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Ordered nonideal systems are studied near the singular point where the electronic density of 
states vanishes and there occurs in self-consistent field theory a dielectric-metal transition ac- 
companied at T = 0 by a 3 1/2-order phase transition. It is shown that the correlation effects can 
be taken into account with the aid of the &-expansion method for the case in which the number of 
dimensions is close to four. The indicated method allows the determination of all the critical 
exponents in the low-frequency gapless and high-frequency regions; the asymptotic form of the 
density-of-states "tail" is found in the dielectric region. 
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INTRODUCTION 

It became clear after the discovery of gapless supercon- 
ductivity' that, in a nonideal system, the phase transition 
point where the gap (G ) appears does to, generally speaking, 
coincide with the point where the order parameter A ap- 
pears. A similar situation was found in the exciton-dielectric 
model with impurities,' in the Hubbard model,3 as well as in 
the model of the disordered binary solid s~ lu t ion .~  

It is shown in Refs. 1 and 2 that the transition into the 
gapless state is connected with the appearance of a complex 
self-energy part iij that, together with the anomalous self- 
energy part a ,  satisfies the following system of equations: 

For a superconductor, T; ' - T; ' = 27; ' is the reciprocal 
time characterizing the relaxation with spin flip; for the exci- 
ton dielectric - T, = T, is the characteristic time of the re- 
laxation without spin flip; w = (2n + 1) n-Tis the Matsubara 
frequency, which, after the analytic continuation 
iw -+ w + is, determined the energy w as measured from the 
Fermi level. 

Expanding Eq. (1) in powers of Z/a, we obtain the non- 
linear equation 

which is similar to the self-consistency condition for the or- 
der parameter in the theory of second-order phase transi- 
tions. Here T = 1 - (T; - T; ')(a ) - I  is a quantity that 
determines the proximity to the transition point in the gap- 
less state in terms of the impurity density, which is assumed 
to be sufficiently low. 

It is shown in Ref. 5 that the system of equations (1) is 
valid in the nonideal Hubbard model as well if the quantity A 
is assumed to be the antiferromagnetic order parameter and 
T ,  = - r2, as in the theory of the excitonic dielectric. In Ref. 
6 it is shown that the expansion (2) is applicable also to the 
ordinary ideal Hubbard model, but for temperatures higher 
than the NCel temperature. In this case T is a dimensionless 
quantity determining the proximity in terms of pressure to 
the critical point of the transition from the paraelectric into 
the parametallic state. 

In the nonsymmetric models, when the expansion (1) 
contains a term quadratic in iZ, we can always perform a 
linear transformation, and then choose the chemical poten- 
tial such that as o + 0 the self-consistency condition in the 
new variables has the canonical form (2). The positive coeffi- 
cient 6, which is, in order of magnitude, equal to the recipro- 
cal of the square of the characteristic energy, is assumed for 
simplicity to be equal to unity below. In the gapless (metallic) 
phase, where T < 0 as o + 0, 

If, on the other hand, lw 1 >?I2, then 

In the gap-containing (dielectric) phase, where T>O, 
Z(0) = 0, it is not difficult to determine the frequency iw at 
which a nonzero complex solution iij first appears, which is 
equivalent to the appearance of the dielectric gap 

G =2 ( ~ 1 3 )  ". ( 5 )  

Similarly, we can investigate the singularities of all the 
thermodynamic and kinetic quantities near the critical point 
of the transition into the metallic state (the M transition). An 
elementary analysis by the self-consistent field method7 
shows that the density of electronic states, the diffusion coef- 
ficient, and the reciprocal of the square of the screening dis- 
tance are proportional to Z(O + ), so that all these quantities 
go to zero according to a square-root law. 

The permittivity exhibits strong spatial dispersion over 
distances of the order of the correlation length R, (see be- 
low). It becomes infinite at large distances, i.e., for qR, (1: 

As shown in Refs. 5 and 8, the singular part of the energy of 
the metallic phase at T = 0 is given by the integral 

-r J B' da, (7) 

so that we find with the aid of Eq. (1) that 
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In all the enumerated models, the static conductivity o 
near the transition point and at T = 0 is proportional to 
G(O + ); therefore, 

In the limit w -* 0, the correlation length can be expressed in 
terms of the ratio of mean-square velocity to the order pa- 
rameter (3) (see Ref. 5): - 

R:= (E ) '/ oz ( O - t )  . 
ap 

In the ideal Hubbard model (at T >  TN) and for the bi- 
nary solid solution, the mean kinetic energy ~ ( p )  has the same 
order of magnitude as the quantity b - 'I2, so that the correla- 
tion length becomes large only near the transition point. In 
the nonideal Hubbard model, in an excitonic dielectric, and 
in a superconductor, where the self-consistency conditions 
have the form (I) ,  the quantity b ' I 2  is of the order of the mean 
characteristic time of the relaxation without spin flip. For 
this reason, even at points far from the transition point, the 
correlation length in these models is large compared to the 
mean interelectron distance, so that Eq. (2) possesses quite a 
broad region of applicability. 

It is quite clear that, as in the localization t h e ~ r y , ~  the 
quantity Z(O + ) has the meaning of an order parameter. For 
this reason, it is natural to attempt to construct a theory of 
the M transition in the region of strong correlations, in ana- 
logy to the fluctuation theory of second-order phase transi- 
tions. In this case we cannot hope for a complete physical 
analogy, if only because the order parameter is complex and 
there are no grounds for assuming that identical critical phe- 
nomena occur on both sides of the transition point. 

In the first section we compute the correlation function 
corresponding to the critical vibrations. In the second sec- 
tion we show that the correction to four-vertex part, as com- 
puted with the aid of perturbation theory, has different signs 
in the dielectric and metallic phases. This suggests that, in 
the dielectric phase, in which the interaction of the critical 
vibrations is attractive, we have inhomogeneous localization 
of the states in that region of energies where the gap comput- 
ed in the self-consistent field theory exists. This is the subject 
of the fifth section. The main results obtained in the third 
and fourth sections pertain to the metallic phase, in which 
repulsion of the critical vibrations occurs. In these sections 
we write out equations possessing the properties of scale in- 
variance, from which we are able to obtain the thermody- 
namic critical exponents for d = 4 - E (EN 1) dimensions. 

1. CRITICAL VIBRATIONS AND THE CORRELATION 
FUNCTION 

Let us consider the singularities of the two-particle ver- 
tex part in the case of zero energy transfer and low total 
momentum or small momentum transfer. In d > 2 dimen- 
sions we can limit ourselves in both cases to a simple ladder 
summation, as shown in Fig. 1. The broken lines represent 
scattering on the static fluctuations-imp~rities,'.~ composi- 
tion  fluctuation^,^ or spin  fluctuation^.^ The continuous 

FIG. 1 .  Equations for the critical vibrations in the self-consistent field 
approximation. 

lines represent "impurity"-averaged o-,Z-, and 3-depen- 
dent electron Green functions. 

In the simplest case of an excitonic dielectric, the irre- 
ducible part, corresponding to a given spin component, of 
the Green function has two components, which correspond 
to momenta differing by half a reciprocal-lattice vector: 

For the nonideal Hubbard model, the Green function has the 
same form, but the second state differs from the first state 
not only in momentum, but also in the sign of the spin com- 
ponent. 

In the ideal Hubbard model the irreducible Green func- 
tion corresponding to the paraphase also has, for a given spin 
projection, two components corresponding to different elec- 
tronic transitions. In the ordered phase, where anomalous 
averages occur, the irreducible Green function has 4 compo- 
nents, but below we shall not need its explicit form. The 
Green function for the superconductor differs only in sign 
from (1 1). In this case the second component differs from the 
first not only in the spin projection, but also in the direction 
of the momentum. For this reason in the case of the super- 
conductor the equations depicted in Fig. 1 should be re- 
placed by one equation in which it is not necessary to indi- 
cate the direction of the electronic lines. 

It is shown in Ref. 5 that, in the ideal Hubbard model, 
for equal frequencies o and small momentum transfers q, the 
two-particle Green function depicted in Fig. 1 satisfies the 
following equation: 

Here R and il are the correlation length (10) for 171 = 1 and 
the amplitude of the scattering on the impurities; below we 
shall, for simplicity, assume these quantities to be equal to 
unity. The expansion of the quantity m in powers ofZ has the 
same form as in the theory of phase transitions: 

For frequencies o < b  -'" the quantity Z is determined with 
the aid of Eq. (2). 

Exactly the same equation is satisfied by the correlation 
function for low total momenta. A similar situation obtains 
also for the exciton dielectric if we write the equation for the 
correlation function with the use of the Green function (1 1). 
In all cases critical properties are possessed by those vertex 
parts in which the two left or two right end points have iden- 
tical quantum numbers with respect to which the electron 
Green function is irreducible. 
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In the low-temperature region, where the M transition 
in the Hubbard model occurs in the ordered phase, the criti- 
cal properties are possessed by the two-particle amplitudes 
having identical spin components. In the most complicated 
case, namely, for a superconductor with paramagnetic im- 
purities, the critical quantities are the four diagonal compo- 
nents, which differ in the direction of the momentum or spin. 
Thus, the critical correlation function corresponds entirely 
to a definite superposition of two-particle electron states. 

It is important to note that the two-particle vertex part 
has a singularity in the case of a low sum frequency as well. 
In the gapless phase this singularity has a diffusion charac- 
ter, and determines the anomalous properties of the kinetic 
coefficients. But it is not difficult to show10 that, for d > 2, 
the influence of the diffusion modes is greatly suppressed 
because of the disappearance of the nonlinear diffusional in- 
teractions in the region of long wavelengths. 

2. INTERACTION OF THE CRITICAL VIBRATIONS 

To compute the vertex part corresponding to the scat- 
tering of the critical vibrations, we use a self-consistent-field- 
type perturbation theory, in which it is necessary to take into 
account the simplest irreducible diagrams containing the 
smallest number of integrations. As a first approximation, 
let us perform the averaging of the electronic tetragon, dis- 
carding in the process the intersecting diagrams, as shown in 
Fig. 2. A similar computation is carried out in Ref. 10 for the 
interaction of the diffusion modes and in Ref. 1 for a super- 
conductor. 

As noted in the preceding section, to the critical vibra- 
tions correspond pairs of electron lines with equal single- 
particle quantum numbers, each of the components entering 
with the same weight. For this reason, each polygon to 
which pairs of critical electron lines come up is proportional 
to the trace of those groups of electron Green functions 
which form a critical mode. For zero frequency transfer we 
must, in the case (of interest to us) of scattering by static 
impurities, over those momenta of the electron Green func- 
tions which form closed polygons. Using as the simplest ex- 
ample the exciton Green function (1 1) and the self-consisten- 
cy conditions (I), we easily see that, after the integration over 
the momenta, the diagram (a) can be explained in even pow- 
ers of Z, and in the zeroth approximation, makes a negative 
contribution ( - y,). The triangular diagrams can be ex- 
panded in odd powers of iZ, so that in the limit of small q the 
contribution from the diagrams (b) and (c) is positive: 

rJ1) (q,  z) =-yg[l-ab8'1 (m+qZRz) I .  (14) 

Here a is a numerical coefficient that turns out to be equal to 

FIG. 2. Averaging of the simplest eight-vertex part in the self-consistent 
field approximation. 

18 in perturbation theory. In the dielectric phase we have 
ij = 0 and m = 0 at w = 0, so that the vertex part (14) 
changes sign when we go from the metallic into the dielectric 
phase. Thus, in the metallic phase we find with the aid of (2) 
tha tasq2+Oandw+0 

The vertex part for high frequencies, i.e., for 
lr13'2( I W  I ( b  - lf2, has the same sign as the vertex part in the 
metallic phase. In this case we can set r = 0 in (2) and (14), so 
that as q2 -+ 0, r + 0 

We can generally assert on the basis of (14) that there exists 
in the gapless region a value q = qo(m) at which the vertex 
part reverses sign. We shall assume that the coefficients a is 
so large that in the metallic and high-frequency regions 

The critical exponents that will be computed in the fol- 
lowing section do not depend on the coefficient a, so that we 
make no attempt to compute its exact value in the region of 
strong correlations. 

3. EQUATION FOR THE FLUCTUATIONS; THE CRITICAL 
EXPONENTS IN THE METALLIC PHASE 

Let us assume that there exists in the region of strong 
correlations in the metallic phase a self-energy part iZ that 
does not vanish in the limit as iw -+ 0. Besides the simplest 
diagram representing the scattering of an electron on an im- 
purity, all the diagrams that cannot be reduced by cutting 
along a single line, but can be reduced by cutting along two 
lines with opposite or identical directions and zero momen- 
tum transfer or zero total momentum must be referred to the 
self-energy part. 

With this definition, the equation for the self-energy 
part has the same form as (2), but with coefficients that de- 
pend on the self-energy part m for the critical vibrations. We 
should then replace b by the irreducible four-vertex part r, 
for the critical vibrations corresponding to small momentum 
transfers q24m; the parameter T should be multiplied by 
Yo(m) ,  the two-vertex part with oppositely directed lines, 
computed in the same limit: 

The equation for m is none other than the Dyson equation 
for the correlation function, which equation has, after ex- 
pansion in powers of Z, the same form as Eq. (13), but with b 
and r replaced respectively by r , ( m )  and rYo (m): 

In the theory of phase transitions" the functions r and 7 
are computed first in the disordered phase in the region of 
momenta q2#m and are then used, with logarithmic accura- 
cy, for the same values of m in the ordered phase. As shown 
in the preceding section, such a computation is impossible in 
the low-frequency region of the dielectric phase. But if we 
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assume that the condition (17) is fulfilled, so that there exists 
a region of momenta m(q2(q; where the corrections to the 
vertex have the "right" sign, then the coefficientsr, and .Ya 
can be determined in a space with d = 4 - E (where ~ ( 1 )  
dimensions. 

We can easily write down the equations for the vertex 
part containing four pairs of electronic end points if we first 
use perturbation theory. It then turns out that the sought 
vertex part r, can be expressed in terms of the products of 
the other vertices r k ( l  < k<4), which differ from r, in that 
the electron lines that are to be averaged have a different 
direction. A more exact definition of the vertices rk is given 
in Appendix A. The coefficients entering into the corre- 
sponding parquet equations do not depend on the dimen- 
sionality dl and are computed in Appendix B ford = 4. If, on 
the other hand, d = 4 - E,  we shall seek the solution in the 
form of a product of the rapidly varying quantities AdqE and 
a slowly varying functiong, that depends on the logarithmic 
variable t = - lnq. 

In the new variables we obtain 

The constant A, has been chosen such that the right- 
hand side of the system (20) has a universal form with coeffi- 
cients that coincide with the number of topologically none- 
quivalent diagrams of second-order perturbation theory. 

Similarly, let us write down the equations for the two- 
vertex singular diagrams Ya containing one angle 
(a = a, b ). If we set Fa = A,qEya, we can write down the 
equations for ya by using the universal coefficients obtained 
ford = 4 in Appendix B: 

In the metallic phase 

where we should replace q and t by m1I2 and - (In m)/2 
( m ~ l ,  so that t ~ l ) .  

The equations have a completely symmetric solution, 
withgk =f i t )  and ya = y(t): 

From this we find the solutions corresponding to the singu- 
lar point g = ~ / 9  in the limit t> 1: 

Substituting these solutions into (2) and (1 3), we find that in 
the low-frequency region 

In the high-frequency region 

we can set T = 0 in Eqs. (2) and (1 3). Then 

The relations (24) can be used to determine more precisely 
the character of the transition into the dielectric state. The 
singular part of the energy at absolute zero is given by the 
general relation (7). Therefore, 

The obtained critical exponents do not correspond to an 
absolutely stable solution if the symmetry g, = g(t ) is not 
exact. An arbitrarily small deviation, caused for example by 
an external magnetic field, leads to the rapid growth of the 
fluctuations. The detailed investigation, carried out in Ap- 
pendix C, of the system (20) leads to the conclusion that the 
only point of absolute . . stability is the following point: 

For t> 1 we find in the vicinity of this point that 

From this we find the values of the critical exponents of 
interest to us: 

Using the general relation (7), we find that, in contrast to the 
symmetric case (27), the singularity in the anomalous part of 
the energy in this case is weaker than the one predicted by 
the self-consistent-field theory: 

er='/,+e/2. (31) 

Let us determine the critical exponent for the correla- 
tion length from the condition R, a m-'I2. In the low-fre- 
quency region (o 1 < 1 T ( Y  + @ 

In the high-frequency region (25) 

It is clear that the results (25) and (33), which are valid 
for high frequencies, can be used in the dielectric phase as 
well. In this region the states are delocalized, and the high- 
frequency dynamics is valid when the real part of the energy 
of the elementary excitations is of the order of the imaginary 
part. To verify this, we need only continue all the relations 
analytically: 

Then for high frequencies 

For low frequencies in a metallic medium 

Thus, for all frequencies the imaginary part of the energy of 
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the excitations turns out to be higher than the real part, and 
the damping increases with decreasing dimensionality. 

4. CRITICAL EXPONENTS IN SYSTEMS NONDEGENERATE IN 
SPIN 

As in the localization t h e ~ r y , ~  an external magnetic 
field and paramagnetic impurities weaken the correlation 
effects in the channel with low total momentum, as a result 
of which the integrals containing electron lines having the 
same direction become truncated. The corrections rl and 

to the vertex part then vanish, so that in the approxima- 
tion linear in E the critical exponents has the same form as in 
the self-consistent field theory. 

Under conditions of weakly-broken symmetry the criti- 
cal exponents are determined by the behavior of the system 
in the vicinity of the stable center (28). The character of the 
phase transition can then be determined from (31), and in the 
approximation linear in E the critical exponent f3 is equal as 
before to 4. 

Under conditions of weakly-broken symmetry the criti- 
cal exponents are determined by the behavior of the system 
in the vicinity of the stable center (28). The character of the 
phase transition can then be determined from (3 I), and in the 
approximation linear in E the critical exponent f3 is equal as 
before to 1/2. 

A similar situation obtains in the nonideal Hubbard 
model. As has already been noted, in this case there are two 
types of critical vibrations-for the low total momentum 
and for the small momentum transfer-in each of which the 
two-particles states with identical spin components are 
mixed. In consequence, we may obtain the same results ob- 
tained for the excitonic dielectric. 

Of special interest is a superconductor with paramag- 
netic impurities, in which the states with oppositely directed 
momenta and spins are mixed. We can easily write down the 
equations for the vertex part if we take into account the fact 
that, after averaging, the diagrams that differed earlier only 
in the directions of the electron lines are now topologically 
equivalent. Then, instead of (22), we obtain 

From this we find the critical exponents in the low-frequen- 
cy limit, (31): 

The high-frequency limit is determined as before by the ex- 
ponents in (33) and (26). 

5. THE DIELECTRIC PHASE 

To find the "tail" of the density of states, let us con- 
struct the functional whose variation gives Eq. (1) together 
with gradient terms. We can find the normalization constant 
for the free-energy functional without difficulty if we com- 
pute the energy of the system in the single-loop approxima- 
tion.12 

Taking into account the possibility of slow fluctuations 
in the quantity 5, we obtain the following functional density 

In an excitonic dielectric A is the product of density of states 
at the Fermi level in the absence of interactions and the dou- 
bled characteristic time of the relaxation on the impurities; 
the remaining symbols have the same meaning as in the first 
section. The variation of the functional (38) leads us to an 
equation of the Ginzburg-Landau type: 

The solution of this equation in the dielectric phase, i.e., for 
r > 0, and at the band center o = 0 is purely imaginary, and 
can be found by numerical integration: 

Substituting it into the original functional, and performing 
the integration over the entire volume, we obtain an expres- 
sion for the exponential "tail" of the density of statesp: 

where x, is a numerical coefficient: x, = 2.9; x, = 13.2. Let 
r, and I be the mean distance between the electrons and the 
mean free path in the metallic phase; then 

Rdhlb a ( l / ro)d- i .  (42) 

In an excitonic dielectric, in the nonideal Hubbard model (at 
T = O), and in superconductors, where Rr,, the density-of- 
states "tail" does not extend far (d > I), only to 

In the ideal Hubbard model (at -T,) and in a.binary solid 
solution we have I-r,, so that the "tail" makes a significant 
contribution to all the observable effects, even at r - 1. 

CONCLUSION 

The critical exponents characterizing the metallic 
phase are well known in the region of applicability of the self- 
consistent field theory: 

p='/2, ~ = 1 ,  6=3, p='/,, V='/ , ,  E'='/z. (44) 

The assumption that the four-vertex irreducible part has a 
repulsive sign can, as follows from the expansion (38), be 
justified by using the Stratonovich-Hubbard All 
the possible limiting cases can be obtained by computing the 
single critical exponent m/n, where m and n are the numbers 
of the topologically nonequivalent diagrams determining 
the two-vertex and four-vertex correlators for the critical 
vibrations. Then 

and the remaining exponents can be expressed in terms o fp  
and y. For the symmetric case m/n = 1/3, for the slightly 
nonsymmetric case m/n = 1, and for a superconductor with 
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paramagnetic impurities m / n  = +. In the present investiga- 
tion we did not consider the case of strong spin-orbit interac- 
tion and strong magnetic interactions, when m = n = 0. 

We find the usual exponential density-of-states "tails" 
far from the transition point in the dielectric phase. All the 
kinetic coefficients exhibit strong dispersion in this region, 
but vanish in the static limit. In the metallic phase the static 
kinetic coefficients are small and vanish at the transition 
point. The computation of these coefficients, as well as the 
study of the M transition as d -+ 2, is beyond the scope of the 
present paper. 

APPENDIX A 

Let us classify the irreducible blocks having the same 
number of incoming and outgoing electron lines. In first or- 
der, the irreducible vertex part is a quadrangle from each 
corner of which emanates a pair of electron lines having ei- 
ther identical or mutually opposite directions (see Fig. 3). 
Let us place in the first class all those diagrams that have as 
incoming lines only those pairs of lines which, after averag- 
ing, form ladders of oppositely directed electron lines. The 
simplest diagram of the first class is shown in Fig. 3a. Let us 
number all the pairs of electron lines and introduce a replica 
index that is preserved along an electron line. Let us denote 
the irreducible eight-vertex part of the first class by 
rybPr$$, , so that the superscripts number the incoming 
lines, while the subscripts number the outgoing lines. An 
irreducible vertex should not have continuous lines entering 
and leaving one and the same corner, and this corresponds to 
the presence of the factor Sa&k. A similar argument pertains 
to the factors SaflpSapk, which correspond to a disconnected 
pair of lines coming through corners with numbers k andp. 
Discarding such terms, we obtain the general form of the 
irreducible vertex: 

r l ~ r = r l (  (6al~6aidBSa~6ab + 6a,b6=,p,~a,&6~&) f two cyclic permutations of the subscripts /3, 1 
(A-1) 

The diagrams of the fourth class have as their incoming 
lines pairs of lines that form ladders of lines with the same 
direction (see Fig. 3d). If we number each pair of lines, it 
immediately becomes clear that a vertex part of the fourth 
class should be symmetric with respect ot the interchange of 
any pair of indices with the same number: 

The vertex parts of the intermediate type in their turn split 

FIG. 3. Different types of four-vertex (a-d) and two-vertex (e, f ) diagrams 
for the critical vibrations before averaging over the impurities. 

up into two classes. In diagrams of the r, type, the angular 
vertex with lines of the same direction are necessarily joined 
by one electron line (see Fig. 3b). In diagrams of the r, type, 
on the other hand, the angular vertices with lines of the same 
direction are joined to angular vertices where pairs of lines of 
opposite directions meet (as shown in Fig. 3c). In analytic 
form 

A diagram of the r yg'$4%4 type has only four terms, since 
the interchange of the first and second pairs of lines is equi- 
valent to the simultaneous interchanges a,*, and b , d 4 :  

The angular-vertex part To has on each side two electron 
lines with opposite directions. It is easy to see that the irredu- 
cible vertex part should have the following form (see Fig. 3e): 

ata: 
9 - o ~ ~ ~ : = ~ a t d a r ~ t ~ a .  (A-5) 

The angular-vertex part 7, has on the side a pair of incom- 
ing, and on the other side a pair of outgoing, lines, as shown 
in Fig. 3f. From symmetry consideration we can immediate- 
ly write 

~ b ~ ~ : ~ ~  (8a,@z6a,b+~atb:ba,6:) r b .  (A.6) 

APPENDIX B 

To find the second-order perturbation theory correc- 
tions, it is sufficient to compute all the possible pair products 
of the vertices listed in Appendix A. In doing this, we must 

'=: 3 
i 

FIG. 4. Different kinds of nonequivalent diagrams of the type r: (a-d), 
rzT3 (e-h), and r: (i) giving second-order corrections to vertices of the 
first class. 
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bear in mind that, in our case of scattering by static impuri- 
ties, the electron Green function is diagonal in both the fre- 
quency and the replica index, on which is does not depend at 
all. 

FIG. 5. The first three corrections to an angular vertex of the type. 
1. Computation of the corrections to the TI vertex 

The direct computation of a correction of the r: type 
shows that there arise either closed loops or disconnected 
diagrams, following the summation over the replica indices. 
A nonzero correction appears after the multiplication of the 
vertex r2 by itself, as a result of which we obtain four topolo- 
gically nonequivalent diagrams (see Figs. 4a-4d). After aver- 
aging, the pairs of long parallel lines become anomalous cor- 
relation functions corresponding to critical vibrations. 

We can similarly depict the four diagrams that are ob- 
tained after averaging the products r2r3 and T3T2 and one 
other diagram corresponding to the averaging of r: (see 
Figs. 4e-4i). As a result we obtain in the d = 4 case an equa- 
tion for the t = - In q derivative of r , :  

where A, is a positive coefficient that is unimportant for 
what follows 

2. Computation of the corrections to the rz vertex 

It is not difficult to understand that, to find the dia- 
grams corresponding to the sought corrections, it is suffi- 
cient to change the direction of the lines labeled by one and 
the same number in all the figures depicting the corrections 
to the r, vertex. If, for example, we change the direction of 
the lines labeled by the number 3, then the diagrams (a)-(d) 
will respectively represent 
- -  - -  rz2; r2r4; 172; r2r, 

(the bar denotes logarithmic integration). Similarly, the dia- 
grams (e)-(i) will represent 
- - - - -  
r2rs, r,rs, rsr2, I'sr'4, rZ2. 

As a result we can derive a second equation: 

3. Equations for r, and T4 

It is clear that the corrections to r, and r4 can be ob- 
tained by changing the directions of the two lines in the equa- 
tions for r,. It is easy to see that the change in direction of 
two lines with adjacent numbers gives a correction tor3 .  But 
if we change the directions of lines having the same parity, 
we obtain a correction to F4. As a result, we obtain the fol- 
lowing equations: 

r , = - ~ &  [4r2r3+4r22+rlrs], I?~=-A& [51'~~+4r~r~]. 

(B.3) 

4. Equations for the angular vertices 

Let us first write down the corrections to the angular 
vertex Yo in first-order perturbation theory (see Fig. 5). 
After averaging, the diagrams (a)-(c) become integrals of the 

-- - 
logarithmic type: r 2 T b ,  r 2 T b ,  and f 3 T b .  From this we 
obtain an equation for To : 

We can write down a similar equation for the angular vertex 
F b ,  which differs from Fa in that one of the continuous 
electron lines has been reversed: 

APPENDIX C 

Let us investigate the stability of the system (17). To 
begin with, let us note that, as in the theory of phase transi- 
tions, the Gaussian critical point g, = 0 is stable at 
d > 4(& < 0). But if E > 0, a fixed critical point cannot be one 
that coincides with the Gaussian point. An elementary in- 
vestigation shows that the system (17) possesses (besides the 
Gaussian critical point) six real singular points: 

e 
A - (I, 1, 1, I),  A2=e(1, I, -1, I ) ,  '-9 

The symmetric point A, has only one negative eigenvalue 
R. 'pi = - E, which corresponds to the symmetric particular 
solution Sg, = g(0)e - ". All the remaining eigenvalues per- 
taining to the point are positive: 

A similar situation in which at least one of the eigenvalues is 
positive is found to exist on moving around each of the singu- 
lar points except A,. For this point 

In the region of small 171, the critical behavior is deter- 
mined by the evolution of the system with the smallest-in 
absolute value-eigenvalue A 10) if, of course, the initial con- 
ditions will allow the system to reach the vicinity of the point 
A,. 

In Sec. 2 we showed that, for the standpoint of perturba- 
tion theory, the vicinity of the symmetric point A ,  is accessi- 
ble in the metallic phase, while the region of absolute insta- 
bility, i.e., the region where all g ,  (0) < 0, corresponds to the 
dielectric phase. It only remains to find out whether the 
points A, and A, are not separated by some integral surface. 
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The answer to this question can be given only by a numerical 
integration. 
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