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We investigate the nonlinear properties of nonexchange magnetostatic spin waves (MSW) pro- 
duced in a ferromagnetic film by four-magnon self-action processes. Equations for the evolution 
of the envelope are derived in the weak nonlinearity and thickness inhomogeneity approximation 
for all three types of waves in the film-surface waves and forward and backward bulk MSW. The 
stability of the nonlinear MSW to longitudinal and transverse perturbations is investigated. The 
threshold powers for the onset of self-modulation and self-channeling of the considered MSW is 
investigated. 

PACS numbers: 75.30.Ds, 75.70.D~ 

The nonlinear properties of magnetostatic spin waves 
(MSW) propagating in a magnetic film (wave numbers 
k- l&103 cm-') are of interest from two points of view. 
First, the MSW have rather low exciting-signal thresholds 
compared with the optic acoustic waves at which nonlinear 
wave processes set in.' Second, the study of the nonlinear 
properties is of practical importance in view of the prospects 
of using MSW in microwave electronics.' 

1. We shall single out among the nonlinear processes 
the effects connected with self-action of the wave, when its 
nonlinear properties are due to the change of its own ampli- 
tude. Some features of nonlinear effects of this type were 
investigated earlier for propagating surface MSW.3 In the 
present paper we consider the nonlinear properties of all 
three types of MSW that propagate in a film, namely surface 
waves and forward and backward bulk waves. 

We start with the Landau-Lifshitz and magnetostatics 
equations": 

rot h=O, div (h+4nm) =0, oh=-? [mxh] , (1) 

where h is the magnetic field, m is the magnetic moment, and 
y is the gyromagnetic ratio. Solution of these equations in the 
linear approximation with the magnetostatic boundary con- 
ditions hl l ,  h, + h m ,  = const (hll ,  h,, and m, are respec- 
tively the tangential component and the normal components 
of the magnetic field and of the magnetization) makes it pos- 
sible to determine the structure of the MSW. We choose the 
coordinate frame such that its origin is at the midpoint of the 
film and the Z axis is perpendicular to the film plane. We 
consider for the sake of argument a magnetic film, normally 
magnetized (to saturation), when H llZ. In this case forward 
bulk MSW propagate in the film4 and their spectrum is iso- 
tropic in the XY plane. The solution of Eqs. (1) that are lin- 
earized in terms of the wave amplitude can be represented in 
the form2': 

(2) 
where q, is the dimensionless amplitude of the wave of the 
potential Y (VY = h), and r is the radius vector in the plane 
of the film, 

Knowing the potential Y we can determine from Eqs. 1 the 
magnetization 

The dispersion equation for forward bulk MSW is of the 
form 

2+~1+2[ - (1+~i ) ] "  ctg kd[- (l+x,)  ]'"=O. (4) 

This and the other dispersion equations will be represented 
below in the form G (k,o) = 0. 

To analyze the nonlinear MSW we use an approach 
based on the ideas of geometric optics, known in the litera- 
ture as the method of  envelope^."^^^ According to this 
method, an approximate solution of the nonlinear equations 
(I)  is sought likewise in the form (2), but the complex ampli- 
tude q, is assumed to be a function of the coordinate and of 
the time, i.e., q, = p(r,t ) and to vary slowly over a distance of 
the order of the period of the fundamental harmonic. It is 
assumed that the higher harmonics due to the nonlinearity 
are small. The presence of dispersion prevents in the general 
case the growth of the higher harmonics (at least at not too 
large amplitudes of the fundamental). The role of the nonlin- 
earity manifests itself in a dependence of the frequency or of 
the phase velocity on the wave amplitude, i.e., the nonlinear 
dispersion equation takes the form 

The dispersion relation (5) enables us to write down a nonlin- 
ear parabolic equation for the function q,(r,t ). This is done in 
the following manner (for details see Refs. 5 and 6). Let o, 
and k, be the frequency and the wave vector of the funda- 
mental. We expand the function G (k,o, Jq, I )  in a series in 
A k =  k -  k,, Am = o  -m,, and Ipl: 

The expansion coefficients are taken at A k,Ao,lq,l = 0. Re- 
placing the deviations of the frequency and of the wave vec- 
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tor by the operators A o  = ia/at and A k = - i(d/dx, a/ 
dy, 0) and recognizing that G (k,,w,) = 0, we obtain from the 
last relation a nonlinear parabolic equation for3'p: 

In the derivation of (6) it was assumed also that k, = (k,,O,O) 
and G = G (w,k,,k,,lp 1 2 ) .  In addition, the substitution d / 
dt -r - U, d/dx. was made in the terms with the second der- 
ivative. Using the dispersion relations for the corresponding 
MSW, we easily obtain the coefficient 8,. of (6). The coeffi- 
cient a in (6) can also be easily determined by calculating the 
dependence of the frequency of the homogeneous ferromag- 
netic resonance for the corresponding film-magnetization 
geometry, a procedure justified as k + 0. 

2. Before we proceed to the investigation of concrete 
cases, let us dwell briefly on the limitations of the employed 
method as applied to MSW. To this end we must discuss the 
effects of nonlinear interaction of MSW with other harmon- 
ics (multimagnon processes). Wave propagation in a nonlin- 
ear medium is accompanied by excitation of other harmon- 
ics. Their influence on the propagation on the fundamental 
wave reduces to the appearance, in the right-hand side of (6), 
of a driving force proportional to the product of the ampli- 
tudes that take part in the interaction of the waves) mag- 
nons). At sufficiently low amplitude of the fundamental 
wave the analysis is usually confined to three- and four-mag- 
non processes. In three-magnon processes the dependence of 
the aforementioned driving force on the time and on the co- 
ordinates is of the form exp(i[k, + k2)r - (w, + w2)t ] I .  One 
can therefore expect the response of the system to this small 
deriving foce to be insignificant so long as there is no reso- 
nance, i.e., k, + k2# k,), o, f w2#oo. Under resonance 
conditions energy is transferred from the fundamental mode 
to others that interact with it: (ko,wo) -+ (k,,ol),(k2,w2). The 
presence of such magnon decay (or coalescence processes) 
depends on the type of the MSW, on its frequency, and on the 
applied external magnetic field. 

The resonance regions for three-magnon processes in a 
magnetic film were determined in Refs. 1 and 7. Obviously, 
these processes can be the cause of the instability of the 
MSW. Three-magnon processes were studied in detail by 
Suhls and in later papers,9*10 in connection with the problem 
of the instability of homogeneous magnetization precession 
in a ferromagnet. A calculation similar to that in Ref. 8 leads 
to the following expression for the threshold amplitude of 
the homogeneous precession in the case of tangential magne- 
tization of the film: 

where w, = [wH(o, +a,)] ' I 2 ,  wH = yH, and 6w is the 
linewidth of the excited spin wave of frequency w(k ) = w/2 
(a, < w(k ) < o,). Recognizing that ask + 0 and w -+ w, the 
magnetization in the MSW is connected with its amplitude 
in the following manner [see (2) and (3)]: 

we obtain from (7) an approximate expression for the MSW 
threshold amplitude 

The corresponding estimate of the threshold power will be 
obtained below. 

As for four-magnon processes, they can be divided into 
two types." The first, "diagonal," describe accurate to 
third-order terms the "self-action" of the wave, which leads 
to a dependence of the frequency or of the phase velocity on 
the wave amplitude. They are taken into account in Eq. (6). 
The "nondiagonal" terms describe the changes of the phase 
velocities as a result of the mutual influence of the pair of 
waves-an effect hardly ever investigated for MSW. We 
shall neglect this effect. 

3. We consider a normally magnetized film. The struc- 
ture of the wave takes in this case the form (2), and the disper- 
sion relation is determined by Eq. (4). Recognizing that, at 
small deviation of the magnetization from equilibrium, 

we obtain with the aid of (2) and (3) as k -+ 0 

0 ~ = ~ 4 n M , + o ~ O  ( 1 -  I cp I '),  OH=^ ( H - ~ ~ M , ) + ~ H ~ + O M ~  I cp I ' 
as k + 0. After substituting the last expressions in the dis- 
persion relation (4) we shall see that the latter specifies impli- 
citly the frequency dependence o = o(k,Ip 12). For this de- 
pendence, the equation that describes the evolution of the 
wave envelope is of the form 

In the derivation of (9) it was assumed that the wave-front 
propagation direction coincides with the X axis. The station- 
ary solution of (9)-a wave of constant amplitude-is stable 
to longitudinal perturbations if dw/d 1 p 1 2)/(d 2w/dk 2, > 0 
(see Ref. 6). It follows therefore from (10) that direct bulk 
MSW are unstable to longitudinal perturbations. At the 
same time the conditions of stability to transverse perturba- 
tions of the wave front, (k /v, )dw/dlp 1 > 0 are satisfied for 
the wave. Equation (9) takes at d 'p/dy2 = 0 the form of a 
nonlinear Schrodinger equation, which is solved in principle 
by the inverse scattering problem m e t h ~ d . ~ . ~  In this method 
the solution of the nonlinear equation is connected with the 
solution of the linear spectral problem 

8% -=-iLgn+ irp 
ax 
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These equations describe scattering by a potential p(x,t ) that 
is a solution of the initial nonlinear Schrodinger equation. 

The time evolution of the scattering data is uniquely 
determined from the data on the scattering by the initial 
potential. By reconstructing the scattering potential for an 
arbitrary instant of time one can solve the Cauchy problem 
for the initial nonlinear equation. To reconstruct the poten- 
tial it is necessary to solve a system of integral equations that 
is analytically solvable only for particular cases of "nonre- 
flecting" potentials.13 The soliton solution (a solitary wave 
propagating without damping and without change of shape 
and amplitude) corresponds to the nonreflecting spectral- 
problem potential containing one eigenievel R ,. Since the 
number of eigenlevels An is conserved in time because the 
linear spectral problem corresponds to a nonlinear equation, 
it follows that knowing the number of eigenvalues An of the 
system (1 I), which correspond to an initial potential having 
the form of the initial perturbation q(x,O), we can predict the 
number of solitary waves into which the initial pulse will 
break up as t + co . In particular, an initial pulse of constant 
amplitude p, and duration T (length bll = v, T) is completely 
scattered as a result of dispersion if the amplitude is lower 
than the critical value defined by the condition 

This follows from the fact that the first eigenvalue A ,  in the 
spectral problem (1 1) for the rectangular potential appears at 
PO>d. 

The power of a forward bulk MSW is connected with its 
amplitude as follows: 

where L is the width of the MSW beam. In the derivation of 
(1 3) we used the equation 

io 
rot E=- -(h+4nm), 

C 

and we used the potential (2) to determine h and m. From 
(lo), (12), and (13) we obtain the threshold value of the wave 
power: 

Pthr = -- 
8 ox? 

At P> P,,, rectangular pulses (with carrier frequency w(k )) 
are transformed in the course of propagation into solitary 
waves-envelope solitons. It can be seen from (14) that as 
T + 0 the power P,,, -+ co . By increasing the pulse duration 
we can decrease the threshold value to zero. In practice, 
however, T is bounded, since the soliton should manage to 
take form during the time of motion between the input and 
output converters of the MSW, the distance between which 
is limited by the damping of the wave. An exact answer to 
this question can be obtained by solving the Cauchy problem 
for the nonlinear Schrodinger equation with the parameters 
(10). For approximate estimates, however, we shall assume 
here that 

whereSw is the MSW line width. We put d = IOpm, L = 0.5 
cm, 477M = 1750 G, and T = 20 nsec. We then obtain from 
(14) a threshold power P,,, = 0.4 mW. Formation of a large 
number of solitons calls for the power to be increased by 
(2n - 1)' times, where n is the number of solitons. 

4. We consider now the case when the magnetic field 
magnetizes the film parallel to its surface. The MSW spec- 
trum is in this case strongly anisotropic, in contrast to the 
preceding one. Backward bulk and surface MSW can then 
propagate in the film. The dispersion equation for the former 
is of the form14 

where q = kl/k,, , k,, I (  M and k = (k : + k i)"' is the wave 
number. 

The dispersion equation of the surface MSW is 

where q = kl/kll and kll 1 M. It follows from the equations 
of motion (1) that as k + 0 the eigenmode of the oscillations 
takes the form 

where e, is the dimensionless amplitude of the wave. Since 
w, = yH in the case considered, and 

or=y4nM,+ox0 [I- (I+oa2/oc) I (P 9 

the dispersion relation (15) or (16) can be represented in the 
form w = o(kl l  ,k :, lp 1'). For such a dispersion relation the 
evolution of the envelope is described by the equation 

where VII and V, are the derivatives with respect to ko in the 
longitudinal and transverse directions. Using the dispersion 
equations (1 5) or (1 6) we can find the coefficients of Eq. ( 17). 
Thus, for surface MSW 

At V: p = 0 Eq. (17) with coefficients (18) coincides with the 
nonlinear Schrodinger equation obtained by LukomskiL3 
The surface MSW are stable to longitudinal perturbations, 
for in their case (dw/d lp 1 ' ) / (a  '@/ilk ) > 0, and are unstable 
to transverse perturbation, since (dw/d Ip 1 ')/(dw/dk : ) < 0. 
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In the case of backward bulk waves, when k 1 M, we 
have 

O H O M  us= -- dZo 5 OHOK 

400 

This type of wave is unstable to both longitudinal and trans- 
verse perturbations. The presence of instability of backward 
bulk MSW to longitudinal perturbations points to the possi- 
bility of soliton formation. Using the criterion for the ap- 
pearance of the soliton solution (1) for a backward bulk wave 
and the asymptotic (as k -+ 0) expression for its power 

On" P=ndXLMZ - qOa, 
Oo 

we obtain the following formula for the threshold power of 
formation of a solitary nonlinear backward bulk MSW: 

5x: LdtW oo (1+30:/50d) p =-.--- 
thr 3 O M T ~  O M  (~+o~'/w:) ' 

(21) 

We choose bll = 0.1 cm, d = 10 pm, 0,/21~ = 6X lo9 Hz 
(H = 300 Oe), ~, , /ZP = 10" Hz, and L = 0.5 cm. We then 
obtain from (1 5) P,,, = 1.5 mW. 

5. The wave instability to transverse perturbation can 
lead to the appearance of solitons in the transverse direc- 
tion-to nonlinear self-channeling of the wave. This phen- 
omenon likewise has a threshold. Self-channeling is possible 
for surface and backward bulk MSW. Assume that the wave 
has a constant amplitude in the longitudinal direction, i.e., 
VII p = 0. We then have from (17) 

where x is the coordinate in the transverse direction. This 
nonlinear Schrodinger equation describes the diffraction of 
the wave. If we seek the solution of this equation in the form 
p = p(x) exp(if2t + a), where p(x) is a real function that de- 
creases to zero as 1x1 + w ,  we can obtain from (22) 

(23) 
In the soliton solution (23) the amplitude A is connected with 
the frequency by the relation 

The width A of the self-channeling region depends on 
the wave amplitude 

If the initial beam was homogeneous with width b, , the wave 
beam threshold amplitude p, at which a stable wave of the 

form (23) is produced in the course of the diffraction is deter- 
mined for Eq. (22) by the relation 

This condition is obtained in analogy with condition (12) for 
longitudinal solitons. From (25) we can obtain the threshold 
values for the corresponding waves. Thus, for a backward 
bulk MSW, using (1 5) and expression (20) for the power, we 
obtain from (25) 

For a surface MSW we can obtain similarly 

From a comparison of (26) and (27) it can be seen that at 
kd< 1 the threshold self-channeling power for the surface 
waves is much higher than for the backward bulk waves. At 
6, = 0.5 cm and k = 102 cm-' the threshold self-channel- 
ing power (26) is of the same order as the threshold powers, 
estimated above, for the formation of longitudinal solitons- 
self modulation. 

6. In conclusion, we estimate the threshold power for 
decay-type three-magnon processes. Recognizing that the 
asymptotic expression for the surface MSW is 

we obtain from (8) 

If we choose L = 0.5 cm, d = lOpm, 0, = 10 GHz, and 6w/ 
0,- we obtain from (28) P,,, = 2X mW. Thus, 
three-magnon processes have much lower thresholds than 
the considered four-magnon ones. Therefore, as noted in fact 
at the beginning of the article, the effects considered can be 
observed only outside the region where the resonance condi- 
tions for three-magnon processes are satisfied. Outside the 
resonance regions, when 140 - w, 1 >60, the condition (8) 
must be replaced by (see Ref. 8) 

Comparing the criterion for the presence of auto modulation 
(12) in the case of forward bulk MSW: 

with the criterion (29) we find that the latter effect will be 
observed if 

At the parameters indicated above, which are contained in 
the condition (30), this condition is satisfied. Experimental 
investigations of yttrium-iron garnet films' have shown that 
the threshold powers, outside the resonance regions for 
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three-magnon processes, increase to 100 mW. Thus, the 
power of the wave, with allowance for the loss to conversion, 
can reach values of the order of lop2-10- ' W. This points to 
a realistic possibility of observing the predicted effects. 

We have thus shown that in the absence of three-mag- 
non processes nonlinear effects of higher order can lead to 
the formation of MSW solitons. The formation of the soli- 
tary waves has a threshold, and depends also on the initial 
size (length or width) of the pulse. The effect of formation of 
transverse MSW solitons is analogous to the phenomenon of 
nonlinear self-channeling in optics. From the viewpoint of 
this analogy, a tangentially magnetized film is a focusing 
medium, while a normally magnetized volume is a defocus- 
ing medium. With increasing wave power, further splitting 
of the initial beam into two and more MSW beams is possi- 
ble. The required power increases then by a factor (2n - 
where n is the number of self-channeled MSW beams. 

APPENDIX 

Derivation of nonlinear parabolic equation for the wave 
envelope with forward bulk MSW as an example 

The initial equations (1) can be represented in the form 

where 

The nonlinear terms will be regarded as perturbations, as- 
suming the parameter q # (m: + m : ) / M i  to be small. In the 
zeroth approximation in this parameter, Eqs. (A. 1) and (A.2) 
take the form 

ma0 X i  avo 
4n( m / )  =(  - i x z ) ~ y  

Taking the boundary conditions Yo, aP,,/dzl, = , ,,, 
= const into account, we get (2). We represent the potential 
Y in the form of an expansion in a small parameter 

Y=Yo+Y,+Y,+ . . . , (A.5) 

where Yo is the zeroth approximation (2), Y, is the first- 
order correction, etc. In first-order approximation we as- 
sume that the amplitude p of the solution (2) (of the zeroth 
approximation) depends on the "slow" variables 2 and f. We 
then obtain from (A. 1) and (A.2), in first order in q, retaining 
the terms with the second derivatives with respect to the 
slow variables, 

ax aSvo - i ,  1'~ a x ,  a3yO azx,  a4y0 -- 2i- '+ -- 
a m  axz ar a .  a~ azas ao2 a x 2 a r  

The boundary conditions for Y, are of the same form as for 
the zeroth approximation. The secular perturbing terms in 
the right-hand side of (A.7) yield the sought nonlinear equa- 
tion if the last term is neglected. This can be done when 

Recognizing that as k + 0 we have w -+ w, + iw,kd, we 
obtain from (A.8)4' 

kd<81qf2. (A.9) 

From the condition that the system (A.7) with the indicated 
boundary conditions have a solution follows the sought non- 
linear equation 

(A. 10) 

where u, = dw/ak, u; = ba2w/dk 2, and o(k  ) is the disper- 
sion relation for the MSW. In the derivation of the last equa- 
tion we made in (A.6) and (A.7) the substitution d /  
a t  -+ - u,d/dx. When k -+ 0 we get 

as a result of which (A. 10) goes over into Eq. (9) obtained 
above by another method. 

"As usual, in considering the magnetostatic waves we neglect in the Lan- 
dau-Lifshitz equations the inhomogeneous exchange interaction. This is 
valid for sufficiently long waves k<(27rM '/A )'I2, whereA is the inhomo- 
geneous exchange constant (exchange rigidity). In yttrium iron garnet 
(YIG), for example, A -4 X lo-' erg/cm and 27rM - 1.3 x 10' erg/cm2, 
therefore this condition is satisfied at k<2 X 1@ cm-'. There is also a 
lower bound on k, connected with the employed quasistatic-behavior 
condition k>o/c, where or-  1 to 10 cm-'. 

2'By way of example we present a symmetric solution corresponding to 
the zeroth mode of practical interest, inasmuch as in this mode u,#O as 
k 0. The remaining modes attenuate strongly as they propagate, for in 
them u, = dw/dk + 0 as k + 0. 

-"It can be shown (see the Appendix) that the results of the described 
method agree with the direct derivation of the envelope-evolution equa- 
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tion from the initial system of equations (1) with the appropriate bound- 
ary conditions, when the condition kd<)p  12<1 is satisified. 

4'This condition may be weakened because the symmetry of the last term 
in (A.7) is the inverse of the symmetry of the remaining terms. 
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