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We have investigated the role of three mechanisms of electron loss by fast ions in a crystal during 
axial channeling, via coherent interaction (without excitation of phonons) and incoherent interac- 
tions (with excitation of phonons) with the screened nuclei of the crystal, as well as via inelastic 
interaction with the electrons of the crystal. The theory constructed permits prediction of the 
conditions under which each of these mechanisms of electron loss can turn out to be the principal 
mechanism. It is shown in particular how the rapid orientation dependence of the ionization 
probability which exists beyond the Lindhard axial-channeling angle under certain conditions 
and is due only to the periodic arrangement of the atomic strings, is replaced within the Lindhard 
angle by a weaker dependence due mainly to redistribution of channeled ions in impact param- 
eter. 

PACS numbers: 61.80.Mk 

INTRODUCTION 

In passage of charged particles through a single crystal, 
individual collisions of particles with crystal atoms are cor- 
related as the result of the periodic arrangement of the atoms 
in the lattice. This changes, under certain conditions, the 
probability of electron bremsstrahlung in the crystal (see for 
example Refs. 1-5), the probability of Coulomb excitation of 
levels of an ion moving along a crystal axis,&' ' the probabil- 
ity of scattering of charged particles during 
and finally the probability of loss of electrons by the ion 
(ionization) in axial ~hanneling'~. '~ and planar channel- 
ing. 16.17 

As was shown in Ref. 14, in axial channeling the action 
of the atoms of a crystal axis on the electron shells of an ion is 
equivalent in the dipole approximation to action of a flux of 
monochromatic photons with energy ih, =. 2mnfi/d, where 
u is the ion velocity, d is the lattice period, and n = 1,2, . . . . 
Therefore at sufficiently high ion velocities and not too high 
binding energies IE, I of an electron in an ion with charge Z it 
can turn outI4.l5 that the minimum energy of the equivalent 
photon ih,, = h l = . 2 d / d  is significantly greater than 

I .  In accordance with the behavior of the cross section for 
the photoeffect, this means that coherent ionization is highly 
s~ppressed. '~. '~ In regard to incoherent ionization due to 
deviations from strict periodicity as the result of thermal 
vibrations of atoms, it is suppressed in view of the smallness 
of these deviations. According to Ref. 15, the smallness pa- 
rameter with respect to the ionization probability in an equi- 
valent amorphous target at a given impact parameter p is 
E U ~ I E ,  12/@v2, where u is the amplitude of the thermal vibra- 
tions of the crystal atoms. These conclusions are valid in 
some intermediate region of channeled-particle velocities in 
which, on the one hand, the dipole approximation1' is satis- 
fied (v >Zoo), and on the other hand the longitudinal mo- 
mentum q,,, - I&, IG transferred in the ionization process is 
greater than the transverse momentum q, - l/p (in Ref. 15 
the authors took into account only longitudinal thermal vi- 
brations of the atoms of the crystal axis). Therefore the first 
purpose of the present work is to construct for the energy 

loss by ions in an axial channel of a crystal a theory that is 
valid both in the region of relatively small ion velocities and 
in the high-velocity region. A method of describing in a uni- 
fied manner the entire range of ion velocities was developed 
in our previous work and has been applied to the case of 
planar channeling.I6 The method used here permits, in parti- 
cular, going over from the axial-channeling case to a disor- 
iented crystal and tracing how the effect predicted in Ref. 16 
of a strong orientation dependence2' of the ionization prob- 
ability in the absence of axial channeling is significantly 
weakened as the entry direction approaches the axial-chan- 
neling directions. 

The results of the theory developed (see Secs. 2 and 3) 
permit detailed study of the conditions of appearance and 
suppression of coherent and incoherent ionization in an axi- 
al channel at high ion velocities. It has been shown that un- 
der certain conditions the ionization probability decreases 
by more than Z2 times (Z2 is the charge of the nuclei of the 
crystal) in comparison with the similar probability in an 
equivalent amorphous target. 

Therefore the second purpose of the article is to take 
into account the contribution made to the probability of 
electron loss by an ion by inelastic interaction of an electron 
of the ion with an electron of the crystal, leading to simulta- 
neous ionization (or excition) of a crystal atom and the fast 
ion. In an amorphous material this process is in order of 
magnitude Z2 times less probable than ionization of only one 
of the interacting particles. In a crystal this process, as we 
have mentioned above and as will be shown in Secs 2 and 3, 
can be strongly suppressed as a consequence of the periodic- 
ity in location of the atoms on the axis. However, the prob- 
ability of ionization as the result of inelastic electron-elec- 
tron interaction with change of the electron state of the 
crystal cannot be suppressed as the result of the periodic 
arrangement of the atoms on a crystal axis, since the propa- 
gation of the electronic excitation of even the outer shells 
over the crystal is much slower than the ion motion. (Propa- 
gation of an excitation of inner shells is in general unlikely 
because of competing effects that stop this excitation, such 
as the Auger effect or radiation.) The role of this mechanism 
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in the loss of electrons by an ion in the crystal was the subject 
of our attention in Ref. 17, where, among other things, we 
gave a qualitative estimate of the contribution of this mecha- 
nism to the ionization probability. In a previous articleI6 we 
developed a quantitative theory for the case of planar chan- 
neling. In Sec. 3 of the present article in the framework of the 
general formalism (Sec. 1) we have constructed the theory of 
ionization in axial channeling as the result of inelastic elec- 
tron interaction with excitation of both particles. 

51. LOSS OF ELECTRONS BY AN ION IN ELASTIC 
INTERACTION WITH CRYSTAL ATOMS 

Considering the interaction V,  of an electron ofa chan- 
neled ion with a crystal atom as a perturbation, following 
Ref. 16, we shall write the probability of loss of an electron 
by a multiply charged ion per unit path of the ion in the 
crystal in the form 

X ~ ( A E ~ ~ + A E ~ + A ~ , + A ~ , ) .  

(1) 
Here pi; is the final one-dimensional momentum of the ion in 
the axial channel of the crystal, p, is the momentum of the 
electron which has left the ion, and the summation is carried 
out over all initial states i, and final states f, of the trans- 
verse motion of the channeled ion and over all final states of 
the phonon subsystem of the crystal&; the symbol A in the 
argument of the Dirac S function represents the difference in 
energies in the initial and final states of the system; the total 
energy of the system is made up of the energy of longitudinal 
motion of the ion El, Ell = p i  /2M, the energy of transverse 
motion E ~ ,  the binding energy of the electron in the ion E,, 

and the phonon energy of the crystal E,; the zero-approxima- 
tion wave function $ is the product of the wave function of 
the free longitudinal motion of the ion exp(ip,zfi-')(~)-''~, 
the wave function of the transverse motion p,,(p), which 
satisfies the one-dimensional Schrodinger equation of an 
iron with transverse energy E, in the continuous potential of 
the crystal axis U,,,, (p), the wave function of the electron in 
the ion p, (r,), and the wave function of the nuclei of crystal 
p,. Then 

is the probability of population of a state with transverse 
energy E: in a channel on entry of the ion into the crystal at 
an angle 6 to axes the distance between which is d.I8*l9 

Using the formula 

where V, is the interaction energy of the separated electron 
of the ion with the nuclei and electrons of the crystals and p, 
is the wave function of the electrons of the crystal, R is the 
position vector of the nucleus of the ion, 

V,(r) is the potential of a crystal atom, and 

is the structure factor of the crystal (R, is the position vector 
of the atoms of the'lattice), after integrating in the matrix 
element V,  over the longitudinal coordinatez and then over 
dpi , one can obtain 

Since at high multiplicities of the ion charge Z the mo- 
mentum transferred in an inelastic transition will not depend 
on the energy of the transverse motion of the ion or the ener- 
gy of the crystal electrons in the final state, it is possible to 
sum expression (1') overf, andf,, using the completeness of 
the systems of functions p,, (p) and p,. After summation 
overf, one obtains the average over the initial state of the 
nuclei, which actually means averaging over the thermal vi- 
brations of the n ~ c l e i . ~  In addition, after summation over f, 
it is easy to sum over i, , using the fact that 

represents the probability of the distribution of the chan- 
neled ions with respect to the impact parameter and the crys- 
tal axes. As the result, after averaging over the thermal vi- 
brations of the nuclei, following the procedure of Ref. 16, we 
obtain 

Here the angle brackets with the subscripts SRo,Spo 
denote respectively averaging over themal vibrations of the 
crystal atoms along the longitudinal and transverse coordi- 
nates and only along the transverse coordinate; A is the "vol- 
ume" of the one-dimensional unit cell of the crystal, n ,  is the 
density of atoms in the crystal string, g is the one-dimension- 
a1 reciprocal-lattice vector, pi is the radius vector of the loca- 
tion of the i-th string of the crystal, and w(p) is the sum of the 

339 Sov. Phys. JETP 57 (2), February 1983 V. A. Bazylev and A. V. Demura 339 



coherent probability w,,, (p) win, (p) of ionization of the 
channeled atomic particle: 

The coherent part of the ionization probability which is due 
to phononless scattering by the vibrating atoms of a string, is 
written in the form 

Hereg = 2m/d (n = 1, 2, ...), m is the electron mass, dL!, is 
the solid angle defined by the direction of p,, in the sum over 
i we need consider only the closest strings forming the axial 
channel, and in the sum over g we need consider only the 
minimum g which satisfies the condition g) IE, q(x )  is 
the Heaviside unit function, and the wave functions g, f and 
g,; in the matrix element (eiq'> describe respectively the ini- 
tial state of the electron in the ion with energy E, and the final 
state of the electron of the ion with a definite energy 
4 = gfiv - I E, I in the continuum. 

The incoherent part of the probability due to produc- 
tion (and annihilation) of phonons we shall write in the form 

- e?111ZU2 I ( @ ) ) 6 p a  12} Iq =Ihe,l,fiv. 
I1 

(5) 
We note in conclusion of this section that in obtaining 

Eq. (5) we summed over the final states of the phonon subsys- 
tem of the crystal and therefore the phonon variables enter 
into the result (5) only in the form of an average over the 
thermal vibrations of the atoms. 

52. LOSS OF ELECTRONS BY AN ION AS THE RESULT OF 
PHONONLESS SCATTERING 

If g(r, ) ( 1, where (r, ) is the mean radius of the elec- 
tron orbit in the ion, the coherent part of the probability can 
be represented in the dipole approximation in the form 

where 6, (a) is the cross section of photoionization of the ion. 
For the fraction of well-channeled ions the distances 

Ip - pi I,, to the strings which form the axial channel in the 
crystal are greater than the amplitude u of the transverse 
vibrations of the atoms. Then we can use the expression 

Ref. 15 by the method of time-dependent perturbation the- 
ory. Here 

is the one-dimensional Fourier component of the potential of 
a crystal atom. 

For higher charge states of the channeled ion Z and 
unexcited states of the electron in this ion n = 1, and also for 
relatively low velocities of the ion in the crystal, it may turn 
out to be necessary to transfer a rather large momentum g in 
the longitudinal direction. If in this case we have the inequa- 
lity 

gaBniax[ 1, Ip-pi1 e~,u-'], 

then the following expression is valid: 

If we consider the case of loss of an electron by an ion from an 
excited state, in which 

<rz>x81, gmi,,(rZ)Bi, (10) 

(aTF = N)X-I is the Thomas-Fermi radius of the crystal 
atom), then the probability of loss of the electron by the ion 
can be expressed in terms of the ionization cross section in 
the Born approximation a(q, x,) by an atomic particle of 
unit charge moving with velocity v, written in the variables 
of the momentum transfer q and the momentum xq of the 
electron emitted from the ion with the following values of 
these parameters: q = g, xq = xg = ( 2 m w  - I E, I))''2/fi, 
i.e., 

In the sums it is usually sufficient to take one term with the 
minimum reciprocal-lattice vector satisfying the condition 
g,, h> IE,  I and the strings closest to the ion (or one string). 

For the condition 

we have 

If the inverse inequality is satisfied, then 

For specific calculations it is possible to use the Moliere po- 
tential: 

which together with Eq. (6) leads to the result obtained in 
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In this case Ug and Vg which enter into Eqs. (8), (9), (13), and 
(14) are given by the formulas 

It is also possible to use the Barrett model,20 which a, 
= 10.4; 0.61, Pi = (2.984; 0.4741, or the Firsov modelI2' 

which is valid, in particular, even for very light crystals. 
As follows from Eqs. (4), (6), and (1 1), in the dipole ap- 

proximation the coherent ionization can be suppressed if the 
energy of the equivalent photon is significantly greater than 
the binding energy of the electron in the ion (in accordance 
with the behavior of the cross section for the photoeffect), 
and in the nondipole region it can be suppressed as a result of 
the smallness of the cross section for ionization of the ion by 
a charge for a high energy of the electron emitted from the 
ion. 

Let us analyze now the dependence of the ionization 
probability on the entry angle 6 of the particle into the crys- 
tal with respect to the lattices axes. If the entry angle is less 
than or of the order of the critical angle for axial channeling, 
this dependence is due only to the dependence p(p) of the 
probability of distribution of the ions in the impact param- 
eters relative to the crystal axes. This occurs because the 
trajectory of a channeled ion is strongly curved in the field of 
the continuous potential of the crystal axis. The spectrum of 
the perturbation due to collision of an ion with atoms of 
different strings in the same direction (or merely with differ- 
ent strings) is not represented here by a definite frequency 
which is sufficient for ionization and which furthermore 
must depend on the entry angle. 

The situation changes, however, for ion entry angles 
into the crystal significantly greater than the axial-channel- 
ing critical angle 6,. In this case the motion of the ion is on 
the whole close to rectilinear. Therefore the spectrum of the 
perturbation contains in addition to the frequency 
w = 2l7v/d other definite frequencies equal to the reciprocal 
of the time of flight between neighboring axes (or planes) of 
the crystal (w = gv, where g is the three-dimensional recipro- 
cal-lattice vector). These frequencies, and consequently also 
the ionization probability, already depend substantially on 
the angle 0 with respect to the axes (or planes) of the crys- 
tal.I6 We shall obtain this result from Eqs. (2) and (4). Actual- 
ly, for 8>8, the probability of the distribution in impact 
parameter no longer depends on p, namely:p(p) = d -2. (For 
simplicity and convenience we have taken a cubic crystal.) 
Then we represent the square of the modulus, which enters 
into Eq. (4), in the form of a quadruple integral overd 'q, and 
d 'do0 (see Eq. (2)). We then integrate over d 2p, using the 
well known representation of the two-dimensional Dirac 
delta function. Then, after use of the formula 

a 
g1 

where p, is the two-dimensional vector of the location of the 
crystal strings in the plane perpendicular to this string and 
g, is the two-dimensional reciprocal-lattice vector of this 
plane, we obtain for the ionization probability Win the two 
limiting cases the expressions obtained in Ref. 16 by another 
method: 

Here n. = n ,/d ' is the density of atoms of the crystal, g is 
the three-dimensional reciprocal-lattice vector, and U, is 
the three-dimensional Fourier component of the potential of 
the crystal atom. These formulas show a rapid dependence, 
which appears in view of the dependence of up on g v and of 
ue on x,, of the ionization probability (and in particular its 
anomalous behavior if the ion has more than one electron in . 
its orbit) on the entry angle of the particle into the crystal 
with respect to its axes; we mentioned this dependence and 
its behavior above. Thus, the relatively weak orientation de- 
pendence of the probability of electron loss by an ion within 
the Lindhard critical angle in axial channeling, which is due 
mainly to the effect of redistribution of the flux of ions in 
impact parameter, is replaced beyond the Lindhard angle by 
a stronger dependence due only to the periodicity of the prin- 
cipal axes of the crystal. 

For observation of these effects it is necessary that the 
disturbance spectrum that is equivalent to the lattice be dis- 
crete, i.e., that the crystal be ideal. Thermal vibrations lead 
to an incoherent perturbation which can be equal in strength 
to the action of the coherent perturbation. It is apriori clear 
what conditions are necessary for the smallness of the inco- 
herent perturbation which is due to deviations from period- 
icity. First it is necessary that the change in the potential of 
an atom at distances of the order of the thermal-vibration 
amplitudes u be significantly less than the value of the poten- 
tial itself. Since the effective range of the potential is x - ' ,  
this requirement is satisfied for xu(1, i.e., for sufficiently 
light crystals. Second, it is necessary that the mean radius of 
the electron orbit in the ion ( r , ) ,  be greater than u. Other- 
wise the main contribution to the ionization probability will 
be from the region of small distances from the ion to the 
nuclei of the crystal r 5 u, for which the condition of period- 
icity of the potential and consequently of discreteness of the 
perturbation spectrum is not satisfied. 

As an illustration of the theory developed above, we can 
mention, for example, the relative magnitudes and locations 
of the orientation peaks due to coherent ionization of the ion 
0+5 in a disoriented target, i.e., in the absence of channeling, 
under conditions in which the dipole approximation p)Zve 
is applicable (see the figure). 

In the diamond crystal chosen as a target, the necessary 
conditions given above for appearance of orientation effects 
are satisfied. 
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FIG. 1. Illustration of relative magnitudes and locations of orientation 
peaks associated with coherent ionization of an 0+' ion in traversal of a 
diamond crystal at a small angle 9 to the ( 1  1 1 )  plane. The abscissa shows 
the angle 9 in degrees between the direction of the velocity and the ( 1  11 )  
plane, and the ordinate gives the logarithm of the number of ionization 
events per unit path for one particle in relative units. The numbers identi- 
fying the peaks have the following meanings: 1 and 2 are ionization from K 
and L shells, respectively, by the first harmonic; 3,4 and 5 are ionization 
from the L shell by the second, third, and fourth harmonics, respectively. 

An orientation-peak structure similar to that shown in 
the figure in the ionization probability per unit length arises 
also in the case of planar channeling. However, it should be 
noted that in planar channeling the structure of the orienta- 
tion peaks will be much more distinct than in the case of a 
disoriented target, since the incoherent background due to 
production (or annihilation) of phonons is highly suppressed 
in channeling (see Ref. 16 and Sec. 3 below). 

93. LOSS OF AN ELECTRON BY AN ION AS THE RESULT OF 
INCOHERENT INTERACTION WITH VIBRATING ATOMS OF A 
CRYSTAL 

The formula for the incoherent part of the probability 
(5) is also simplified in a number of limiting cases. Let 
v>Zv,; then for well-channeled ions (Ip - pi I,,>u), upon 
fulfillment of the inequality 

x<r , )< i ,  (16) 

which is satisfied for unexcited states of a multiply charged 
ion (n<Z 'I2), we obtain from (5), after carrying out the neces- 
sary expansions and integration, 

This result coincides with Eq. (17) of Ref. 15 if in Eq. (17) 

above we neglect the last two terms in the curly brackets, 
which stem from allowance for the transverse thermal vibra- 
tions (in Eqs. (17) and (1 8) A is the two-dimensional Lapla- 
cian). 

When the condition 

is satisfied, however, the incoherent part of the probability is 
determined by the transverse (and not longitudinal) thermal 
vibrations. Therefore for well channeled particles 
(I p - ri 1, N U )  we obtain from Eq. (5) 

thr 

Then let v, <v<Zy,, which is satisfied for excited states 
of a multiply charged ion. In this case the exponential 
exp(iq .rz) oscillates strongly and the main contribution to 
the integral over d 3pe is from p, values in the vicinity of the 
solution of the equation p: = q(p:)fi. Replacing q{(rz) by 
exp(ipr,fi-') in (2) and expanding q(p) near pz, we can then 
integrate over d 3p, in (5). 

If here the inequality umvfi-'4 1 is valid, then we can 
obtain from (5) for the probability of loss of an electron by an 
ion the following result: 

However, if the inequality u m d - ' >  1, is satisfied, the influ- 
ence of the periodic location of the atoms on the crystal axis 
can be neglected. According to Eq. (5), in which it is neces- 
sary to take into account only the first term in the curly 
brackets, this leads to the formula 

As follows from Eqs.(l7), (18), and (19), the probability of 
incoherent ionization is suppressed by the periodicity of the 
atoms in strings in comparison with the probability of ioni- 
zation in an amorphous target3 (for a given impact param- 
eter), and also in comparison with the probability of coher- 
ent ionization at the maximum. This is a consequence of the 
smallness of the deviations of the crystal lattice from ideal. 
Therefore an ion moving far from a string and with suffi- 
ciently high velocity, when the transverse and longitudinal 
momentum transfers are relatively small, will feel these de- 
viations only slightly. The suppression parameter is the ratio 

u2/max [ (p-pi)', ( f iv)  ' 1 E r  1 -'1 x-21. 

In addition, the probability is small in comparison with the . 

probability in an amorphous target, as a result of the redis- 
tribution of the flux of channeled ions over impact param- 
ete?' (the Fourier component of the atom potential V, @) is 
small ifp,,>x-', as is the case for channeling). 
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Therefore for very fast ions in an axial channel of a crys- 
tal it is possible to have a different principal mechanism of 
electron loss as a consequence of the simultaneous inelastic 
interaction of an electron of an ion with the electrons of the 
crystal. For this one must have the following conditions sat- 
isfied: 

here the probability of ionization of an ion in a crystal by 
elastic interactions turns out to be suppressed in comparison 
with the similar probability in an amorphous target by more 
than Z2 times. These conditions are realized, for example, in 
a diamond crystal for an 0+5 ion with v 2 2 lo9 cm/sec. 

In the case of a disoriented crystal ( 8 ~ 0 , )  the flux of 
ions is uniformly distributed over the impact parameterp. It 
is then possible to integrate Eq. (5) over d 2p and then over 
d 'q, . As a result of Eqs. (5) and (2) we obtain the formula 
derived and studied in Ref. 16 as the limiting transition from 
planar channeling (k,, = Mv/fi): 

W =  4n2Mhez 
ku vh8 

94. IONIZATION OF ATOMIC PARTICLES AS THE RESULT OF 
INELASTIC INTERACTION WITH THE ELECTRON 
SUBSYSTEM OF A CRYSTAL 

Let us investigate the process of ionization as the result 
of simultaneous inelastic transitions in the electron shells of 
the channeled ion and the atoms of the crystal. 

Using the formalism developed in Sec. 1 and replacing 
the variables characterizing the phonon state of the crystal 
by variables which characterize the electronic state, it is easy 
to obtain the following formula for the desired probability 
instead of the similar expression (5) for the incoherent prob- 
ability (the coherent part of the probability is equal to zero 
because, as was stated above, the electronic excitation is not 
capable of following the ion): 

where M 6, is the diagonal matrix element between the ini- 
tial wave functions of the electrons of a crystal atom; 

x exp [iq, @-pi-pa) -iqr; I (efqrx)  c ,I $-a,t+(~*, /no)*, 

are the coordinates of the electrons of the crystal atom, 
and the summation overs signifies a sum over the electrons 
in the crystal atom (s = 1, 2, ..., 2,). 

Let v>Zv,. Then also we have I p - pi 1 >aT, > (r ,  ). 

Then in Eqs. (22) and (23) we can make the following substi- 
tutions: 

As a result we obtain for the probability of loss of an 
electron by an ion per unit path in the crystal the expression 

This result shows that the spectrum of photons that are 
equivalent to the field of the electrons of the crystal depends 
substantially on the distance to the strings where the maxi- 
mum electron density occurs, and the intensity of the photon 
flux is proportional to the number of electrons of the crystal 
atom Z,. This is natural, since the electrons of the crystal 
atom are bound considerably more weakly than an electron 
of the ion, and in the process of the simultaneous inelastic 
transition the former can be considered as free. 

If I p - pi 1 > (r ,  )aT,, which can be the case for suffi- 
ciently heavy crystals and excited states of a multiply 
charged ion, and the ion velocity is given by Zv,)v>v,, we 
can assume in Eq . (23) that exp( - iqr: ) -- 1 - iqr", , take the 
matrix element ( e~p( iq r , ) )~  outside the integral over dq,, in- 
tegrate in Eq. (23) over d  3p, using the resonance of this ma- 
trix element near p: = q,, (p:)fi, and after several manipula- 
tions obtain 

Here (d  2, is the mean square of the dipole moment of the 
crystal atom. 

As follows from Eqs. (24) and (25) and from their com- 
parison with Eqs. (17), (19), and (20), in light crystals for well 
channeled, sufficiently fast ions the probability of electron 
loss by the ions can exceed the similar probability for an 
elastic interaction. 

In the case when there is no channeling (8>8,) it is 
possible to derive from Eqs. (22) and (23), in the same way as 
in derivation of Eq. (21), the following formula for the prob- 
ability 

where F(q)  is the form factor of the crystal atom. Equation 
(26) was obtained in Ref. 16 by another method and was 
investigated in various limiting cases. 
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55. APPLICABILITY OFTHE THEORY, ANDTHE EQUILIBRIUM 
CHARGE OF IONS IN A CRYSTAL 

The formulas obtained in the present work for the prob- 
ability of electron loss by an ion in a crystal cover practically 
the entire region of ion velocity in which it makes any sense 
at all to look for this probability, i.e., the regionv~v, where 
the ionization probability is greater than the probability of 
capture of an electron by the ion. In this region, perturbation 
theory in the interaction of the electron with the atoms of the 
material can be applied satisfactorily even in an amorphous 
solid (see for example Ref. 23). In a crystal, as was shown 
above, the probability of electron loss by an ion under certain 
conditions may turn out to be suppressed as a consequence of 
the periodic location of atoms in a string and also as a conse- 
quence of the smallness of the field at sufficiently large dis- 
tances of the main part of the channeled ions from the string. 
(For the main part of the channeled ions small impact dis- 
tances of the ions to the strings are not reached.) We recog- 
nize also that the transition of electrons from crystal atoms 
to rather deep orbits (Z>5) of a multiply charged ion (charge 
exchange) at velocities v 5 v, also is suppressed as the result 
of the impossibility of intersection of deep orbits with nearly 
equal electron binding energy at large distances from the 
channeled ion to the atoms of the string. Therefore a stable 
charge state of the channeled ion can be preserved up to 
velocities v-v,, SO that it is possible to use perturbation 
theory. In particular, this is a distinction of the condition of 
applicability of perturbation theory for calculation of ioniza- 
tion probability in a crystal in channeling from the condition 
of applicability of perturbation theory in an amorphous sol- 
id. 

The results of the theory developed in this work show 
that the process of establishing the equilibrium charge for 
ions in axial channeling differs substantially from the same 
process for ions in an amorphous material. In view of the 
rather strong suppression of the incoherent probability of 
electron loss and the smallness of charge exchange, we 
should expect a significant increase in the time of establish- 
ment of the equilibrium charge of multiply charged ions in 
an axial channel of a crystal at high ion velocities, when 
2?rf)vld> I E, I. However, if 2?rf)v/d - E, I, the ionization is no 
longer small, owing to the increased contribution of coher- 
ent ionization. Here effective charge exchange, which is sen- 
sitive mainly to the impact parameter, remains suppressed. 
This leads to a decrease of the time for establishment of the 
equilibrium charge in a crystal and to an increase of the equi- 
librium charge, which is especially important under condi- 
tions of only a small increase (relative to an amorphous tar- 
get) of the phase space of the ion beam after traversal of the 
thickness of the crystal. These tendencies exist also under 
conditions of planar channeling,16 and differ only in the 
magnitude of the effect. 

A different situation will exist in the case of passage of 
ions through a disoriented crystal. When the following con- 
ditions are satisfied (see Sec. 2 and also Ref. 16): 

uBu,, 5g,,,v~I~,I, (r,)Bx-'Bu, (27) 

the probability of electron loss by an ion turns out to be 
suppressed in comparison with the similar probability in an 
amorphous material. However, the probability of capture of 
an electron by an ion for v >  v, is the same as in an amor- 
phous solid, as a consequence of the uniform distribution of 
ions over impact parameter, and also as a consequence of the 
insensitivity of charge exchange to the periodicity of the 
atoms in the crystal. It is then clear that the time of establish- 
ment of the equilibrium charge can only increase, while the 
equilibrium charge can only decrease in comparison with the 
similar values in an amorphous material. 

However, if the inequality (27) is not satisfied, which 
usually occurs in heavy crystals at relatively low ion veloc- 
ities and sufficiently deep electron orbits in the ion, the pro- 
cess of ionization and charge exchange, and consequently 
also the process of establishment of the equilibrium charge, 
are not distinguished from the similar processes in an amor- 
phous material. 

' I  In what follows, v, and a, are the atomic units of velocity and length. 
''That is, of the dependence on the small (0% 1) (but nevertheless signifi- 

cantly greater than the Lindhard critical channeling angle) angle of en- 
try of the ion with respect to the principal axes of the crystal. 

"By way of illustration we point out that the results for an amorphous 
target are obtained from the general formulas (4) and (5) in the limit 
Y--+ m. 
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