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A study is made of the change in the magnetization of magnetically ordered crystals under the 
action of laser radiation. The study of this effect in a ferrimagnet yields for the parameters of the 
magnetic sublattices new information that cannot be obtained from the ordinary magnetooptic 
effects. The excitation of spin waves by a laser pulse is also studied. 
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1. INTRODUCTION 

Laser radiation with nonzero circular polarization 
propagating in a medium produces in the latter a magnetiza- 
tion proportional to the radiation intensity. This pheno- 
menon is known as the inverse Faraday effect.' This nonlin- 
ear magnetooptic effect has been studied theoretically in 
many papers, including a study of the case of paramagnetic 
 crystal^.^ The present paper is devoted to the inverse Fara- 
day effect in nonconducting magnetically ordered crystals. 

As we shall see, the study of the inverse Faraday effect 
yields valuable information on the structure of magnetic 
crystals. In addition, the possibility of using the inverse Far- 
aday effect to count single optical photons has been dis- 
cussed in the l i t e ra t~re .~  We might also mention a study4 of 
the absorption of circularly polarized optical radiation in 
magnetic semiconductors, an absorption that leads to a 
change in the exchange interaction constant. 

A distinguishing feature of magnetically ordered media 
having a spontaneous or induced magnetization in the ab- 
sence of radiation is the presence of resonant frequencies 
corresponding to the excitation of collective fluctuations of 
the spins. The effective magnetic field due to a pulse of elec- 
tromagnetic radiation propagating in the medium will there- 

- - -  

fore excite spin waves whose amplitude is proportional to the 
intensity of the incident radiation. 

Spin waves can be generated by optical radiation by two 
different mechanisms. The first mechanism involves a 
change, due to stimulated Raman scattering,' in the level 
populations of the paramagnetic ions contained in the mag- 
netic crystal and decreases the magnetization of the crystal 
in comparison with its saturated state. The second mecha- 
nism involves the disorientation of the magnetization vector 
at different points in the crystal, with the absolute magni- 
tude of the vector remaining unchanged. Here we shall con- 
sider only the second mechanism for the excitation of spin 
waves. The effect of the first mechanism can be ignored un- 
der the condition 

wheredo is the spectral width of the incident radiation and 
We, is the energy of the exchange interaction responsible for 
the level splitting in the paramagnetic ion; in order of magni- 
tude We, eT,, where Tc is the Curie temperature in energy 
units. 

In the next section we give a phenomenological Hamil- 

tonian for the interaction of a magnetic crystal with optical 
radiation and find an expression for the effective magnetic 
field in the crystal. In Sec. 3 we examine the inverse Faraday 
effect under steady-state conditions, when the radiation in- 
tensity is not changing in time. In Sec. 4 we examine the 
Landau-Lifshitz equations for effects due to the time-vary- 
ing nature of the radiation. In the subsequent sections we use 
these equations to study spin waves excited by radiation in a 
crystal. 

2. EFFECTIVE MAGNETIC FIELD 

Let us suppose we have a crystal of cubic or uniaxial 
symmetry containing one or two magnetic sublattices. Laser 
radiation at a frequency far from the absorption lines of the 
crystal is propagating through it. We average the Hamilton- 
ian X which is quadratic in the amplitudes of the fields E 
and H, over the rapid oscillations of the field, and write it in 
the form of an expansion in powers of the magnetization M, 
keeping only the linear terms (cf. Refs. 5 and 6): 

%=a30 (M'P') +%I (E, H) 

-i EM(.) { ~ . e [ ~ ~ ~ ' ] + ~ p m [ ~ ~ ~ ' ] )  

-iz (nM(.)) {qPe( [EXE0]n) +qpm([HXH']n)) 
P 

(2) 
Here Xo is the Hamiltonian of the crystal in the absence of 
radiation, XI is the interaction Hamiltonian of the crystal 
with the radiation in the paramagnetic state, which is qua- 
dratic in the amplitudes of the fields E and H, and n is the 
anisotropy axis for a uniaxial crystal. The index p in (2) as- 
sumes the valuep = 1 if there is a single magnetic sublattice, 
or the values p = 1, 2 if there are two such sublattices; g;" 
and q$m are magnetooptic coefficients due to the gyroelec- 
tric and gyromagnetic properties of the crystal, respectively. 
For cubic crystals 7;"' = 0. Since we are not considering 
magnetoelectric media, the Hamiltonian (2) does not contain 
cross terms in the amplitudes of E and H (Ref. 7). 

The effective magnetic field acting on thep-th sublattice 
can be found from (2) as 

where H;'P' = - S&",,/6M(P) is the effective magnetic field 
in the absence of radiation, and 
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H ~ " = ~ { ~ ~ ~ [ E x E ' ] + ~ ~ ~ [ H X H * ] )  

+in {qpe([EXE'ln)+qpm([HXH']n)) (4) 

is the effective magnetic field due to the inverse Faraday 
effect. It is seen from (4) that Hp '  = 0 for linearly polarized 
radiation. This circumstance is due to two approximations. 
First, as already mentioned, we are ignoring the magnetiza- 
tion change due to stimulated Raman scattering, which is 
small under condition (1). Second, we have dropped terms 
from the Hamiltonian (2) that are quadratic in the magneti- 
zation, and these would lead to Hy'  $0 for linearly polarized 
light (see, for example, Ref. 8, were the case of a magnetoac- 
tive gas of free electrons is considered). Estimates show that 
for magnetic crystals the ratio of the quadratic corrections to 
the linear terms is of order IAn,/An, I, where An,,, is the 
refractive-index change responsible for the linear and circu- 
lar birefringence, respectively. For most crystals this ratio is 
small.9 

Let us relate the parameters lp and qp to the quantities 
which characterize the magnetooptic effects in the linear 
theory. To do this, we introduce the polarizability tensor 
a,i (a) and the magnetic susceptibility tensor (w): 

atj(o) =-32%'/~E,'aEj, xij(o) =-a2Z/i?H,'aHj. 

We note that writing the tensors aii and xi, in this form 
presupposes that the electric and magnetic fields in the wave 
are of the form 

E=E (r, t) eik"-'"+ c.c., H=H (r, t) eikr-'m'+ C.C. 

Using expression (2), we find 

Here eiik is the antisymmetric unit tensor, and a;' and x r) 
are the polarizability and magnetic susceptibility tensors of 
the crystal in the paramagnetic state. For optical frequencies 
one may setx$ = 0. Furthermore, we shall neglect the crys- 
tal birefringence due to its uniaxiality in comparison with 
the birefringence due to its magnetic ordering, i.e., we set 

( 0 )  
e~=eLO=eO, ha t j  ==(so-1)6tj, 

where&, ,O,, are the principal values of the permittivity tensor 
of the crystal in the paramagnetic state. 

Let us consider a ferromagnet with two magnetic sub- 
lattices, which are found in the ground state. For simplicity 
we shall assume that in the case of uniaxial crystals there is 
anisotropy of the easy-axis type, M"' + M'2'ln, or of the 
easy-plane type, M"' + M'2'lln. For radiation propagating 
along the direction of the vector M"', which we take to be the 
z axis, the angle of rotation of the plane of polarization per 
unit length of crystal is given by5 

2niono 
@(a)=  - 

C 
It~,,(0)leo+xlv (0) I ,  (6) 

where no + E L .  Substituting expressions (5) into (6) we find 
for the case of easy-axis anisotropy 

Here Kp (w) is the Kundt constant for thep-th sublattice. In 
the case of easy-plane anisotropy or in the case of cubic crys- 
tals, one should set = 0 is the expression for Kp. The 
constants 5 and 77 can thus be related to the Kundt constants 
of the corresponding lattices, which determine the angle of 
rotation of the plane of polarization of radiation propagating 
in a magnetically ordered medium. 

With allowance for the relation H X H = noE X E and 
the assumptions made above, expression (4) for the effective 
magnetic field can be rewritten in the form 

x ,  

i [EE'] cno 
Av=- Z = -(EEW), 

(EE') ' 2n 

where xf)  = dM" /dHei is the differential static susceptibil- 
ity tensor of thep-th sublattice in an external magnetic field 
He,  assumed for simplicity to be directed along the axis of 
the vector M"'. 
3. STEADY-STATE CONDITIONS 

Let us consider the case of time-independent radiation 
intensity. If the sublattice magnetizations are not saturated, 
the effective magnetic field (8) causes a change in the magne- 
tization of the crystal: 

where x$" = aMy) /dH,i is the differential static susceptibil- 
ity tensor of thep-th sublattice in an external magnetic field 
He,  assumed for simplicity to be directed along the axis of 
the vector M"'. 

Let us take up in turn the cases of ferro-, ferri-, and 
antiferromagnetic crystals. 

Ferromagnets. In this case the summation indexp in (9) 
takes on a single value: 

In particular, for the case of cubic crystals (xV = %aii) we 
have 

AK(@) AM = - x (He) Zv. 
0 

(11) 

Expression (1 1) is of the same form as the result of Pershan' 
for the inverse Faraday effect in weakly magnetic media. 

Ferrimagnets. For cubic crystals such as yttrium iron 
garnet 

Expressions (7) and (12) imply that one cannot describe the 
inverse Faraday effect in a two-sublattice ferromagnet by 
using the parameters characterizing the linear properties of 
the crystal. In fact, while the angle of rotation of the plane of 
polarization of the radiation is determined by the difference 
between the contributions of the two sublattices (7), the mag- 
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netization due to the inverse Faraday effect is determined by 
the sum of the sublattice contributions. This circumstance 
can be understood by recognizing that elliptically polarized 
radiation "twists" the atomic electrons of both sublattices in 
the same direction, giving rise to a magnetic field of the same 
sign in the two sublattices, whereas the contributions of the 
different sublattices to the rotation of the plane of polariza- 
tion are of opposite sign as a result of the antiparallel orienta- 
tion of the spin moments. 

Thus the study of the inverse Faraday effect in ferri- 
magnets yields additional information that cannot be ex- 
tracted from linear magnetooptic experiments. Up till now it 
had been assumed that the inverse Faraday effect would give 
no new information about the properties of a medium that 
could not be obtained from the ordinary Faraday effect. 

Antiferrornagnets. Assuming that for mirror-image 
sublattices we have 

and introducing the total magnetic susceptibility tensor9 
x = x'" + d2', one can easily obtain expression (1 1) for the 
magnetization of an antiferromagnet. Thus, in regard to the 
inverse Faraday effect an antiferromagnet is equivalent to a 
ferromagnet whose parameters 5 and are determined by 
one of the mirror-image sublattices and whose tensor x is the 
total magnetic susceptibility. 

Simple estimates show that for divalent compounds of 
iron and europium (FeCl,, EuSe), and also for gallium- 
yttrium iron garnets,'' which are transparent in the visible 
and infrared and have Verdet constants V(w) = K ( w ) x ~  1- 
10 deg/cm.Oe, the magnetization reaches values of 0.025- 
0.25 G at E = lo4 V/cm. 

4. THE LANDAU-LIFSHITZ EQUATION 

In the case of radiation of varying intensity, we shall 
assume that the characteristic time r1 for changes in the 
intensity is significantly longer than the correlation time 7, 

of the lattice. This assumption means that the lattice, which 
plays the role of a constant-temperature reservoir in regard 
to the magnetization, is rapidly changing its state and as- 
sumes an equilibrium value for each new value of the radi- 
ation intensity. For typical crystals one has ~ , - - 1 0 - ~ ~ -  
10- l2 s. With such a restriction on one can use as before the 
formulas obtained above, regarding the electric and magnet- 
ic field amplitudes as slowly varying in time. The effective 
magnetic field (8) plays here the role of an external field capa- 
ble of causing oscillations of the magnetization of the crystal. 
For such oscillations to be excited it is necessary that H, be 
noncollinear with the equilibrium magnetization vector. 

The intensity I contained in expression (8) for the effec- 
tive magnetic field can be written for the case of time-varying 
radiation in the form 

I = z ( ~ - w / v ,  r ) ,  ( 14) 

where v = cv/no is the velocity of propagation of the radi- 
ation, while the first argument in expression (14) gives the 
translation of the pulse in space, and the second determines 
the transverse-intensity profile of the pulse. 

The fluctuations of the crystal magnetization are de- 
scribed by the Landau-Lifshitz equations for the respective 
sublattices. In particular, in the approximation linear in the 
perturbing field (8) these equations become 

where y, is the gyromagnetic ratio, ME' and Mgl are the 
alternating and equilibrium components of thep-th sublat- 
tice magnetization, M E)<M p),Hg) is given by formula (3), 
and 

is a relaxation term in the Gilbert form," with the pheno- 
menological damping parametera, considered srnall:/3, 4 l. 

5. HOMOGENEOUS PRECESSION 

Let the dimensions L of the sample be much smaller 
than the characteristic dimensions a of the transverse in- 
homogeneity of the radiation. The intensity (14) can then be 
assumed to depend only on the first argument: 

Z=Z(t-rvlv) . 
We shall also neglect the contribution from magnetic fields 
of the type Hi,$!,, Ila,,A M"', which result from the inhomo- 
geneity of the exchange interaction, retaining only the mag- 
netic fields due to the homogeneous intersublattice exchange 
interaction. This situation corresponds to the excitation of 
long-wavelength spin waves or of uniform precession of the 
magnetization, the latter being possible under the following 
restrictions on the dimensions of the sample'2: a 1 1 2 < ~ ( a .  
when these conditions are satisfied, the effective magnetic 
field (3) can be written" 

H:'")=-~M~") +H::") +H.,-~~N,~(M;" + ~ j " '  ) + H::'" . (17) 

Here S is the homogeneous exchange interaction constant, 
Ha is the anisotropy magnetic field, and Nu is the demagnet- 
tizing-coefficient sample in the shape of an ellipsoid of revo- 
lution with easy-axis anisotropy, the case to which all 
further discussion will be limited, we have 

N,=N,=iY,, N,,=Ns, 2NL+N3=1, 

Further, since the precession of the magnetization is caused 
by only the perpendicular component of the alternating 
field, we can without loss of generality take the radiation 
propagation direction to be along the x axis. In this case the 
magnetic field due to the inverse Faraday effect may be writ- 
ten in the form 

Here 

Thus, in the case of radiation propagating perpendicular to 
the anisotropy axis, only the magnetooptic coefficients zp 
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due to the isotropic part of the Hamiltonian of the magnetic 
crystal contribute to the effective magnetic field. 

The excitation of uniform precession of the magnetiza- 
tion by means of the effective magnetic fields (1 8) cannot be 
described in a two-sublattice ferrimagnet by the magnet sus- 
ceptibility tensor xu.  This circumstance is due to the fact 
that the amplitudes of the fields (18) acting on each of the 
sublattices are different, in contrast to the usual situation 
that arises in the theory of magnetic resonance. Introducing 
in (15) the variable 5 = t - x/u and transforming to the cir- 
cular components of the magnetization 

we obtain the following equations for the Fourier compo- 
nents of the magnetization: 

f y , [ ~ ~ + 4 n ~ , ~ , " ' ]  MY' = y , ~ : "  H:" ( Q ) ,  

+ y , ( ~ , - 4 n ~ ~ ~ , " ' )  1 MY' =-y,~:" H:' (Q) , (19) 

1 
Mo=&f;" -nd" , H:.' - j HIP' (t) e-'O'dt. 

2n 
-0. 

Here 

H ~ , ~ = G M ~ " " ,  H,,~=*H,,,*HI"" -4nMJVs-t H., 

where the sign f refers to indices 1 and 2. The equations for 
the component M'P) are obtained from (19) by the replace- 
ment 

Let us again consider the cases of ferro-, ferri-, and anti- 
ferromagnetic media. 

Ferromagnets. In the case of a single sublattice we set 
M'? = 0 in equations (19) and obtain the following expres- 
sion for the alternating component of the magnetic moment 
along the direction of propagation of the radiation: 

Here wo = y [He + Ha - bMo(N3 - N, ) ]  is the ferromag- 
netic resonance frequency, and T-' = fluo is the reciprocal 
relaxation time for the magnetization. Introducing the vari- 
ables = ([ ' - [ )/T, we rewritem. (20) in the following form: 

r(b, a,, r)'= I (~ -TS)  e-a sin (oo~s)ds.  J 
If the pulse is of short duration, the function I (< - rs) has a 
sharp peak at s = ( /T with a width A s  = T, /T. Therefore, 
under the conditions 

we may take the slowly varying function out from under the 
integral sign. 

We then obtain the following expression for the magnetiza- 
tion: 

where 
c 

0, (t) = J 1 (s) 

is the area of the intensity envelope of the laser radiation, 
which can be regarded as the total energy of the radiation 
passing through a unit area of the crystal at a given point x 
prior to time t. 

The most interesting question is the behavior of the 
magnetization after the laser pulse has passed through the 
crystal, i.e., at timesc>r,. In this case the upper limit in (23) 
for the area of the pulse envelope can be replaced by infinity, 
and the magnetization will thereby be independent of the 
shape of the pulse, depending only on the total area of the 
intensity (cf. Ref. 2). It follows from (23) that for excitation 
by a short laser pulse the magnetization undergoes damped 
oscillations at the ferromagnetic resonance frequency. 

In the other limiting case, when the pulse is long com- 
pared to T, the main contribution to the integral in (21) is 
from the region s=O. In this case 

This result means that for long light pulses the variable com- 
ponent of the magnetization that is directed along the laser 
beam adiabatically follows the change in the intensity enve- 
lope of the radiation. 

Ferrimagnets. An analogous treatment can be applied 
to the case of a two-sublattice ferrimagnet. Solving Eqs. (19) 
with allowance for (18) and (17) for the effective magnetic 
fields and performing the inverse Fourier transform, we ob- 
tain the following expression for the resultant magnetization 
along the direction of propagation of the radiation: 

M, (t) =M:' ' (t) +M:~' (t) , (25) 
where M f h  are the low- and high-frequency components of 
the variable magnetization, where the low-frequency com- 
ponent is described by formulas (20)-(24), which were ob- 
tained for ferromagnets, with the following replacements: 

According to Eqs. (26), in the low-frequency region a ferri- 
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magnet behaves like an effective ferromagnet, in agreement 
with the familiar results from the theory of the ferromagne- 
tic resonance. " 

The high-frequency component MIh) can be written 

where 

and wh = S(y,M g' - y, M g)) is the exchange frequency of 
the ferrimagnetic resonance. 

Formula (27) is studied for the cases of short and long 
light pulses in a manner analogous to the case of ferromag- 
nets. We note that the high-frequency amplitude turns out to 
be much smaller than the low-frequency amplitude. This is 
because the frequency wh of the exchange resonance lies in 
the infrared region of the spectrum:@, - 1012-10'3 s- ' (Ref. 
9). Therefore, even for picosecond pulses we have the condi- 
tion whrI 2 1, and the quantity j(c,wh,rh) given by formula 
(21) will be small on account of the rapid oscillations of the 
integrand. 

Thus, after passage of a laser pulse through a ferrimag- 
netic crystal, the variable magnetization induced in the crys- 
tal is mainly due to the low-frequency branch of the spin 
fluctuations. 

Antiferrornagnets. The variable component of the mag- 
netic moment for an antiferromagnet with two mirror-image 
sublattices in the ground state can, upon solution of Eqs. 
(19), be written in the form 

."-' , * a 

here HE = SM, is the exchange field, Ha = - 2CM,, 

is the antiferromagnetic resonance frequency, and K (w) is 
the Kundt constant corresponding to one of the mirror-im- 
age sublattices of the antiferromagnet. We note that because 
the antiferromagnetic-resonance frequency lies in the in- 
frared, oa - 10'1-1012 s-', the excitation of an appreciable 
magnetization in an antiferromagnet requires picosecond la- 
ser pulses. The amplitude of the magnetization (28) even un- 
der the condition wa rI 4 1 is smaller than the corresponding 
amplitude for a ferromagnetic crystal by the factor (Ha/ 
H,)"~NO. 1. 

Let us make some numerical estimates. For FeCl,, 
EuSe, and gallium-yttrium iron garnet at a pulse length 
rI N 10 ns and a degree of circular polarization A = 1, the 
amplitude reaches 1-5 G for a field amplitude in the wave 
E = lo4 V/cm. 

Figure 1 shows time dependence of the variable magne- 
tization of a ferromagnetic crystal for the case of a Gaussian 
intensity envelope I ( 6  ) = I, exp( - 6 '/<) for two different 
pulse lengths. It is seen in the figure that an increase in the 
parameter worI leads to a decrease in the number of oscilla- 

FIG. 1. The time dependence of the-homogeneous magnetization of a 
ferromagnetic crystal: f (t ) = (T,/T)I (t )/IO. Curve 1)  m07, = 0.5, 
r,/i-=0.1, curve2)m07, = 1.5, ~ , / ~ = 0 . 0 1 .  

tions of the magnetization after the laser pulse has passed 
through the crystal. 

6. EXCITATION OF SPIN WAVES 

In the preceding sections we have dealt with the excita- 
tion of uniform precession of the magnetization by spatially 
homogeneous laser radiation. Spatially homogeneous elec- 
tromagnetic fields in the optical region can as well excite 
spin waves in thin samples and also inhomogeneous Walker 
fluctuations, by a mechanism analogous to the linear (in the 
external field) mechanisms for the excitation of spin waves 
by microwave radiati~n."*'~ 

The special features of the excitation of spin waves by 
laser radiation are due to the possibility of focusing the radi- 
ation in a relatively small region. Let us consider the excita- 
tion of spin waves by such a mechanism for the particular 
case of a uniaxial ferromagnet. We shall assume that the 
radiation intensity in the transverse direction has a Gaussian 
profile: 

I (r, t )  =I( t -x lu )  exp [- ( y 2 + z Z ) / a Z ] ,  (29) 

where a is the width of the Gaussian beam. The effective 
magnetic field (3) for a uniaxial ferromagnet with allowance 
for inhomogeneous exchange interactions is of the form" 

Hi-- (He-4nN,Mo+H,) &,+a, (d2M,/asZ+a2M,/ay2)  
+az6'zMi/6'z2+hi ( r ,  t )  +HI,  ( r ,  t )  ; (30) 

here z is the anisotropy axis, a,,, are the inhomogeneous 
exchange interaction constants, and h(r,t ) is the variable 
magnetic field due to the spin wave; the Fourier component 
of this field is given by the relation12 

h ( r ,  t )  = 5 dqdRh ( q ,  Q )  exp (iqr-iQt) , 
(31) 

h ( q ,  Q )  =--4nq(qM(q, Q ) l q 2 ) .  

Substituting expressions (29)-(31) into Eq. (15), we find the 
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following expression for the Fourier component of the mag- 
netization: 

2n%2iyWoK (a )  Z ( Q )  6 (4%-Q/v) 
M x  (q ,  Q )  =- 

QS2(q)  -2iQv, ( q )  -Qz 

Hq exp (-ql2a2/4) 
X 8 

0 
(32) 

Here 0, (q) = y [ H ,  (H, + 471M0 sin28,)] 'I2 is the eigenfre- 
quency of the spin fluctuations, 

Hq=H,-4nN,Mo+H.+Mo (a, sinVq+a2 cos2 0,) q2, 

v,(q) = /3y [ H ,  + 2rM0 sin2Oq ] is the exponential damping 
constant for the spin wave, and 8, is the angle between the 
wave vector q and the z axis. 

We note now that the intensity envelope I( i2 ) has its 
maximum at O e 0 .  It follows then from (32) that the reso- 
nant excitation amplitude for a spin wave of frequency 
i2 = 0, (q) reaches its maximum under the conditions 

(A0 is the spectral width of the laser radiation). It is also seen 
from (32) that when laser radiation is focused in the interior 
of a crystal, a beam of spin waves will be excited in the crys- 
tal, with a momentum spread Aq, =2/a, in the transverse 
direction. In the direction of propagation of the radiation, on 
the other hand, the wave vector of the spin wave lies within 
the interval q, 5 Ai2 /v .  when the relation 

is satisfied, the focused laser pulse will excite spin waves in 
the direction perpendicular to its propagation direction. As- 
suming for purposes of estimation that a--10-2 cm, we see 
that inequality (33) is satisfied for pulses with a spectral 
width 404 10 cm-'. 

7. CONDITIONS OF MODULATED INTENSITY 

In the previous sections we have considered the excita- 
tion of spin waves by single laser pulses. It is clear that the 
efficiency of excitation of magnetization fluctuations can be 
increased significantly by having the pulse repetition fre- 
quency of the laser coincide with the ferromagnetic reso- 
nance frequency, in analogy with the excitation of acoustic 
fluctuations in liquids by radiation modulated at an acoustic 
frequency. l3  

In accordance with the foregoing, we write the radi- 
ation intensity in the form 

I ( r ,  t )  =Io exp [- ( y 2 f  z2)/a2] ( l f m  cos a d ) ,  (34) 
where O(m< 1 is the modulation index and om is the modu- 
lation frequency. Using (30), (31), and (34), we obtain from 
(1 5) the expression 

AK (a) Mona2y2Hqm e ~ ~ ( - q , ~ a ~ / 4 )  exp ( - iomt)  
M= (q,  t )  = 

o [ Q S 2 ( q )  -2i0,v. (q) - a m 2 ]  

(35) 
In this case the equality om = 0, (q) determines the spin- 
wave numbers at which resonant excitation of the magneti- 
zation can occur. All the estimates given for the wave 
numbers in the previous section remain valid for this case as 
well. For q, a( 1, homogeneous magnetization fluctuations 

AK(o)MomZoyoo exp (-to,t) 
Mz(t)  = Re 

o a o 2 - 2 i ~ m ~ - i - a m "  

will be excited in the sample, where o, and T are determined 
by relations (20). 

For example, for the crystals mentioned in the previous 
sections, EuSe, FeCl,, and gallium-yttrium iron garnet, the 
excitation amplitude reaches a value of the order of 25 G for 
E = lo4 V/cm, T = lo-' S, K = 0.1 deg/cm.Oe, M,=2.102 
G, o = 1014 s-', and A = 1. 

In closing, we wish to thank Yu. N. Mitin for a helpful 
discussion. 
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