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A method is proposed for constructing multiparameter potentials that lead to complete integrabi- 
lity of the stationary Landau-Lifshitz equations. The singled-out class of potentials corresponds 
to a magnetic-medium anisotropy represented not only by a quadratic form, but also by forms of 
higher order. The first two integrals of the Landau-Lifshitz equations are obtained in an explicit 
form that makes possible a complete description of the change of the equilibrium states and of the 
structure of domain walls, with account taken of two angular degrees of freedom of the magnetic 
moment as a function of the structural parameters of the model. 

PACS numbers: 75.60.Ch, 75 .30 .G~ 

1. Progress in the theory of domain walls in magnetic 
media, as well as in the theory of magnetic phase transition, 
makes it necessary to find solutions of the Landau-Lifshitz 
equations for the case of an anisotropy energy represented 
not only by a quadratic form of the moment m, but also by 
forms of higher order. For example, for an anisotropy energy 
in the form 

great interest attaches to the solution of the problem of how 
the structure and classification of the domain walls varies 
with the parameter C (which is generally speaking vector- 
like) that determines the anisotropy tensors a, D,... . A 
change in the parameter C can cause a change of both the 
number and the type of equilibrium states (of the singular 
points of the Landau-Lifshitz equations) and an associated 
change in the domain walls. A complete classificati~n of do- 
main walls should be accompanied by an analysis of the solu- 
tions of the Landau-Lifshitz equations with account taken of 
the two degrees of freedom of the magnetic-moment unit 
vector. As a rule, such a problem cannot be solved exactly for 
an anisotropy energy of the type (1.1). The known cases of 
complete integrability of the Landau-Lifshitz equations 
with account taken of two degrees of freedom correspond to 
a quadratic form of the anisotropy energy. In the more gen- 
eral case, even if exact solutions are known, they make 
allowance for only one degree of freedom (e.g., domain walls 
with rotation of the magnetic moment in a definite plane). 

It is therefore of interest to search for cases of complete 
integrability of the Landau-Lifshitz equations for an anisot- 
ropy energy in the form (1.1). Such examples can serve as the 
basis for the construction of models of magnetic phase tran- 
sitions that admit of the solution of the problem of the com- 
plete classification of the domain walls. 

We propose below a method of finding the solutions of 
the Landau-Lifshitz equations 

m x  [d 2rn/dxz+au/am] =o, (m, m) =i, (1.2) 

which entails the construction of a definite class of potentials 
of the form (1.1) and leads to a complete integrability of the 
Landau-Lifshitz equations (1.2). The latter means that Eqs. 
(1.2) lead, for a singled-out class of potentials U(m), to two 
independent first integrals, which will in fact be derived be- 

low. It will be shown furthermore that the singled-out class 
of potentials, which depends on arbitrary parameters, will 
make it possible to determine of how both the type and the 
number of the equilibrium states (singular points) vary. 

It was noted earlier' that the problem of integrability of 
the Landau-Lifshitz equation (12) is connected with the inte- 
grability of the problem of the motion of a material point on 
the a unit-sphere surface in a potential field of forces. A 
solution for a potential that is a homogeneous quadratic 
form was obtained by Neumann in 1859.2.3 The main signifi- 
cance of Neumann's generalized problem is that the problem 
remains completely integrable in the case of multiparameter 
potentials. This uncovers a possibility of analyzing weak bi- 
furcations of the solutions in complete integrable models of 
various physical problems. 

For example, in the theory of magnetic phase transi- 
tions one determines critical values of the parameter C such 
that new types of domain (interphase) walls are produced. 
The mathematical representation of a domain (interphase) 
wall is a separatrix common to a pair of equilibrium states, 
and a mathematical representation of the nucleation center 
is a separatrix loop that is closed on one of the equilibrium 
states. All types of domain (interphase) walls that can exist at 
a given value of the parameter C correspond to a so-called 
separatrix contour made up of separatrices that are common 
to different pairs of equilibrium states. Corresponding to a 
magnetic phase transition (relative to the parameter C )  is a 
restructuring (bifurcation) of the separatrix contour, due to 
the decay of the old separatrices and creation of new ones 
that go from equilibrium state to another. 

In the general case, the Landau-Lifshitz equations (1.2) 
admit of the existence of only one first integral connected 
with a translation group, while the separatrix contour that 
determines the admissible types of domain walls is made up 
of separatrix curves that join equilibrium states having one 
and the same constant of the only first integral. 

For the class of multiparameter potentials obtained be- 
low, the Landau-Lifshitz equations (1.2) admit of the exis- 
tence of two independent first integralk. In such cases the 
separatrix contour is made up of separatrices that connect 
different pairs of equilibrium states, for which the constants 
of the two first integrals should coincide. Thus, in the gen- 
eral case there appears for the class of integrable potentials 
an additional constraint on the separatrices that connect dif- 
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ferent equilibrium-state pairs, and consequently on the ad- 
missible domain-wall types. 

The examples of the integrable potentials considered 
below points to the existence of completely integrable prob- 
lems in which the presence of two first integrals does not lead 
to additional constraints when the separatrix contour is con- 
structed. In such cases, the elements of the separatrix con- 
tour are separatrices that correspond to degenerate solutions 
with one angular degree of freedom and are due to the fact 
that the Landau-Lifshitz equations have a discrete symme- 
try group. In these particular cases the classification of the 
admissible domain walls does not depend essentially on the 
integrability of the problem. In addition, we present here an 
example of a separatrix contour for which, both in the con- 
struction of the constituent separatrices and in the investiga- 
tion of the investigation of the bifurcations of this contour, 
essential use is made of the presence of the first two integrals. 

We note that a complete classification of domain (inter- 
phase) walls and nucleation centers is possible only in the 
case of integrable potentials, for otherwise the construction 
of the separatrix contours inevitably calls for a numerical 
analysis of the problem. It must also be emphasized that in 
the case of equilibrium states of the saddle-saddle type the 
integrable potentials are characterized by the presence of a 
continuous set of separatrices, of which only a finite number 
remains on going over to a nonintegrable potential. An enu- 
merable set of separatrices is then additionally obtained, and 
these have already a more complicated internal structure. 
An example of such a restructuring is given in Ref. 4, where 
the transition from an integrable to a nonintegrable potential 
of the Neumann problem was investigated. 

2. In a spherical coordinate frame, the Landau-Lifshitz 
equations (1.2) correspond to a system of canonical variables 

dp, aH d0 a H  ---- -3- 

dz a0 * ape9 
a H  dcp-aH -=-- 

(2.1) 
dz a9 '  dz: ap, 

with a Hamiltonian in the form 

Here 8 and e, are the azimuthal and polar angles, while p, 
andp, are the corresponding canonical momenta. 

We transform to sphero-conical coordinates u, and u,, 
defined on the unit-sphere surface by the relations5 

sina 0 cosz cp= (l+e+u,) ( l+e+k)/e  (l+e) , 

sinz 0 sin' cp=- (l+ut) ( i+h)/e ,  cosz O=uiu J(l+e) 
(2.3) 

or by relations of the type 

where E > 0 is a parameter of the sphero-conical coordinate 
frame. The range of variation of the u, and u, is defined by 
the inequalities 

and is represented in Fig. la by the rectangular region abcd. 
The metric on the unit-sphere surface is defined in terms of 
the orthogonal variables u, and u, by the expression3" 

ds2=gt ( ~ 1 ,  ~ 2 )  ( d ~ t ) ~ + g z ( ~ t ,  ~ 2 )  (duz)'. (2.6) 

Here 

In the new variables, the Hamiltonian takes the form 

Here 

piagt (ui, UZ) dut/dx, pz=gl (u,, ul) d%/dx (2.9) 

are the momenta conjugate to the coordinates u,  and u,. 
To transform the Hamiltonian (2.8) to the Liouville 

form6 we represent the potential in the form 

1 
U(ui, la) = Z-z CnU'") (US, ~ 1 )  (2.10) 

n>1 
Here 

-U'"' (u*, a;) =u*n+u:-' u;+ . . . +u*u:-' +ha (2.11) 

is a homogeneous polynomial of degree n and C, are arbi- 
trary constants. The singled-out class of potentials (2.10) sat- 
isfies the relation 

When (2.12) is taken into account, the Hamiltonian (2.8) can 
be written in the form 

FIG. 1. 
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which indicates explicitly the separation of the variables in 
the corresponding Hamilton-Jacobi e q ~ a t i o n . ~ . ~  

Thus, the class of potentials (2. lo), (2.11) corresponds to 
a fully integrable problem. One first integral is the Hamil- 
tonian (2.8). It can be shown (see the Appendix) that the 
second independent first integral for the class of potentials 
(2. lo), (2.1 1) is given by the expression 

In the simplest case (C, = 1, Cn = 0 for n > 1) the first 
integrals (2.8) and (2.14) coincide with the first integrals of 
the aforementioned Neumann problem. An essential aspect 
of the generalization of the Neumann problem is that the 
singled-out class of "integrable" potentials (2.10) and (2.11) 
depends on arbitrary constants ..., Cn, ... . Another represen- 
tation of the class of integrable potentials of the problem 
considered, defined accurate to an arbitrary function, is giv- 
en in the Appendix. 

The expressions for the first three potentials (2.11), 
which lead to complete integrability of the Landau-Lifshitz 
equations, are of the form (apart from inessential constants) 

U(')= (m, A,m) , 
U@)=- (m, A,m)2-2(2+e) (m, Am) + (l+e) (m, A o ~ ) ,  

U(3)= (m, A,m) 3+3 ( 2 + ~ )  (m, A.m)' 
-2 (I+&) (m, A,m) (m, Am)  + (10+10e+3e2) (2.15) 

x(m, A,m) -2 (2+e) (I+&) (m, Aom). 

We have introduced here for brevity the diagonal matrix 

Recall that a sum of potentials (2.15) of the form 

with arbitrary parameters C, and C3 also leads to complete 
integrability of the Landau-Lifshitz equations. Correspond- 
ing to the potential U"' is a quadratic form of the anisotropy 
energy with orthorhombic symmetry. It was shown earlier1 
that for the case of the potential 1/2U"' the supplementary 
first integral can be written in the form 

Here p = ( p,, py , pz) is the "kinetic" moment of the mag- 
netic-moment vector 

Following Ref. 1, we can show that a generalization of (2.18) 

to the case, say, of the potential 1/2U"' + C2U'2' is the 
expression 

Q=pZ2-&p,2+~rn,2~&Cz[ (3+e) my2-myl- ( 1 + ~ )  mx2mv2]. 

(2.19) 

We note that the derivation of the expresions for the supple- 
mentary first integral (2.18) or (2.19) in the ( p,m) representa- 
tion entails only algebraic operations and does not involve 
the choice of any particular coordinate frame on the sphere. 
In particular, expresions (2.18) and (2.19) are valid at any 
choice of the sign of the parameter E. 

3. We shall show that the obtained class of "integrable" 
potentials (2.10) and (2.11) makes it possible to investigate 
the bifurcation of the solutions of the Landau-Lifshitz equa- 
tions, which is connected with the creation (or annihilation) 
of certain equilibrium states when the parameters (...Cn ...) 
change. 

We consider a two-parameter potential (2.17) in the var- 
iables u, and u,: 

At all values of the parameters C2 and C3 (including 
C, = C3 = O), the Landau-Lifshitz equations have equilibri- 
um states (singular points) corresponding to the values of the 
angle 

0=0, n/2, n, (3-2) 

but the type of the singular point can vary, depending on the 
values of the parameters C, and C3. Moreover, new equilibri- 
um states are produced in a certain region of values of C, and 
C3. Indeed, the equilibrium conditions 

for the potential (3.1) lead to the relations 

which determine, according to (2.4), the equilibrium values 
of the angles ( 8 , ~ )  in a spherical coordinate system. By virtue 
of relations (3.4) and (2.3), each new equilibrium state on the 
(u,, u2) plane 

iiI(CZ, C,), u"2(Cz, Cs), (3.5) 

corresponds on the unit sphere to eight equilibrium points 
(four points located on the upper and lower hemisphere sym- 
metrically about the equatorial plane), defined by the rela- 
tions 

cos2 0= (4C3-Cz2)/8 ( 1 + ~ )  C1'. 
E cos2 (P= [8 (I+&) 2C3z-4 (l+e)C2C,-C22+4C,] 

x[8 (I+&) C,2+C,2-4C3] -l. 
(3.6) 

On the plane of the plane of the parameters C, and C3, 
the new equilibrium states are produced in the region bound- 
ed by the contour ABCD (see Fig. lb). This contour is the 
mapping of the contour abcd (Fig. la) on the plane of the 
parameters C2 and C3 specified by relations (3.4). We present 
expressions for the coordinates of the points of the contour 
ABCD: 
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We note that to the only point Cof the contour ABCD there 
corresponds an angle 0 = 0 or n- if C2 # 0 simultaneously. We 
recall that at each point located inside the contour ABCD 
there exist, besides the new equilibrium states ( 3 4 ,  the old 
equilibrium states (3.2). 

For the new equilibrium states (3.5), the constant of the 
new integral (2.8) is 

H (E,, Ez)=U (u,, u,) =-'/zCz (4Cs-Cz2)18Cs: (3.8) 

whereas for the old equilibrium states (3.2) we have 

It is easy to verify that for the point C of the contour ABCD 
the constants (3.8) and (3.9) coincide. 

Besides the equilibrium state ( 3 4 ,  at definite values of 
the parameters Cz and C, there arise additional equilibrium 
states for which 0 = r / 2  and the quanitity X = 1 + E cosZ p, 
which defines the polar angle p ,  satisfies the quadratic equa- 
tion 

-3C,X"2 [C,-3 (2+e) C,] X+ [-1+2 (2+e) C2-3 (2+e) 'C8] 

=O. (3.10) 

Finally, there are regions of the parameters C2 and C, in 
which the additional equilibrium states are defined by the 
conditions 

cpn=kn/2, k=O, 1,2 ,  3, 

and the quantity Y = sin2 0 satisfies the quadratic equation 

4. We proceed now to investigate the separatrix con- 
tours that arise for a potential in the form 

U='laU(1)+'/ZC2U(z). (4.1) 

In this case, besides the equilibrium states 

that exist at all values of the parameters E and C2, there can 
arise additional equilibrium states. Thus, on the equator 
(0 = r/2) of the unit sphere there arise four equilibrium 
states Ei(i = 1 to 4), for which 

In addition, two equilibrium states Mi(i = 1 to 4) appear on 
each of the meridians p = 0 and p = n-; for these states 

sinZ 0= [C, (34-28) -11 /2Cz ( l + e )  , (4.4) 

Finally, on the meridians p = n-/2 and p = - 7~/2 there ap- 
pear equilibrium states Ni(i = 1 to 4) for which 

The cases considered above cover all the equilibrium 
states that can arise for a potential defined by Eq. (4.1). Bifur- 
cations of these equilibrium states are listed in the table. It is 
assumed in this table that 0 < E  < 1. For the case E > 1 it is 
necessary to interchange rows 3 and 4 as well as 5 and 6. We 
note that all four equilibrium states Ei (in analogy with Mi 
and Ni) correspond to one and the same set of characteristic 
exponents, and consequently pertain to one and the same 
type. 

It can be seen from the table that the change of the 
singular points + I,, + I,, and + I, is due to the splitting 
from them, or to merging with them, of equatorial (Ei) or 
meridional (Mil Ni) groups of equilibrium states. Thus, for 
ecample when the line C2 = 1/(3 + 2) passes from left to 
right the singular points f I, becomes centers in the m, 
direction (plane m,, m', of the phase space) and a saddle 
point in the direction of my (plane my, m', ). In this case four 
new equilibrium states Mi split away from them and are sad- 
dle points in both the 0 and p direction. The remaining equi- 
librium states remain of the same type. 

We consider now some of the resultant separatrix con- 
tours. Analysis shows that in the case of a potential of the 
type (4.1) the separatrix can connect only related equilibrium 
states, i.e., equilibrium states belonging to one of the six 
groups in the table. We recall that among the solutions of the 
Landau-Lifshitz equations (1.2) there are degenerate solu- 
tions corresponding to motion with one angular degree of 
freedom, namely solutions corresponding to motion with ei- 
ther 0 = r /2 or p = kr/2(k = 0,1,2,3). In the case of a po- 
tential of type (4.2), these trajectories play an important role 
in the formation of the separatrix contours. 

Thus, for example, in the parameter ranges 

there are separatrix contours 

where the separatrices with 8 =r/2 correspond to the first 
contour, and those with p=O, .rr and p r  * v/2 respectively 
to the two others. In addition, there is also a continuous set 
of the separatrices near the singular points Mi. Separatrix 
contours are similarly constructed also in other region of 
values of the parameters E and C,. We emphasize that in the 
foregoing analysis of the separatrix contours we used no- 
where the fact that there exists an additional first integral Q 
(2.19), and the existence of three separatrices was ensured 
only by the presence of a discrete symmetry group. 

We consider now a case when the potential Uis given by 

In this case, to obtain a table of the bifurcations of the singu- 
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lar point it suffices to interchange in our table the words 
"saddle point" and "center." 

Now transitions become possible not only between re- 
lated states. But this requires that the values of both first 
integrals H (2.2) and Q (2.19) for the corresponding equilibri- 
um states coincide (this requirement is always satisfied for 
related equilibrium states). Thus, for example, on the line 

the values of the integral H and the values of the integral Q 
are pairwise equal for all three groups of equilibrium states 
f I,, f I,, , and f I,, and the separatrix contour shown in 

Fig. 2 appears on the line (4.9). 
We consider now the equilibrium states I, and N,. The 

first integrals H for these states coincide on the line 

whereas the supplementary first integral Q coincides only at 
the instant when the equilibrium constant Ni break away 

FIG. 2. 

from the states f I, (i.e., when the Ni coincide with +. I,). 
Thus the supplementary first integral Q excludes the exis- 
tence of separatrices that connect groups of equilibrium 
states + I, and Ni. 

We present now an example in which the construction 
of the separatrices is substantially connected with the com- 
pleteintegrability of the Landau-Lifshitz equations. To this 
end we consider again an integrable potential such as (4.1). 
In this case, in the region 

11 (3-t-28) <C2c1 (4.1 1) 

the equilibrijm states Mi are equilibrium states of the saddle- 
saddle type. In the analysis of the Landau-Lifshitz equa- 
tions' for the case C,, = 0, n 22, we have noted that the solu- 
tions corresponding to Bloch and NCel walls (to separatrices 
that connect the equilibrium states I, and - I,) acquire a 
functional dependence of the first integrals Hand Q. Next, in 
the papers of Lerman and ~manskg ,  devoted to topological 
structures of integrable Hamiltonian systems with two de- 
grees of freedom, it was proved in particular that in the gen- 
eral case, in the vicinity of the singular point of the saddle- 
saddle type, there are exactly two one-dimensional integral 
manifolds on which the first integrals are dependent, i.e., 

grad H=p grad Q, (4.12) 

wherep is a function defined in phase space. These manifolds 
correspond to trajectories that emerge from the equilibrium 
state Mi. There are analogously two manifolds correspond- 
ing trajectories that enter the equilibrium state Mi. 

In our case it is convenient to employ the Lerman- 
 mansk kc theorem using the variables u ,  and u, in terms of 
which the first integrals H and Q are specified respectively 
by Eqs. (2.2) and (2.14). It is easy to show that at C2# 1/3 the 
integral manifolds indicated above are singled out by the 
respective conditions p ,  = 0 and p, = 0. Consequently at 
C2# 1/3 there exist separatrices that connect equilibrium 
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states for which either u, or u, is constant. In the variables 8 
and q, these separatrices are described by the equation 

We note that at C, < 1/3 the equilibrium states Mi are 
located on the side cd (see Fig. la), while at C, > 1/3 they are 
on the side da. Finally at C = 1/3 they are at the point d .  

The separatrix contour becomes restructured on going 
through the critical parameter value C, = 1/3. This bifurca- 
tion is shown in Fig. 3. Figure 4 shows for the Landau-Lif- 
shitz equations the solutions corresponding to these two 
cases. The presence of first two integrals enables us to deter- 
mine the values of p* and 6 * (see Fig. 4): 

Corresponding to the separatrix solutions shown in Fig. 4 
are domain walls of a new type, which are closely tied to the 
rotation of the magnetic-moment vector relative to the two 
angle variables. 

The examples considered above demonstrate the pecu- 
liarities that arise in the analysis of separatrix contours in 
integrable systems. We note that a situation is also possible 
wherein, for two equilibrium states, the line of equal values 
of the integral H cross, in the space of the parameters E and 
C,, the line of equal values of the integral Q in one or several 
points. Then the presence of the supplementary first integral 
Q imposes only a partial hindrance on the existence of separ- 
atrix contours, i.e., it makes possible the existence of separa- 
trix contours only at individual points of the space of the 
parameters E and C, (or on a line, if we consider the three- 
dimensional space of the parameters &, C,, and C,). 

In conclusion, the authors are deeply grateful to L. M. 
Lerman and Ya. L. ~ m a n s k g  for acquainting them with the 
results of their research and for helpful discussions. 

APPENDIX 

We consider a dynamic system with two degrees of free- 
dom and with a Hamiltonian in the form 

FIG. 3. 

FIG. 4. 

The system (Al) has an obvious first integral 

H(p1, qt; pa, q2)=conat. (A21 

Assume that the system is completely integrable, and let the 
supplementary first integral be of the form 

Q=al (q,, qz) pi2+a2(qt, qz) p,2+V(q19 qz). (A31 

The condition that the Poisson brackets of the first integrals 
(Al) and (A3) vanish leads to the relations 

The first four states in (A4) establish the correspondence 
between the metric coefficients G 1, G 2 and a 1, a2 of the first 
integrals (Al) and (A3), while the last two establish the corre- 
spondence between the conjugate potentials U and V. As- 
suming 

al=AIG,, a2=AzG2, (A51 

we find that by virtue of the first relations of (A4) 

Ai=At(qz), A z ~ A z ( Q I ) ,  (A61 

(A71 
Here A and f are arbitrary functions of one variable. Next, 
according to (A6), we find that 

Thus the first four of the relations (A4) determine (accu- 
rate to two functions A,  f of a single variable) the structure of 
the metric coefficients G 1, G 2 and a,, a,. Next, the condition 
that the last two relations of (A4) be compatible, namely, the 
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Frobenius condition 

leads to the condition 

which determines the class of potentials U (q1,q2) in the Ha- 
miltonian (Al) under the condition that the supplementary 
first integral (A3) exists. 

Putting 

U(q1, qz) =W(ql, qz)/[Ai(qz) -Az(qi) I ,  (A101 

we find that the function W(ql,q2) should satisfy the equation 

a2w/aq,aq2=o. (A l l )  

Consequently the potential U(ql,q2) should take the form 

U(q1, qz)= rWI(ql)+W2(~z)l~rAI(~z)-AZ(qI)I. (A121 

When account is taken of (A7) and (A12), the Hamiltonian 

where A is an arbitrary parameter, we find that Eq. (A9) 
admits of solutions of the type 

W (h) dh 
u(q" ")=J [ ~ ~ ( q , ) - l ]  [A2(ql)-hl (A 15) 

Expression (A 15) determines the class of potentials [defined 
accurate to the function W(A )I that leads to a completely 
integrable dynamic system with a Hamiltonian (Al). The 
supplementary first integral is then 

We note that the sum of the potentials of the type (A12) and 
(A15) is also an "integrable" potential. 
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