(p-k);i~< 

With the aid of (17), the Dyson Eq. (16) can be represented in 
the form 
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x[U;i(k; o,,) 61 [ 6 + ~ ( k ,  p) 61). (19) 

In analogy ~ i t h  Ref. 33, itis easy to show that in our case the 
expression U +g-'(p;wn ) Ucontains only eight unknown co- 
efficients in the basis matrices of the generalized electron- 
band space. These coefficients are determined in self-consis- 
tent manner from (19). When calculating them we shall 
neglect the renormalization of the dielectric gaps 8, and ZS 
due to the influence of the impurities. Such an approxima- 
tion is justified because we are interested in effects of impuri- 
ty scattering with an energy scale on the order of Tc, whereas 
in real materials, as a rule, we have (Zi, ZS )). Tc (Refs. 23,26, 
27, 38) and are therefore insensitive to the pair-breaking ef- 
fect of impurities with so low a density (see, e.g., Ref. 39). We 
note that in antiferromagnetic super~nductors the inequa- 
lity 8, ) T, is satisfied even when the Nee1 temperature TN is 
of the same order as Tc. Thus, for example, for Gd,,, Mo6S8 
we have TN = 0.95 K and Tc = 1.4 K, while8, estimated by 
various is 320 or 548 K. In the opposite case of 
small 8, and ZS (which are mainly of academic interest) the 
approximation indicated above is also valid if it is recognized 
that XS is determined by single-particle interband transi- 
t i o n ~ ~ ~  but 8, is due not only to the appearance of an elec- 
tronic spin-density wave, but also to itnerband scattering of 
the carriers by the antiferromagnetically ordered impurities. 

3. CRITICAL TEMPERATURE OF SUPERCONDUCTING 
TRANSITION 

We now proceed now to derive the crucial equation of 
the present theory-the integral equation for the critical su- 
perconducting-transition temperature in the presence of im- 
purity scattering. We consider here the case of contact inter- 
action, when Vg,,,,,(q) is independent of q, and use the 
approximation of strong mixing of the states in the different 
sections of the FS,30 so that the matrix elements of the elec- 
tron-electroninteraction satisfy the symmetry conditions 

v.. 11, 11 ..=vji, ji, v{i, jj=vij, ji=vjj, if=vji, ij; 

V. .  , , , t ~ -  . -V. .  , t , n  ..=V.. W , ~ I  ..=V.. ~ t , t i  . ( i # j )  

and are connected by the relation 

The opposite case of weak mixing reduces to the Keldysh- 
Kopaev problem of superconductivity of an isotropic semi- 
metal.29 

The strong mixing results in a single superconducting 
order parameter A =Ad =And for the entire FS.30 From 
Eq. (9), where the role of the superconducting Green's func- 
tion is assumed by the off-diagonal elements of the matrix 
(12), we obtain the self-consistency equation for the complex 
superconducting order parameter A : 

(The primes and double primes mark real and imaginary 
parts.) Here 

Z,, = sgn ~e (GS'+B~~~) '1  (~~~+84,') ', 
Z=sgn Re (a2+  I andl 2)'"/ (QZ+ 1 6 - 6  1 2)'". 

The equations for 2 ", and 2 ",, follow from (22) with the 
substitutions 2 ',+A ", and A ',,+A ",, . 

The relaxation times that enter in (22) and (23) and de- 
scribe the intraband and interband scattering of the carriers 
are of the form (l/rd = 1/r: + I/*) 

Here N, (0) and Nnd (0) are the densities of the electron states 
per spin for the degenerate and nondegenerate sections of the 
FS, respectively, ns0 and n, are densities of the spin-orbit 
and magnetic scatterers, andp, is the Fermi momentum of 
the electrons, which is the same on the entire FS in the as- 
sumed model of a metal with partial dielectrization of the 
electron 

To solve Eq. (20) we must know the character of the 
temperature dependence of the dielectric order parameters 
8, andH,. The temperature dependence of the singlet dielec- 
tric gap Z,, defined in accord with (8), differs from the BCS- 
type dependence BBCS (T) (Ref. 29) in the presence of single- 
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particle interband  transition^^^ and in the appearance at 
T <  T, of a superconducting gap A (T )  in the quasiparticle 
s p e ~ t r u m . ~ ~ . ~ ~  AS a result, the Bs(T) curve becomes smooth- 
er than BBCS (T), especially at low temperatures. At Bs >Tc 
(which is typical of real we have therefore 
Bs =const. As for the triplet dielectric gap B,(Q), it has an 
ambivalent nature, namely, it corresponds to a spin density 
wave in the subsystem of collectivized electrons:' or is in- 
duced [see (lo)] by exchange interaction by antiferromagne- 
tically ordered impurities of transition or rare-earth 

In the first case the dependence of B,(Q) on T is 
similar to theBBCS (T)  dependence, so that the approximate 
equality 8,(Q,T) =H,(Q,O) holds at T=: Tc < TN.  In the case 
of an impurity antiferromagnet we have 2, (Q) =:I,(Q)(s Zp), 
which can be obtained, for example, from molecular-field 
theory. 

We consider hereafter systems with only one dielectric 
order parameter (Bs or 2,). Investigation of the general case 
of coexistence of singlet and triplet dielectric gaps does not 
complicate the problem significantly, but in certain super- 
conductors with degenerate electron spectrum are observed 
either charge density ~ a v e s ~ ~ . ~ ~ , ~ ~ . ~ ~  or spin density 

and not their superposition that describes the 
"excitonic" ferromagnetic phase.42 

Depending on the relation between T and 8, (B,), it is 
convenient to transform the self-consistency equation in dif- 
ferent ways: 

Here B is the singlet dielectric gap Bs at a = 0 and the triplet 
gapB, at a = 1, v = N,,,(0)/Nd(O),w, is the limiting (Debye) 
frequency of the phonons, y = 1.78 1 ... is the Euler constant, 
and T, =2w,yexp{ - l/[Nnd(0)+ Nd(0)]Vj/r is the 
critical superconducting-transition temperature in the ab- 
sence of dielectrization of the electron spectrum and of im- 
purity scattering. 

To obtain an equation for Tc of a partially dielectrized 
superconductor with impurity it is necessary to linearize (24) 
and (25) as T+Tc. 

4. SOLUTION OF EQUATIONS FOR T, 

a) B< Tc. After summing over the discrete frequencies 
on we obtain from (24) 

(26) 
Here 

and $(x) and $'(x) are respectively the di- and trigamma 
functions. In the limiting case when the degenerate dielec- 
trized FS sections vanish (v-+w) we obtain from (26) the 
Abrikosov-Gor'kov classical r e s ~ l t , ~  and Tc is influenced 
only by the magnetic impurity scattering. 

We discuss first the most interesting case of scattering 
by nonmagnetic impurities. We then obtain from (26) and 
(27) 

It follows from (28) that even in the absence of an explicit 
dependence of B on the densities n and n,, of the normal 
impurities, the latter change the value of T,. This violation 
of the Anderson theorem is due entirely to the singularities 
of the ground state of the electron subsystem with degener- 
ate FS sections?9~30'35~40~4' for which a dielectric gap 2 exists 
on the FS besides the superconducting order parameter. The 
anisotropy of the electron spectrum does not play a principal 
role here, since theeffect is preserved also at v = 0 (isotropic 
semimetal). The cause of the influence of the normal scatter- 
ing on T, is in our case the non-invariance of the electron- 
hole pairs to time reversal,43 which affects the cornmugtip 
properties of the total matrix of the order parameters (24 ). 
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Namely,the anticommutator of the matrix (32 ) and of the 2 2nT, '" Z 
matrix W ,  of scattering by nonmagnetic impurities [see + ~ x P ( - ~ ) [  (1-1 (T) + 2 a T ]  

(18)] becomes different from zero, in contrpt to the :pure" 
(2 = 0) singlet superconductivity, when W ,  and A anti- =In  I",';" -- I+&[,-- 
commute, so that T, is independent of n (Ref. 1). 

Within the limits of weak (T, T, >I )  and strong + 1 

( T ~  Tc 4 1) scattering, it follows from (28) that 

-75 ( 3 )  ( 2 a + l )  Z2 55 (4)  In the case of partial dielectrization (v#O), with exponential 
T,-T=O- -1 - m & ] ( ~ d T c ~ l )  accuracy in terms of the parameter 8 /Tc, in the limits of 
-- I 8 n z ( v + l )  Tco- 

T ,o  x ( 2 a + l )  Z2td weak ( T  2 Tc > 1) and strong (7% T, < 1) scattering by mag- 

- 3 (v+ I )  T ,  
(tdTc< 11, (29) netic impurities (but 722) 1 and ~ 2 ~ )  I), it follows from (32) 

that 

where f (x) is the Riemann zeta function. n (3-a) l+  1  
In the absence of any scattering processes whatever * - +- --- 

4T. rnde' 8 i v  [ z ~ ~ "  1 12(4afZ)Zzv  
( T ~ - + w )  expression (29) reduces to the known result for su- 5 nZ 1  (I-a) (3 -a )  
perconductors with partial dielectrization of the electron X - - --- 7)' 32v2 [ 4Zz ( rd tdex 
spectrum.35 On the other hand, an increase in the density of 
the nonmagnetic impurities or defects (finite T ~ )  leads to an - 
increase of T,, but T, can never exceed T, . Thus, impurity 
scattering weakens the influence of the dielectric gap 2 on 
the critical temperature. At T, T, 4 1 a new cancellation of 
the contributions from the dielectrization and from the scat- 
tering processes to the single-particle density of states takes 
place, so that T,cT,. In other words, destructive interfer- 
ence takes place between the two factors that alter T,: the 
dielectrization of the electron spectrum, and the scattering 
impurity potential. This interference is similar in character 
to the mutual relation between electron-electron correla- 
tions and elastic scattering by impurities in disordered met- 
als (the Al'tshuler-Amov effect).' 

We consider now, in the model with partial dielectriza- 
tion of the electron spectrum, a superconductor with mag- 
netic impurities. In this case we obtain from (26) and (27) 

nT,o ( Z n d e x )  ( v I ( v + L ) I  ex I l / ( v + l J  i 

x {ln I ( ~ d  ) 
2Y I 

(34) 
where T,*=T,(lrT,/yZ )'Iv is the critical temperature of a 
metal with partial dielectrization of the electron spectrum in 
the absence of i m p u r i t i e ~ . ~ , ~ ~  From (33) and (34) it can be 
seen that just as in the limit of small 8 ,  the Anderson 
theorem is violated and the scattering by nonmagnetic and 
spin-orbit impurities (defects) leads to a rise of T,. We note 
that the suppression of T, on account of incoherent scatter- 
ing of the Cooper pairs made up by the carriers from degen- 
erate sections of the FS is weakened in the ratio2 /Tc . From 
(34) follows also a linear increase, with increasing density n 
of the nonmagnetic scattering centers, of the critical magnet- 
ic-impurity density n>t which T, vanishes. 

For an isotropic ~ e m i m e t a l ~ ~  (v = 0) Eq. (32) leads to the 
following expression for T, . 

1 1 1 5  -I  

In the limit V+W the expressions (30) and (3 1) reduce to the + 
corresponding results of Abrikosov and Gor'kov.* 12Zz(4a+l )  ( $  ' 

b) 8>Tc.  For this relation between the system param- (35) 

eters we start from Eq. (25), in the right-hand side of which Z<Zo - 
t d P X  

the summation over w, can be replaced by integration, since 
the main contribution is made by terms with large n. Equa- I 1  1 .  5 
tion (25) is then reduced to the form (4x4-I)"? ($ -7) ( T - 7 )  
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It can be seen from (36) that the nonmagnetic impurities 
increase the critical value of the dielectric gap PC, at which 
the superconductivity of an excitonic dielectric is completely 
suppressed (cf. Ref. 44). 

5. DISCUSSION OF RESULTS 

The main conclusion of the present paper is that the 
critical temperature of a superconductor in which there ex- 
ists on the FS, besides the superconducting gap A, a singlet 
or triplet dielectric gaps,  is sensitive to the scattering poten- 
tial of the nonmagnetic impurities (defects). At any relation 
between P and T,, an increase of the density n of the non- 
magnetic scatterer leads to an increase of Tc. This effect is 
not a trivial consequence of the breakup of the electron-hole 
pairs in the Coulomb field of the impurity via the Zittartz 
mechanism.39 The cause of the violation of the Anderson 
theorem,' i.e., of the dependence of Tc on n, is that the single- 
particle states that make up the Cooper pairs are superposi- 
tions of electrons and holes, so that the components of a 
Cooper pair are no longer interconnected by the simple oper- 
ation of the time reversal. We point out incidentally the erro- 
neous conclusion of Ref. 45, namely violation of the Ander- 
son theorem for an antiferromagnetic superconductor, 
accompanied by a decrease of Tc with increasing n. The re- 
sult of Ref. 45 is due to the use of an incorrect self-consisten- 
cy equation obtained in the same reference for the supercon- 
ducting order parameter. 

When comparing the present theory with experiment it 
must be borne in mind that compounds of type A 15, C 15, 
and Chevrel phases, which exhibit a structural phase transi- 
tion and (or) dielectrization of the electron s p e c t r ~ m , ' ~ . ~ ' - ~ ~  
have complicated band structures. As a result, introduction 
of even a small degree of disorder changes the structure sub- 
stantially, and with it also Tc. The degradation of Tc because 
of such a distortion of the electron structure is considered in 
detail in Refs. 14 and 15. In experiments on radiation dam- 
age of superconductors with unstable crystal lattice, how- 
ever, in a number of cases the degradataion of Tc gives way 
to growth and saturation. This is observed, e.g., in ion-bom- 
barded Nb,Ge and Nb,Sn (Refs. 15 and 17). Moreover, the 
low-temperature superconductors Mo,Ge and Mo,Si with 
A 15 structure are characterized by an appreciable increase 
of T, after i r r ad i a t i~n . ' ~ ,~~  A similar picture is observed in 
the irradiated amorphous superconductors Nb7,Ge2, and 
Nb,,Si2, (Ref. 22), whose negative temperature coefficient of 
resistivity above Tc points to the presence of dielectrization. 
As for the superconducting Laves phases (HfV,and ZrV,), 
which have an increased radiative endurance to changes of 
T,,46 lowering of the degree of atomic order in them leads to 
a growth of Tc (Ref. 21). The aggregate of the experimental 
data reported above agrees well with the T,(n) dependence 
obtained in the present paper. 

On the other hand, the dependence of T, on the density 
of the magnetic impurities does not differ qualitatively from 
the classical dependence of Abrikosov and Gor'kov, al- 
though the adverse influence of magnetic scattering on the 
superconductivity becomes weakened for dielectricized sec- 
tions of the Fermi surface. This phenomenon is similar in its 

nature to the increase of the paramagnetic limit for systems 
with total or partial dielectrization of the electron spec- 
t r ~ m . ~ ~  

In conclusion, we thank M. A. Krivoglaz for a discus- 
sion of the results and for helpful advice. 
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