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The localization of electrons on defects that produce resonant (virtual) energy levels near the 
boundaries of the forbidden band of semiconducting crystals is considered. It is shown that such a 
defect, without binding each canier separately, is capable of localizing an electron-hole pair 
(exciton). The wave functions and the binding energy of these localized excitons are obtained and 
their optieal characteristics are calculated. 

PACS numbers: 7 1.35. + z, 7 1.50. + t 

Point defects in semiconducting crystals, such as iso- 
electronic impurities, closely-located donor-acceptor pairs, 
etc. produce short-range fields that influence the motion of 
the electrons and holes.' Despite the small effective radius ro 
of these fields (ro is equal to several lattice constants), their 
"power" can be sufficient to produce impurity levels in a 
forbidden band. If, however, no carrier localization takes 
place on the defects, then the short-range potential fields are 
centers of scattering of electrons and holes. Such scattering 
becomes resonant when the energies of the scattered parti- 
cles are i.e., the quasimomenta k,, of the electrons and 
holes satisfy the condition k,, ro< 1. It can be said in this case 
that the defect produces a resonant (virtual) energy level in 
the corresponding band.2 It is established in the present pa- 
per that resonant scattering can be the cause of exciton local- 
ization on defects that produce short-range fields. The reso- 
nant scattering of an electron contained in an exciton leads 
to a substantial increase of the electron density near the de- 
fects, and it is this which causes the effective attraction of the 
exciton hole to the defect. The hole, held near the defect by 
the produced effective protential, holds in turn the electron 
via the Coulomb field. Thus, the exciton becomes localized 
as a unit. The electrons and holes cannot be trapped sepa- 
rately by the defect and only carriers bound into an exciton 
pair can be localized. For such localized excitons, analytic 
expressions are obtained for the wave functions and for the 
binding energy, and the optical characteristics are calculat- 
ed. 

We consider a situation typical of isoelectronic impuri- 
ties, when a point defect influences the motion of only one of 
the carrier, e.g., the electron. To describe the short-range 
field of the defect we shall use the zero-radius potential ap- 
proximation3s4: the influence of the field reduces to specify- 
ing the boundary conditions for the wave function of the 
electron near the point defect. This approximation is justi- 
fied, since the characteristic values of the electron quasimo- 
mentum in the exciton problem are k, - l/aB while k, 
ro- rda, < ](a, is the Bohr radius of the exciton). The equa- 
tion for finding the wave function Y (r,,r,) of the electron- 
hole pair in the presence of a zero-radius potential produced 
by the defect is of the form3v4 

With the boundary condition 

where re,, are the coordinates of the electron and the hole, 
measured from the impurity center, x is the static dielectric 
constant, L is the scattering length of the electron by the 
defect, and me,, are the effective masses of the corresponding 
carriers. If L > 0, bound states of the electron on the defect 
are possible, with a binding energy - f?/2meL 2. We, how- 
ever, are interested in the case of negative scattering lengths 
L < 0, when the defect is incapable of trapping an electron. 
The perturbation it produces in the bottom of the conduc- 
tion band leads to resonant scattering of free electrons, and 
the cross section of this scattering is2 

a=4nL2/ (l+ke2L". 
In a situation typical of semiconducting crystals, the effec- 
tive mass of the hole noticeably exceeds the electrons mass: 
m, ,me. This makes it possible, when solving Eq. (I), to use 
the adiabatic approximation, according to which Y can be 
represented in the form 

'p (re, rh) =X (rh) 9 (re, A )  9 (3) 

where p(r,,r,) is the wave function of the electron in the 
Coulomb field of an immobile hole, ~ ( r ,  ) is the wave func- 
tion of an adiabatically slowly moving hole. The boundary 
conditions for the electron wave function are obtained by 
substituting (3) in (2): 

We note that the wave function x (r,) has no singularities as 
r, 4, since the hole does not interact directly with the de- 
fect. Leaving out of (1) terms that are small in m,/m, < 1, we 
have an equation for determining p: 
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where ~ ( r ,  ) is the energy of the electron in the Coulomb field 
of a hole in a zero-radius potential and depends parametri- 
cally on r,. The quantity ~ ( r , )  plays the role of a potential 
energy in the equation for the wave function of the hole: 

Thus, to describe the motion of the exciton mass center, 
whose coordinates coincide with r,, it is necessary first of all 
to find ~ ( r ,  ). 

If the electron-hole pair is infinitely far from the impu- 
rity center, the ground state of the pair is the ground state of 
exciton 

(rh) +Eo=-EB=-AZ/2meaBz as rh+rn. 

The calculation of ~ ( r , )  reduces to finding the shift of the 
energy of the excitonic level in the presence of a zero-radius 
potential. The solution of (5) is the Coulomb Green's func- 
tion 

q=const G( Ire-rhl, rh, E) ,  

the explicit form of which was obtained in Ref. 5. Substitu- 
tion of this solution in the boundary conditions (4) yields a 
transcendental equation for the energy spectrum of the sys- 
tem consisting of the exciton and the zero-radius potential, 
at arbitrary parameters L and r, of the problem. The case 
considered by us, that of small scattering lenghts IL I due, 
makes it possible to simplify substantially the procedure of 
finding the electron energy ~ ( r , ) .  Thus, the correction to the 
energy of the ground state of the exciton can be obtained by 
formally regarding the right-hand side of Eq. (5) as a pertur- 
bation that is small in IL I/a,(l (Ref. 4): 

E ( h )  =Eo+U(rh), (7) 

- r l m ~  U(rh) =2nL ( AZ/m,) I cpo (rh) 1 ', cp, (r) =e (nu;) -", (8) 

where po(r) is the wave function of the relative motion of the 
free exciton and r = re - r,. Substituting (7) in the mass- 
center equation of motion we obtain 

where I = IE - EoI is the absolute value of the binding ener- 
gy of the exciton mass center. Thus, resonant scattering of an 
electron by a defect leads to the appearance of an effective 
potential U(rh ) for the hole. The potential U (r, ) (8) is known 
in the theory of atomic collisions as the potential of exchange 
interaction (electron exchange) between the atomic parti- 
cles" and can be both binding (attracting) and anti-binding 
(repelling).4 In the case L > 0, when the defect can produce a 
bound state with an isolated electron, the potential U(r,) 
> 0. An unusual situation is created: the defect that localizes 
the electron repels the exciton as a unit. This singularity in 
the behavior of U can be explained by recognizing that at 

L > 0 the defect is capable of capturing an electron-hole pair. 
Such a capture, however, must be accompanied by destruc- 
tion of the Mott exciton. The ground state of the system is in 
this case a state in which: 

a) the electron ocupies a real "deep" level produced by 
the defect (fi2/2m,L 2#E,), and its wave function is localized 
at distances -L(a, from the impurity center; 

b) the electron attracts via the Coulomb interaction a 
hole whose wave function is also sufficiently strongly local- 
ized near the impurity center. 

States of this type were investigated in Refs. 1 and 6. 
Thus, the motion of the exciton as a whole in the field of a 
defect at L > 0 constitutes an excited states of the system, 
and the exchange interaction of the exciton with the defect is 
an antibinding (repelling). At L <O, when the defect pro- 
duces in the conduction band a virtual level, U (r, ) is an at- 
traction potential. 

Solving in standard manner Eq. (9) with an effective 
attraction potential U (r,, )(L < 0), we obtain the following 
equation for the energy spectrum of the exciton mass-center 
motion of: 

mh ILI '". v=[mh I I'", 
J~(B)=O: ~ = 2 [ ~ - ~ ]  , -- 

m, EB 

where J,, is a Bessel function of order v. The normalized have 
functions x (r, ) then take the form 

x (rh) =NJV ($f?-rJaB) /rhr (I1) 

where N is a normalization factor, equal to 

The solution of Eq. (10) for the binding energy of the mass 
center was obtained with the aid of the tables of the roots of 
the Bessel functions. The quantity I is determined by the 
value of the dimensionless parameter P, and Fig. 1 shows a 
plot of I = I )(curve 1) for the ground state of the motion of 
the mass center. Using the property of the roots of the Bessel 
functions, we can conclude that localization of an exciton on 
a point defect is possible only at localization-parameter val- 
ues P)Po = 2.4. At P <Po the "power" of the produced ef- 

FIG. 1. Dependence of the binding energy of the mass center I@? )/I,,,,, on 
the value of the localization parameter B = 2[(m,/m,)(/L //a,)] ' I 2  

(curve 1)  and the Pp) dependence calculated from formula (21) (curve 2). 
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fective potential U (r,) is insufficient to hold the hole near the cp(rhr r , )= (na&)- 'h [ l+O( lLI faB) ] .  (19) 
defect, and no localization takes place. The maximum mass- 
center binding energy I is reached oo (rn, ). In Substituting ( ' ') and ( ' 9, ( ' 7), we obtain a 

this case, according to Ref. 7, v = fl [ l  - 0 Gg -'I3)] and for W: 

Z=Zmax [l-0 (2) "1 , W=8Bv3P (fl) , (20) 

The result (13) has a clear physical meaning: the binding 
energy I cannot exceed the maximum "depth" of the poten- 
tial well I U (r,)l,,,, which is in fact equal to 4(IL I/a,)E, 
[Eq. (a)]. Thus, I,,, determines the scale of the variation of 
the binding energy of the mass center of the exciton. In this 
case, in the entire interval of variation of the localization 
parameter fl, the energy I is substantially less than the Bohr 
energy of the exciton: 

(21) 
where v = vGg) are the roots of Eq. (10). The dependence 
P = P Gg ), calculated from Eq. (2 I), is shown in Fig. 1 (curve 
2). For a binding energy I located in the region of the critical 
value of the localization parameter fl-+flo, when 
v = [(m, /me)(I /E,)] 'I2< 1, the formula for Wassumes the 
simplest form: P Gg )-+ 1 as fl+, and 

It  can be shown that as fl+m the wave function of the hole This behavior of the radiative-recombination probability is 
for such a weakly bound exciton (I<EB )is nevertheless local- typical of bound excitons whose mass-center wave-function 
ized in a smaller region near the defect, whose dimensions dimensions greatly exceed the dimensions of the exciton it- 
a r e a ~ - a , / f l ' ~ ~ ( a ~ .  self (a, -a,/v>a,): Wa  Y-' cc I -312 (Ref. a).. The absorp- 

Of particular interest is the behavior of the wave func- tion coefficient a(w) of the optical radiation with formation 
tionx (r, ) and of the binding energy I Gg ) near a critical value of excitons bound to a resonantly scattering defect is 
of the localization parameter fl-+flw Using the asymptotic 64nZez 
form of the Bessel functions as v-4  IS-$,), we have from a ( ~ ) = -  

mo2ncQ 
v-'P(p) I <cleplv)Iz6(ho-AQ). (23) 

(11) 
1 1 ~  e - ~ r h I a ~  

x (r.1 = (2) - (1 - e-cr~"a~), (14) 
where e is the polarization vector of the absorbed light. In 

TI ,  deriving (23), the width of the exciton absorption lines was 
v=l iz (Po)  Po(B-Fo) ~ 0 . 6 5  (P-Pn), ( 15) assumed infinitely small. 

The formulas obtained by us for the effective potential 
I LI 

I(b) =~-EB~IV(BO) (p-Po) 2~0.073zma.(p-$~) ', U(r,) are valid only when the shift of the exciton energy 
as (I6) levels is small. Strictly speaking, as r h 4 ,  the use of the zero- 

where JI(/3,)z0.52. The formula (16) obtained by us shows 
that near the critical values of the exciton-localization pa- 
rameter of the binding energy of the exciton mass center to 
the defects depends quadratically on Gg -Po), and this is a 
characteristic feature of the parametric behavior of weakly 
bound states.' 

Let us calculate the optical characteristics of the con- 
sidered localized exciton, namely, the probability Wof their 
radiative recombination and the absorption coefficient a(o) 
of the radiation with formation of excitons that are bound on 
short-range defects. For direct-band semiconductors, calcu- 
lations led to the following expression for W (Ref. 8): 

4ezn0 Be- 1 
3AmoZcS I<cl~lv)l" 0=-[E,-EB-I], (18) 

A 

where 0 is the frequency of the recombination photon, E, is 
the width of the forbidden band, m, is the mass of the free 
electron, n is the refractive index, and (cl plu) is the optical 
matrix element of the interband transition. The relative-mo- 
tion wave function q(r,,r,) agrees at re = r,, apart from 
terms that are small in IL I/a, ( 1, with the wave function of 
the relative motion in the free exciton: 

radius potential for a short-range field of a defect results in 
the electron falling on the Coulomb center: ~ ( r ,  ) a lnr, . An 
analysis of the exact equation for finding the spectrum of the 
exciton + zero-radius potential system shows that the ener- 
gy shift of the exciton levels becomes noticable (2 EB) when 
r, 5 A = a,exp( - a,/l L I). It is clear that in the case 
IL I (a, considered by us the value ofA does not exceed the 
lattice constant (e.g., A - 7 X a, already at IL 1 = (1/ 
5)a,). Therefore, the formulas obtained on the basis of the 
model of the zero-radius potential describe correctly the 
shift of the exciton energy levels in the entire real interval of 
variation of r, . In a special investigation of the case r, = 0, 
when the hole for some reason is located directly on the de- 
fect, the potential of a point defect should be more readily 
represented in the form of a well of small but finite width, 
over the dimensions of which the Coulomb interaction 
between the electron and the hole becomes cut off. As shown 
by Zel'do~ich,~ the energy shift of the exciton levels is in this 
case also described by expression (8). 

In conclusion, let us formulate the main features of the 
process of localization of excitons on defects that produce 
resonant levels. 

1. A defect that produces resonant levels without bind- 
ing the camers separately is capable of localizing an elec- 
tron-hole pair - an exciton. Processes of this kind were ex- 
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perimentally observed for isoelectronic impurities." In Ref. 
6, a variational method was used to calculate the binding 
energy of an exciton to an isoelectronic impurity, and the 
numerical results of the calculation confirmed the possibil- 
ity of the localization considered above (we note that in Ref. 
6 the choice of the variational parameters for the region close 
to the exciton localization threshold corresponded to large 
values of the scattering length, IL I )a, .) 

2. The possibility of localization and the binding energy 
of the mass center of the exciton are determined by the value 
of dimensionless parameter (P = 2 [ (m, /m, ) ( lL  (a,)] 'IZ. 

Capture of the exciton by a defect is possible only at values 
P>P0=: 2.4. 

3. An exciton localized in such a defect is always weakly 
coupled to it: I(E,.  The characteristic dimension of the 
wave function of the mass center is determined by the quan- 
tity fl: as @-+a, we have a, -a,/P ' I 3 ,  while for the critical 
values P-+flo we obtain a, -a,/(P -Po). 

4. Excitons localized on resonant levels can make a no- 
ticeable contribution to the absorption and to optical lumi- 
nescence of semiconducting crystals. 

An isoelectronic defect capable of producing resonant 
levels can be a donor-acceptor pair with small distance 
between the impurity atoms (distance on the order of the 
lattice constant). Such resonant levels, by influencing on the 
motion of the electron-hole pair--of the intermediate exci- 
ton,''--can substantially increase the probability of the "in- 
ter-impurity" radiative recombination. 

The case (L  I (a, considered in this paper make it possi- 
ble to obtain simple analytic expressions for the physical 
quantities of interest to us. When ascertaining the possibility 
of localization of excitons in the other limiting case (L I ,aB 
(the resonant level practically coincides with the position of 
the conduction-band boundary), numerical calculations are 
necessary. 
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