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The contribution made to the muon spin precession frequency in normal metals by the muon 
interaction with the magnetic moments of the nuclei is calculated. The relative frequency shift 
depends on the crystal orientation and can be of the order loe2 to lop5. The effect considered 
uncovers a possibility of directly determining practically all the normal-metal parameters that are 
obtained by the "traditional" muon technique from the relaxation rate. It permits identification 
of the type of pore in which the muon was stopped and measurement of the distortion of the 
crystal cell by the muon, of the rate of muon diffusion, of quadrupole interactions, and others. The 
effect must be taken into account also in measurements of the Knight shift for muons. 

PACS numbers: 76.90. + d, 07.58. + g 

The accuracy of precision measurements of the muon 
spin precession frequency in metals has reached 

and the possibility of improving it is far from ex- 
hausted. Even now, the Knight shift for the muon, 

(Ref. I), is reliably measured. The observable muon 
precession frequency in an external field B, with allowance 
for the Knight shift, is usually defined as 

mP=yll(l+K) I <B) 1 .  (1) 

Here y, = 8.5X lo4 sec-'-G-' is the gyromagnetic ratio of 
the muon, K is the Knight-shift constant, and (B) is the 
macroscopic field in the metal. If there is no demagnetizing 
factor, the average macroscopic field in the sample is 
(B) = (1 + 4n;y )B. The modulus of the magnetic suscepti- 
bility x for normal metals is of the order of (0.1-5) X 
(B) can accordingly differ from B in the fifth significant 
figure. 

Following the standard terminology, we shall refer 
hereafter to the precession frequency shift Aw as the differ- 
ence between the observed frequency w, and the precession 
frequency w, = y, 1 (B) I in the macroscopic field. It will be 
shown that the Knight-shift constant K can be calculated 
with the aid of (1) only when the external field is strong 
( B z  3-5 kG). In medium and weak fields the frequency shift 
is due mainly to interaction of the magnetic moment of the 
muon with the stochastic magnetic fields of the sample nu- 
clei. 

Thus, 

Am=Gmdip+6~K , 
where Sw,,, and 6wK are corrections connected respectively 
with the dipole fields of the nuclei and with the Knight shift. 
The appearance of 6wdlP is in full analogy with the change, 
well known in NMR, of the level-splitting energy in an exter- 
nal field, a change due to the nonsecular part of the interac- 
tion operator of the magnetic moments ofthe sample nucleL2 

We consider a nondiffusing muon stopped in some crys- 
tal pore. The Hamiltonian of the dipole interaction between 
the magnetic moment of the muon and the magnetic mo- 
ments of the nuclei is of the form 

As a result, each muon turns out to be in a local magnetic 
field 

Here S, and I are the spin operators of the muon and of the 
nucleus, y, andp = fiy, I are the gyromagnetic ratio and the 
magnetic moment of the sample nuclei, rj is the vector join- 
ing the muon with thej-th nucleus, and n, = r j / r j .  The sum- 
mation is over all the lattice nuclei. 

The dipole field b, obviously, varies randomly from 
point to point. As a result, muons stopped at different points 
precess at different frequencies; this leads to relaxation 
(damping of the amplitude) of the observable polarization of 
the muon ensemble. 

If the external field is strong (Bsb ), the scatter of the 
precession frequency is determined mainly by the projection 
b, of the local field on the direction of the external field. 
Further, the magnetic moments of the nuclei obviously also 
precess in the external field, and if the condition y, B s  y, b is 
satisfied (the nuclei precess rapidly) the muon magnetic mo- 
ment does not notice the rapidly oscillating components of 
the local field b. The depolarization is then determined by 
the static part b, ,, of the component b,. We note also that 
rapid oscillations of the local field can be caused by interac- 
tion of the nuclear quadrupole moments with the muon elec- 
tric field gradient. 

Since the nuclear magnetization in normal metals is al- 
most always vanishingly small, the average observable muon 
precession frequency is determined by Eq. (1) if the local- 
field components transverse to the external field are neglect- 
ed. It can be easily seen, however, that these components 
must be taken into account in precision measurements. In- 
deed the precession frequency of an individual muon is equal 
to 

m=y,l( l+K) (B)+b,,l. (4) 

The observable frequency w, is the result of averaging over 
the muon ensemble 

0 , = ( 0 ) ~  ( l+K)  oo+i12y ,~oo-L((  b , Z , t ) + ( ~ t  St ) ) .  

It can be seen that allowance for the transverse components 
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shifts the precession frequency by the amount 

We shall illustrate the mechanism that produces the 
frequency shift using an example in which the dipole field 
has a normal distribution. For the polarization components 
perpendicular to the external field we have 

where P + = Px + iP,, and o is defined by Eq. (4). Expand- 
ing o in powers of the ratio b, /B up to the quadratic terms 
inclusive and integrating, we find 

Since we have neglected terms of order (b,, /B )3 in the 
argument of the exponential, Eq. (6) is valid under the condi- 
tion mot (b,,/B )34 1. If the more stringent inequality 
Sodip t< 1 is satisfied, the radical in (6) can be approximately 
replaced by exp(iSwdip t ). The concept of the dipole shift of 
the precession frequency is thus really applicable for times 
t<So&,'. In normal metals the modulus of the dipole field 
does not exceed 5-7 G. We then obtain from (5) the estimate 

where T/, ~ 2 . 2  psec is the muon lifetime. In experiment, the 
observation time is limited to several times 7, (realistically, 
5-10psec). Therefore Eq. (5) can at any rate be used at B 2 50 
G. In such fields the precession frequency shift can reach 
1%, which is substantially higher than the sensitivity thresh- 
old of the experiment. 

As seen from (6), the depolarization rate of nondiffusing 
muons is determined by the parameter 

Comparison with Eq. (5) shows that the frequency shift con- 
tains practically the same information on the properties of 
matter as 2. At the same time, the frequency is determined 
with an accuracy higher by several orders than that of the 
measured relaxation rate. The dipole frequency shift is 
therefore of considerable interest by itself. 

We proceed now to calculate Sodip. We consider first 
nuclei with spin I  = 4, when there are no quadrupole interac- 
tions between the nuclei and the electric field gradients. 
From (3) we have for the static part of the dipole field 

We substitute these expressions in (5) and average, with 
account taken of the relations 

pj.=fir,fjr, <fjzZj.,)=i/3Z (Z+l)  tijj, 

(we assume for simplicity that the spins of all the nuclei are 

identical). As a result we arrive at the equation 

For metals with crystal lattice of cubic symmetry, it is 
easy to determine the explicit form of the angular depen- 
dence of the frequency shift: 

60 d i p / ~ o = ' / 4  (ftrvln) ' I ( I f  i )  Oo-"[al+az (k t4fkz4+k36)]  , 
(8) 

where2 ,, A,, and A, are the direction cosines of the external- 
field vector in a coordinate frame whose axes coincide with 
the crystal axes; 

where a, is the angle between the vector n, and the (1, 0, 0) 
direction. For polycrystalline samples 

Naturally, the formulas obtained are valid also for nu- 
clei with I > $ in strong external fields, when the energy of the 
interaction of the nuclei with the external field is substantial- 
ly higher than the energy of the quadrupole interaction of the 
nuclei with the muon. 

There are rather few metals with I  = $ and with more or 
less noticeable values of p (see the table). Thus, greatest in- 
terest attaches to elements with I >  4. Since the dipole fre- 
quency shift is inversely proportional to the modulus of the 
external field, to observe the effect it is more convenient to 
use weak fields of the order of 56500 G. If the external 
magnetic field is strong, the principal role is played by qua- 
drupole interactions of the nuclei with the electric-field-gra- 
dient tensor of the muon. In this case, as seen from (5) and (6), 
Sw,, = 2d/o,. 

We confine ourselves hereafter to metals with cubic 
crystal-lattice symmetry. It is known that in this case the 
Hamiltonian of the quadrupole interaction can be well ap- 
proximated by 

We introduce for each nucleus its own coordinate frame 
x>y>z>, with axes z> directed along the vectors n,, and the 
axes x; and y> along some unit vectors eg and e,. In this 
coordinate frame the dipole field (2) can be represented in the 
form 

The eigenfunctions of the quadrupole operator (1 1) are 
states with definite spin projections on the z', axis: 

HQj lmj)=[Aj(rj)  m:+B,(rj) 1 Im,). 

Since states with m, = )mi 1 and m, = - Im, 1 are m.utually 
degenerate, not only thePiagona1 matrix elements of an arbi- 
trary- operator (mi lA /mi) but also the elements 
(mi / A  I - m,) are independent of time. The operators I,,,, 
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TABLE I. Isotopes of metals and semimetals with I = 1. 

*The remaining stable isotopes have I = 0. 

and Ii,,, have matrix elements only between the states for 
which Imj - m; I = 1. Thus, for integer spin these operators 
contain no static elements at all. For a half-integer spin, 
however, the following elements are independent of time: 

Type of crystal 
lattice 

"CP 

a Sn - diamond structure 
p Sn - complex 

fcc 

a TI hcp 
B TI fcc 
fcc 

Abundance, I Magnetic 
Element moment 

For the frequency shift we obtain in accord with (5) 

j 

(14) 
where a, = 0 for integer spins and 0, = 1 for half-integer 
spins. For cubic crystals and polycrystals, this expression 
takes the form 

-0.59 
-0.62 
-0.92 
-1 
-1.05 

0.61 
1.62 
1.63 
0.59 

Cd * t:i 
115 

* ( 117 
119 

Pt * 195 

TI * { ig 
Pb 207 

The frequency shift in weak magnetic fields is thus isotropic. 
The equations obtained pertain to nondiffusing muons. 

It was shown in Ref. 3 that the precession frequency of rapid- 
ly diffusing muons (A> y, b, y, b , whereR is the frequency of 
the muon hops over the interstices) differs from o, by an 
amount 

6 0  d i p / ~ ~ o = ' / s ~ ~ (  b 2 ) / ( h 2 + a ~ 2 ) .  (I6) 

Using the calculation method proposed in these refer- 
ences, it is easy to obtain a generalization of Eq. (16) to in- 
clude the case when the relation between R and the charac- 
teristic precession frequencies of the nuclear spins is 
arbitrary: 

hdip / ~ ~ = ' / ~ y ~ [ ( b ~  st)+(bv s t ) ] / (h2+ao2) ,  (17) 

where b, ,, and b y ,  must be taken to mean that part of the 
dipole field which does not manage to change during the 
time T = A - ' spent by the muon in one interstice. Although 

12.75 
12.26 
0 33 
7.51 
8.45 

35.2 
29.5 
70.5 
22.6 

Eq. (17) was obtained under the assumption A> y, b , if we 
put R = 0 in it it goes over into Eq. (5) which is valid for 
muons at rest. It can thus be assumed that Eq. (17) can be 
used for interpolation at arbitrary diffusion velocities. 

The authors know of only one study4 in which separate 
investigations were made of the temperature dependences of 
the relaxation rate and of the precession frequency. Two va- 
nadium samples with different impurity densities were in- 
vestigated in a field of 70 G. It was found that at T = 10 K 
the depolarization rate is A ~0 .4psec - '  for one sample and 
A =0.35psec-' for theother, whileat T = 300K therespec- 
tive values were A ~ 0 . 1  psec- ' and A ~ 0 . 0 4  psec- '. It fol- 
lows from the results of the experiment that the muons are at 
rest at 10 K and diffuse rapidly at 300 K. The precession 
frequency in the two samples is approximately the same, 
6.14 rad/psec at 10 K and 6.08 rad/psec at 300 K. It can be 
seen that these results are in splendid agreement with our 
relation So,,, = 2d/o. Final conclusions, however, call for 
systematic investigations. 

Information on the points of muon localization, on the 
distortion of the crystal lattice by the muons, on the diffusion 
velocity, etc. are obtained at present from data on the muon 
depolarization rates. Our equations show that the same in- 
formation can be obtained also in precision measurements of 
the muon precession frequency. It is possible that this alter- 
nate method will turn out to be even more convenient for 
experimenters since, as noted earlier, the precession frequen- 
cy can be determined with much higher accuracy than the 
damping rate. 
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