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Nonlinear magnetothermal processes are considered in a dense magnetized high-pressure plas- 
ma, when /3 r 8 ~ n T / H  '> 1. The different regimes of cooling of such a plasma are classified. It is 
shown that the effective thermal conductivity of a plasma with largepcan be much larger than the 
classical (of the order of the Bohm thermal conductivity) even in the absence of turbulence in the 
plasma. The radiative cooling wave produced by contact of a hot and cold plasma in a magnetic 
field is investigated. The structure of the transition region and the rate of condensation of the hot 
plasma are obtained. 
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INTRODUCTION 

The interest in research into the properties of high-pres- 
sure plasma, i.e., a plasma whose gaskinetic pressure is much 
higher than the pressure of the magnetic field (the quantity 
fl r812n T /H ') 1) is due to a considerable degree to a number 
of suggestions made to use such a plasma for controlled ther- 
monuclear fusion.14 In this case the role of the magnetic 

' 

field reduces only to suppression of the thermal conductiv- 
ity, while the mechanical plasma confinement is ensured by 
the rigid walls of the chamber. The main question here is the 
rate of cooling of the hot plasma via heat flow to the walls 
and bremsstrahlung that leaves freely the volume of the plas- 
ma. The reason is that the cooling of a plasma withfl) 1 has a 
number of features that distinguish it from cooling of a low- 
pressure Gg<l) plasma, the behavior of which has already 
been well investigated. Principal among these features is the 
motion of the plasma and the strong distortion of the exter- 
nal magnetic field, both on account of this motion and as a 
result of thermoelectric effects (the Nernst effect). Since the 
thermal conductivity of the plasma depends in turn substan- 
tially on the magnetic field, a rather complicated and varied 
picture of interrelated magnetothermal phenomena appears 
here. Therefore this problem was solved up to now only by 
numerically integrating the transport equations for some 
specific values of the  parameter^,^-^ or by using certain sim- 
plifying assumptions concerning the structure of the mag- 
netic field.'' In the present paper we consider analytically 
various regimes of cooling plasma with/3) 1. It is shown that 
the features noted above lead to a noticeable increase of the 
thermal losses, and accordingly to a decrease of the energy- 
dependent plasma-confinement time." 

The problem of contact between a hot plasma and a cold 
plasma or a cold gas is frequenty encountered in astrophys- 
ics. Such a situation arises, e.g., as a result of the develop- 
ment of thermal instabilities in hot intergalactic plasma. In 
the absence of external energy sources, the radiation losses 
from the plasma lead to condensation of the hot phase on 
clouds of cold gas. This problem was considered in a recent 
paper,'' where the rate of condensation of the hot plasma 
without a magnetic field was obtained. We solve below a 
similar problem for a strongly magnetized plasma. In this 

case the picture of the plasma flow changes substantially, 
and the condensation rate is found to be anomalously large. 

51. BASIC EQUATIONS 

We consider a one-dimensional planar problem, assum- 
ing the gradients of all the quantities to be directed along the 
x axis and the magnetic field along the z axis. The thermal 
processes of interest to us are much slower than the hydrody- 
namic processes, therefore the plasma flow velocity is less 
than that of sound, and the pressure in the system can be 
regarded as uniform: 

Here n = n, = ni is the density of the electrons and ions of 
the hydrogen plasma, and T = T, = Ti is their temperature. 
As will be shown below, in certain cases the magnetic field in 
narrow layers increases so much that its pressure becomes 
comparable with the gaskinetic pressure of the plasma. 
Therefore account is taken in (1) also of the magnetic-field 
pressure, although in the bulk of the plasma it is negligibly 
small. The equations for the magnetic field and for the heat 
balance of the plasma are given in ~ r a ~ i n s k g s  review.13 US- 
ing his notation we obtain 

where v is the plasma flow velocity, Q, is the volume radi- 
ation power, a, and are the plasma electric and thermal 
conductivities transverse to the magnetic field, and P,, is the 
thermoelectric coefficient. The last terms in the right-hand 
side of (3) describe the dissipation of the current in the plas- 
ma because of the finite conductivity and thermoelectric 
power (the viscous effects are insignificant here). Together 
with the continuity equation 
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Eqs. (1)-(3) form a complete system of equations that de- 
scribes the cooling of the plasma in a magnetic field. The 
kinetic coefficients ul ,x,, and PA in this system have entire- 
ly different forms in the case of strongly magnetized 
(w,~) 1) and unmagnetized wHr( 1) plasma (w, is the cyclo- 
tron frequency and T is the time between the collisions). Even 
approximate formulas13 suitable for all values of the param- 
eter W H T  are quite cumbersome. We use therefore simple 
model expressions that describe qualitatively correctly the 
behavior of the plasma transport coefficients in both limiting 
cases. To this end we consider separately three regions of the 
plasma parameters: region I-relatively hot plasma with 
magnetized ions (o ,~)~ > 1; region III--cold unmagnetized 
plasma, where (w,~), < 1; intermediate region 11, where the 
electrons are magnetized but the ions are not. Recognizing 
that ( 0 ~ 7 ) ~  = p 1 ' 2 ( ~ H ~ ) ,  , wherep=me/mi 1 is the ratio of 
the electron and ion masses, the limits of region I1 are ex- 
pressed as follows: p1I2 < (0 ,~)~  < 1. Now the kinetic coeffi- 
cients of the plasma can be represented in the following 
formI3: 

nc T/eH (o& in region I 
ne?, 

(TI =- , xL = [ ncT/eH in region I1 , 
m., ncT (oHde/eH in region 111 

We have already noted above the important role of the 
Nernst effect in the evolution of the magnetic field in a plas- 
ma withp) 1. It is convenient to interpret Eq. (2) as the con- 
tinuity equation for the magnetic field, where the magnetic 
flux is 

We see therefore that the Nernst effect leads to an additional 
drift of the magnetic field, directed opposite to the plasma 
temperature gradient. We introduce the velocity of this drift: 

It is connected with the rate of thermal-conductivity diffu- 
sion of the heat 

by the following relations which follow from (5): 

I 12 ~ 'I 'VT~ (OHT)~ > 1 ( region I) 
VH]= VT/(~HT),, 1 < (OH%), < p-'/* ( region I I). 

'12 VT, (OH%), < 1 ( region III) 

(7) 
This connection will be used later to find the magnetic field. 

52. ANOMALOUS THERMAL CONDUCTIVITY OF PLASMA 

The relative role of the thermal conductivity and of ra- 
diation in the cooling of a plasma depends on the dimensions 
of the system. Obviously, at sufficiently small dimensions 
(quantitative criteria will be indicated below) the loss to radi- 

ation can be neglected. To determifie the cooling rate of the 
plasma we consider in this case the following problem. Let at 
the initial instant of time a homogeneous hot plasma with 
temperature To and density no, situated in an external mag- 
netic field Ho, be brought in contact with a cold wall having 
zero temperature (the plasma occupies the half-space x > 0). 
In this problem there is no characteristic scale of length, so 
that its solution should be self-similar. Since further evolu- 
tion of the system is connected with the thermal conductiv- 
ity of the plasma, the self-similarity is diffusive and the self- 
similar variable ( can be expressed in terms of the thermal 
diffusivity of the hot plasma x0 = xlo/no: 

(8) 
H=H,H(E), v=- (x0lt) "v ( E )  

(the plasma flow is directed towards the wall, so that 
v(x,t ) < O).Now T (5 ),ng ),H (( ), andv(f )areheredimension- 
less functions, for which we obtain from (1)-(4) the following 
equations: 

nT+H2/fl,=1+~o-i, (9) 

HerePo= 1 b n 0 T d H  > 1, but in this case the hot plasma is 
assumed to be strongly magnetized, so that (wHiri),r6,> 1. 
In this notation, u = T~' '  

As the first step we shall assumep, to be infinitely large 
(it will be seen from the solution when this quantity must be 
regarded as finite). It follows then from (9) that n T  = 1, and 
from (1 I )  that the heat flux is constant; this flux receives a 
contribution from the plasma flow and from the thermal 
conductivity: 

Here v0 is the flow velocity of the hot plasma as 6- + oo, 
and determines in fact the heat flow to the wall and by the 
same token the plasma cooling rate. The effective thermal 
conductivity x, of the plasma is in this case obviously 

X eft = U O ~ X ~ O .  (15) 

Since vo turns out to be large (vo)l), we call this thermal 
conductivity anomalous. When the temperature in the layer 
next to the wall decreases, the plasma flow velocity de- 
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creases, therefore the convective heat flux is significant only 
in the region of hot plasma with T- 1, while at T 4  1 the 
principal role is played by thermal conductivity, and it fol- 
lows from (14) that 

This equation determines in principle the temperature pro- 
file T ( l ) ,  which contains the quantity v0 as an as-yet-un- 
known parameter. The thickness of the wall layer is 
Alee v, '. To find v0 we must use the continuity equation 
(12). The plasma flux 

(we take into account the fact that on the whole, i.e., at < = 0, 
the flux is zero). Therefore 

The integral in the right-hand side is proportional here to 
v; ', so that knowing the solution of (16) we can determine 
from it the value of v,. As will be shown below, the main 
contribution to the integral (17) is made by the region of 
relatively cold plasma with temperature T-T. 41. This 
means that the substance brought in by the flow of the hot 
plasma accumulates in a region with T- T.. Therefore at 
T> T. the plasma flux remains constant: 

and at T >  T. the flux decreases rapidly and vanishes on the 
wall. 

Since the thermal conductivity x of the plasma depends 
substantially on the magnetic field, Eq. (16) must be solved 
jointly with Eq. (10) for the magnetic field, and the solution 
of the latter is very sensitive to the boundary condition on the 
wall. We consider here two limiting cases: and ideally con- 
ducting and non-conducting wall. We begin with the latter, 
when the magnetic field at the wall remains unchanged: 
H (6 = 0) = 1. The system (9)-(13) contains two dimension- 
less parameters, 0, and So, different values of which are con- 
veniently represented as points on the &, 6,) plane, see Fig. 
1. We can separate here four regions (a,b,c,d ) in which the 
structure of the wall layer turns out to be different. The 
boundaries of these regions are shown schematically in Fig. 
1, and the meaning of this subdivision will be made clear by 
the exposition that follows (we recall that we are interested 
only in values ofB, and 6, larger than unity). In region b, Fig. 
1, where j?, is large enough, we can neglect the magnetic 
viscosity and, using the previously introduced magnetic- 
field drift velocity VH, due to the thermoelectric effect, write 
(10) in the form 

The quantity VH is connected with the heat diffusion rate VT 
by the relations (7). But Eq. (16) means that VT is now a 
constant equal to 5v0. Therefore 

FIG. 1. Breakdown of the plane of the dimensionless parameters (B0,6,) 
into regions with different structure of the wall layer ofthe plasma in the 
case of a nonconducting boundary. 

We see therefore that the magnetic-field flux carried to the 
wall as a result of the Nernst effect is of the same order as the 
convective magnetic flux from the hot plasma (q, a~ ) - qH (0) 
-vo). At the same time, as follows from (19), the change of 
the magnetic flux is 

It can then be assumed that AqH 49, for sufficiently large u,, 
and the magnetic field can be obtained from the condition 
that the flux q, be constant: 

q,=(v+Vn) H=v,. (21) 

From relations (18) and (20) for the velocities v and VH and 
from (21) it follows that at -p1l2 the velocity v, V,, there- 
fore the magnetic field is frozen-in there in the plasma: 
H-n = T -'. The Nernst effect comes into play at ~ - p ' / ' ,  
and then, with further decrease of temperature, it assumes 
the principal role in the outflow of the magnetic field (V,)v 
at T@ 'I2). As a result, the profile of the magnetic field takes 
the form shown in Fig. 2. At T + " ~  the field H=  (2/ 
15)p-'12 in region I and H = 2/15 in region 111. The lower 
(temperature) limit of region I coincides here with the upper 
limit of the region 111: T = ~ ~ ( 1 5 / 2 ) ~ / ~ p ' / ~ ~  i 2 1 5 ,  SO that at 
T = Tl a jump of the magnetic field takes place, and region 
I1 actually does not exist. A jump of the field takes place also 
at the wall (< = 0), where it changes from H = 2/15 to 
H = 1. We have assumed here that the magnetization of the 
hot plasma So is large enough,so that T,+'/~, i.e., 
60>p-314. AS can be seen from the obtained solution, the 
magnetic field is strengthened in the wall layer to a value 
H,,, -,u-1/2. Thus, the pressure of the magnetic field can be 
neglected and we can put nT = 1 ifH,,, @ :I2, i . e . ,oo~p-  '. 

Allowance for the magnetic viscosity in Eq. (10) leads, 
of course, to a smoothing of the magnetic-field profile. Un- 
der the condition f30%p-', however, when the magnetic 
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FIG. 2. Profiles of the temperature T, of the magnetic field H, of the 
plasma velocity v, and of the velocity of the thermal drift of the magnetic 
field V, in the case of a nonconducting boundary at /3, > p  - ' and 
60>p-314 (nT= 1). 

pressure in the wall layer remains less than the plasma pres- 
sure, the jumps of the magnetic field become weakly smeared 
out. To prove this, we write down the analog of Eq. (2 1) with 
account taken of the diffusion contribution to the magnetic 
flux: 

(at T*"' the drift of the field due to plasma flow is insigni- 
ficant). Using (l3), (16), and (20) we can write this equation in 
region I1 in the form: 

20p'"H dH '5/2p" -- +-= 
PoGoTY* dT 60T6/1 

1, 

whence 

It can now be seen that the increase of the magnetic field 
from H = 2/15 in region I11 to H = (2/15)p-'/' in I takes 
place in a narrow temperature interval A T - ( / ~ ~ ) - ' ~ ~ T ~ .  
Such an isothermal jump of the magnetic field is analogous 
to a phenomenon known in hydrodynamics, the isothermal 
jump of the density in shock waves.14 For the onset of the 
latter it is necessary that the viscosity of the gas be small 
compared with its thermal conductivity. In our case of a 
magnetized plasma, however, the small quantity is the mag- 
netic viscosity, which at T- TI is smaller by a factor /3,+ 
than the thermal diffusivity of the plasma. 

The solution of Eq. (22) in region I11 with the boundary 
condition H (T  = 0) = 1 on the wall is of the form 

H='/,, [2+13 exp ( - 3 / , o ~ o p - 1 6 0 2 T 5 )  1 ,  
so that at Po> 1 the jump of the field on the wall remains 
narrow, inasmuch as H Z  2/15 already at T< TI -p115S; 'I5. 

Having determined the magnetic field and by the same 
token the thermal conductivity x(H,T) of the plasma, we 
now obtain from (16) the temperature profile in the wall lay- 
er. Starting from the wall = 0), we obtain in region 111, i.e., 
at T <  T,, 

g=2/s5p-'/ 'Uo-~~02T1/z.  

Next, at T >  TI, an increase of the magnetic field by a factor 
p-'/' suppresses strongly the thermal conductivity of the 
plasma. Therefore the layer with temperature TI < T<,u"' 
turns out to be relatively narrow: 

~ ~ ~ ~ , = 2 / , ~ ~ - ' ~ ~ ~ ~ - 1 6 ~ 2 ~ ~ ~ ~ ~ .  

With further rise in temperature (T>pl'') it follows from 
(14) and (18) that 

E=E,+2/5vo-' arcth T" 

(as should be the case, a hot plasma with T-1 corresponds 
to {+ + UJ ). Knowing the 6 ( T )  dependence, we can obtain 
from the condition (17) the value of vo-the enhancement of 
the heat flux to the wall 

It is easy to verify that the main contribution to this integral 
is made by a region with temperature T- TI (this is in fact 
the previously introduced plasma "accumulation" tempera- 
ture T.), and vo = (3~,/10)'/'. According to (15) this means 
that the effective thermal conductivity of the plasma 

turns out in this case to be of the order of the so-called Bohm 
thermal conductivity. 

The solution obtained is valid if the inequalities/3,>p-' 
and S0>p-3/4 are satisfied. The second of them means that 
when the hot plasma flows towards the wall, the drift of the 
magnetic field due to the Nernst effect is "turned-on" earlier 
than the plasma "accumulation" (T. - TI It was this 
which made it possible to regard the flux of the magnetic 
field to be constant (q, = const = v,). We consider now the 
case of Fig. la, when l < ~ , ( u - ~ ~ ~ ,  but the value of Po is 
sufficiently large as before (so that H k,, /&(I). Just as be- 
fore, in the region I11 the magnetic field is uniform and equal 
to 2/15, inasmuch as VH)v in this region. Nor does the 
boundary of this region change: T < TI. On going into 11, the 
rapid growth of the magnetic field leads already at T- TI, 
according to (20), to a decrease of the value of VH, so that 
there V, - v. Since accumulation of the plasma takes place 
here, at T- TI the velocity is v-g, therefore all the terms in 
(19) become of the same order of magnitude. The simplifying 
circumstance is that the increase of the magnetic field nar- 
rows down the corresponding region and gzconst = 6, at 
T Z  TI. It follow then from (12) that at TR TI 

Substituting this expression for the plasma flow velocity in 
(19) and assuming that = {,, we obtain the magnetic field 

H = T - ~ ( I - T : / ' I T " ~ ) .  (24) 

It can be seen that at T >  TI the magnetic field is frozen into 
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the plasma. Although the temperature profile in this case (at 
T> T,) does in fact differ from the previously obtained one, 
the value of u,, obviously, remains unchanged. Thus, at all 
6,) 1 the effective thermal conductivity of the plasma is of 
the order of the Bohm value. 

This result turns out to be correct also when it is neces- 
sary to take into account the magnetic-field pressure in (9) 
[and consequently the magntic viscosity in (lo)]. We consid- 
er first the solution in the case of strong magnetization of the 
plasma, when 6,>p-314. In this case the magnetic pressure 
becomes substantial ifPo 5p- ' (region d in Fig. 1). Although 
now the plasma pressure nTis no longer a constant quantity, 
it differs from unity, as will be seen later on, only in a narrow 
layer. Therefore it is possible, as before, to use the condition 
(16) that the heat flux be constant, and this condition togeth- 
er with the equation q, = v, makes it possible to determine 
the magnetic field and the plasma density. In region 111, 
where H = 2/15, the solution remains obviously the same as 
before. At T >  TI, in region 11, we obtain from the condition 
q, = v, the following equation: 

the solution of which with allowance for (9) is of the form 

nT= (:)a - exp [+(I-%)] 
It follows therefore that at T >  T, the plasma pressure drops 
off rapidly to values n T< 1, and the magnetic field becomes 
equal to PA/'. The solution (26) is valid up to 
T = T2- T,ln(B&)-I, which is the limit of the region 11. In 
region I (T>  T2) we obtain in place of (26) 

i.e., at B T 2  the plasma pressure is equal to the constant 
quantity nT = E.  This has the following meaning. From the 
constancy of the heat flux (16) it follows now that the heat- 
diffusion rate is V, = SvdnT, therefore the velocity of the 
thermal drift of the magnetic field is equal according to (7) to 
V, = f p'I2vdnT and at H = fl A/2 the equality n T  = E en- 
sures the required magnetic flux: q, = VHH = v,. Relation 
(27) remains valid up to a temperature T-,u'/~ at which the 
plasma flow velocity v = vdn becomes comparable with V,. 
At T)plt2 the magnetic field is frozen into the plasma, 
H = n, so that in the interval p'12<~</3; the field is 
H=n=/3~/2 ,andatT>f l ;1 /2wehaveH=n=T-' . In  
this case the integral (17), which determines the value of u, 
receives the main contribution as before from the tempera- 
ture region T- TI. Therefore the effective thermal conduc- 
tivity differs here only by a numerical factor from the value 
(23). 

If the magnetization of the hot plasma is such that the 
parameter 146, S , U - ~ / ~ ,  the effects connected with the 
magnetic-field pressure begin to manifest themselves at 
Do S T 1 Z-p-2'56~'5 (region c of Fig. 1). The solution is ob- 
tained here as follows. The magnetic field remains frozen in 
the plasma up to temperatures T>T, ,  therefore 

1/2 H=n=T-'uptoT-f3;1/2.SubsequentlyH=n=/30 

at T < P &  'I2, and the plasma pressure is here much lower 
than the magnetic-field pressure. At T- TI the magnetic 
field decreases to a value H = 2/15 and n T increases to uni- 
ty. At T <  TI the solution remains the same as before. Ac- 
cordingly, no change takes place also in the order of magni- 
tude of the effect thermal conductivity of the plasma. 

Thus, in the case of a non-conducting wall the effective 
thermal conductivity of the plasma at Po> 1 and So) 1 turns 
out to be of the order of the Bohm value. The reason for this 
is the rapid flow of the magnetic field towards the wall as a 
result of the Nernst effect, which decreases the magnetic 
field in the non-magnetized wall plasma to a value of the 
order of unity. The solution of this problem has a substan- 
tially different form in the case of an ideally conducting wall 
which does not pass the magnetic flux through. Now the 
magnetic field carried away towards the wall by the flow of 
the hot plasma accumulates in the wall region. As a result 
the magnetic field is strengthened here and the increase of 
the heat losses from the plasma are much less pronounced. 

Let us examine this solution in greater detail. The 
boundary condition on the wall 

means that the thermal drift of the magnetic field should be 
offset by an oppositely directed diffusion flux. Therefore, in 
contrast to the case of a conducting wall, the magnetic vis- 
cosity (and the magnetic-field pressure) must now be taken 
into account at arbitrarily large values of the parameter Po. 
Since the velocity VH increases in the direction from the hot 
plasma towards the wall and becomes larger in the wall layer 
than the plasma flow velocity v, the compensation condition 

should be satisfied not only on the wall itself, but in the entire 
region where v, > v. This can be explained in the following 
manner. The flow of the hot plasma produces fluxes of mat- 
ter and of magnetic field towards the wall. From the contin- 
uity equation (12) it follows that in the region of plasma "ac- 
cumulation" (T- T.) we have 6-v, and at T >  T. the 
velocity is v > g, and the flux of matter remains constant. The 
outflow of the magnetic field towards the wall proceeds with 
a velocity v + VH. We therefore have here two possibilities. 
The first is that in the region of accumulation of the magnetic 
field (we designate its temperature by p.) we have VH>v. 
Inasmuch as in this case V,>g, it can be seen from (10) that 
at T< the magnetic field should satisfy Eq. (28), and at 
T >  "T. we have a constant magnetic-field flux VHH = v,. It 
turns out, however, that no such solutions exist. The reason 
is that the magnetic field in the wall layer has an upper 
bound H,,, = B ;I2, which follows simply from the pressure 
balance (9). Consequently, we are left with the second possi- 
bility. In this case the magnetic field is frozen into the plasma 
in the region where VH < v, and at VH > v the compensation 
condition (28) is satisfied. It can be rewritten in the form 
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Since a has different dependences on n, T, and H in 
different regions [see (13)], we consider first the solution of 
this equation for magnetized electrons (regions I and 11). 
Taking (9) into account, we find that 

This is the well-known result for a stationary inhomogen- 
eous plasma. It follows therefore that the plasma pressure 
decreases with decreasing temperature (nTcc T ~ / ~ ) ,  SO that a 
region of a buffer magnetic field with H = f l  and an in- 
stantaneous value /3< 1 is produced near the wall. The solu- 
tion (30) does not hold at very low temperatures, where the 
plasma is already unmagnetized (region 111). From (29) and 
(9), with allowance for (13), we obtain here the result 

where y< 1 is the plasma pressure on the wall. This solution 
is valid at T < TI -f15p't5/3; '/'SF 'Is, where magnetiza- 
tion of the electrons takes place. Therefore the plasma pres- 
sure nT- y in the entire region 111. 

We can now visualize the complete solution of the prob- 
lem. We start with the case of sufficiently large values of the 
parameters So and Po, when So > p  -3/4 and Bo > p - '. Then 
VH < v at ~ > p ~ ~ ~  and the magnetic field is frozen in the 
plasma: H = n = T-'. At T - ~ ' "  the velocity VH of the 
thermal drift of the magnetic field becomes comparable with 
the plasma flow velocity, therefore the solution (30) is valid 
at and n ~ - p - ~ / ' ~ ~ / ~ ,  while the magnetic field 
H = f l  An. The decrease of the plasma pressure continues to 
T= T l - p ~ 1 ~ 4 ~  -417 /3; 'I7, where the plasma becomes de- 

magnetized. At T 5  TI we have 

The plasma and the magnetic field accumulate in a region 
with ~ - p ' / ~ ,  and the flow velocity of the hot plasma 
~ , -p- ' /~ .  Therefore the effective thermal conductivity of 
the plasma in this case is 

It is interesting to note that in the case of an ideally conduct- 
ing wall the Nernst effect "works" not to increase the effec- 
tive thermal conductivity of the plasma (as was the case for a 
non-conducting wall), but to decrease it, since the effect en- 
hances the magnetic field near the wall. The qualitative pic- 
ture of the wall layer at an ideally conducting wall is shown 
in Fig. 3. 

Expression (3 1) for the effective thermal conductivity of 
the plasma was obtained under the condition that the ther- 
mal drift of the magnetic field becomes substantial (on going 
from a hot plasma to the wall) earlier than the magnetic 
pressure (Bo>pP1) and the demagnetization of the ions 
(So >pP3I4). If, however, one of these inequalities is not satis- 
fied, the "accumulation" of the plasma and of the field takes 
place in a temperature region where the Nernst effect and the 
diffusion of the magnetic field play no role. Therefore the 
magnetic field is still frozen-in in the plasma and the esti- 
mates of x, obtained assuming exact freezing-in of the 
field1' become valid. 

Let us consider, e.g., the case when /3, is large but 

FIG. 3. Profiles of plasma pressure nTand of the magnetic field H in the 
case of an ideally conducting boundary at Po >p-  ' and 6, >p-'I4. 

So <p-3/4. The solution is obtained here as follows. In the 
entire region I, where T >  T, = 6; 'I3, the field is frozen into 
the plasma. The "accumulation" of the field and of the plas- 
ma takes place at T- T,. Therefore at T <  T,, the flux of 
matter and field decreases in region I1 in accordance with the 
law 

nv=Hv-SoT/vo, i.e., ~ - 6 ~ T ~ / v ~ ,  

where V,-S;/~. At the same time, the velocity of the thermal 
drift of the field in region I1 is VH - p 1 ~ Z ~ ~ S o ~ 5 1 2 ~  and 
becomes comparable with v at T - ~ ' / ~ S ;  ''/" C onsequent- 
ly, above this temperature the field is still frozen-in into the 
plasma: H = n = T -I, and at lower temperatures we have 
H = /3 ;I2 and the plasma pressure decreases in accordance 
with Eq. (30). If, however, the plasma is strongly magnetized 
but Bo <p-', then "accumulation" of the plasma and of the 
field takes place at T-/3; 'I2, where the pressure of the fro- 
zen-in magnetic field becomes comparable with the plasma 
pressure. In this case v i  -/3 A/4 at T </3; '/' the field is still 
frozen-in at first, so that H = n = /3 A", but then the thermal 
drift of the field comes into play and the condition (30) is 
satisfied. In the general form, the effective thermal conduc- 
tivity of the plasma in the case of an ideally conducting wall 
can be written in the form 

xeff -xlo min {G:, f~~"', p-'la/'). (32) 

53. RADIATIVE COOLING WAVE 

We proceed now to radiative cooling of a hot plasma 
with large /3 in contact with a cold wall. For the sake of 
argument we assume bremsstrahlung from the plasma, so 
that the plasma volume power is Q, = a n 2 ~  'I2. At constant 
plasma pressure, Q, a T -312 and increases rapidly with de- 
creasing temperature.' Therefore at not too large plasma- 
column dimensions a situation is possible wherein the total 
radiation power from the cold wall layer exceeds the total 
radiation from the hot plasma. Cooling of the hot plasma 
takes place in this case on account of convective heat flow 
from the center to the wall, i.e., because of the adiabatic 
expansion of the hot plasma. The resultant plasma flow can 
be described in the following manner. The low-temperature 
wall layer of the plasma cools off rapidly because of radiation 
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and is compressed (since the plasma pressure should remain 
uniform). The thermal conductivity leads to heat being 
drawn from the next layer of the plasma, which is cooled, 
contracts, etc. Thus, a cooling wave propagates from the 
wall to the hot plasma. Ahead of the wave there is a hot 
plasma with temperature To, density no, and magnetic field 
H,, while behind the wave there is the "cooled" plasma with 
a certain low temperature T,,,, (T,,. The value of T,,,, can 
be determined, e.g., from the fact that at low temperatures 
(and accordingly at high densities) the plasma radition be- 
comes blocked. The actual value of T,,, is immaterial to us, 
since all the characteristics of the cooling wave turn out to be 
independent of this quantity. 

It will be convenient hereafter to change to a reference 
frame fixed in the wave, where all the quantities are indepen- 
dent of time. Introducing the characteristic time 
T, = 3noT,,/Q, of the cooling of the hot plasma, we write 
down the basic equations (1)-(4) in terms of dimensionless 
variables defined in the following manner: y = xCy,~,)'/~, 
u = - V(T, , /~ , )"~ ,  xo is the thermal diffusivity of the hot 
plasma. The density, temperatures, and magnetic field are 
measured respectively in units of no, To, and H,. As a result 
we obtain from ( 1 )-(4) 

nT=l, (33) 

nu=uo, (34) 

These equations are written in the approximation P,-+oo, 

which makes it possible to neglect the magnetic-field pres- 
sure, the magnetic viscosity, and the Joule heating of the 
plasma. The dimensionless thermal conductivity x, and the 
thermoelectric coefficient a are specified by Eqs. (1 3), and u, 
is here the dimensionless flow velocity of the hot plasma. 
This formulation of the problem is meaningful if the total 
radiative losses are determined by radiation from the transi- 
tion layer, therefore it is possible now to neglect the radiation 
of the hot and "cooling-off" plasma, i.e., to assume formally 
that f (1) = f (0) = 0. As follows from (35),the next flux q, in 
the plasma, which consists of thermal-conductivity and con- 
vective terms, can be represented in the form 

so that the quantity u, is connected with the radiation from 
the transition layer by the equation 

The main contribution to this integral is made, as will be 
shown below, by the cold-plasma region with T- T. 4 1. It 
follows therefore from (37) that at B T. the radiation can be 
disregarded and the heat flux in the plasma can be regarded 
as constant: 

q,=x (dT/dy) +5uoT=5uo, 

so that at T. (T< 1, when the convective contribution to the 
heat flux is small, 

Relations (36) and (39) make it possible to find the mag- 
netic field. Indeed, from (39), under the condition (33), fol- 
lows constancy of the heat-diffusion velocity: V, = 5uo. 
Therefore, using the introduced rate of thermal drift of the 
magnetic field V, and Eq.(37), we get from (36) 

Just as before, the magnetic field is frozen into the plasma at 
~ ) p ' / ~ ,  and at lower temperatures its profile is determined 
by the Nernst effect. At T = TI the magnetic field exper- 
iences a jump. Knowing the magnetic field and by the same 
token the thermal conductivity x of the plasma, we can de- 
termine the structure of the cooling wave. We recall that (39) 
is valid only at T >  T.. At T <  T. the heat flux decreases 
because of radiation, so that the rate VH decreases, and, as 
can be seen from (36), the magnetic field will be stronger than 
given by (40). It follows from the sequel, however, that the 
radiation begins to play a role at T < TI, where the plasma is 
already unmagnetized and consequently the magnetic field 
does not affect the wave structure. The correct value of H 
there can be found post facto, after solving Eq. (35). In an 
unmagnetized plasma (region 111) this equation is of the form 

(we have left out here the inessential convective contribution 
to the heat flux and put f (T)  = T -3/2 for the bremsstrah- 
lung). Its solution with heat flux that vanishes as T 4  is of 
the form 

Since q,(T = TI) = (xdT/dy),, = 5uo, we obtain for the 
rate of expansion of the hot plasma 

uo= ( j 5 / , )  l/~p-'/w6p/5> 1. (42) 

The magnetic-field jump at T =  TI, from H = 2/15 to 
H = (2/15)p-'/', causes the thermal conductivity of the 
plasma to decrease abruptly at T >  T,,  and this region no 
longer contributes to the total radiation. Therefore formulas 
(39) and (40) are valid here and can be used to find the tem- 
perature profile in this part of the transition layer. 

The characteristic width of the cooling wave front is 
~ ~ - p ' / ~ .  We obtain now the magnetic field at T <  TI. It 
follows from (41) that the thermal drift velocity is 
VH = (15/2)uoT/T, and is much larger than the plasma 
flow velocity u = u,T. Therefore at T <  TI the field is 
H = u,,/ VH = 2T1/1 5 T. An approximate structure of the 
front of the radiative cooling wave is shown in Fig. 4. 

In the foregoing analysis it was implied that the degree 
of magnetizatioin of the plasma is high enough, namely 
s , > ~ - ~ / ~ .  In this ~ a s e p ~ / ~ > ~ ~  and the thermal effect set is 
in region I. If, however, then the profile of the 
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FIG. 4. Structure of the radiative cooling wave: T-plasma temperature, 
H-magnetic field, 9,-heat flux. The dashed lines mark the region that 
makes the principal contribution to the energy lost to radiation. 

magnetic field in the front changes. In this case 
H = T -'(I - T :/2/T512), the magnetic field remains frozen 
into the plasma up to temperatures T >  T,, and then de- 
creases at T = T, to a value H = 2/15. The rate of expansion 
of the hot plasma remains, as can be easily seen, the same as 
before. 

We discuss now briefly the effects connected with the 
finite value of the parameter& In the case of strong magne- 
tization, when S0>p-314, they begin to manifest themselves 
at Po Sp-', and it is necessary here already to take into ac- 
count the magnetic pressure and the finite conductivity of 
the plasma. We obtain therefore in place of (33) and (36) 

nT+H2/I),=1, 

In region I11 at T <  T,  the solution remains the same as be- 
fore. Next, at T >  T, the plasma pressure decreases in accor- 
dance with (26) and (27), and the magnetic field increases to a 
value H ~ f l ; / ~ .  Starting with temperatures ~ > p ' / ~ ,  the 
magnetic field becomes frozen into the plasma, so that 
H z n  = ,5A/2 in the interval , ~ ' / ~ 4 T 4 f l ;  'I2. At T > P  A'2, 
the magnetic-field pressure is already negligible: 
H = n =  T-I. 

If, however, So <pP3I4, the finite character ofPo mani- 
fests itself when Po <p-213St/5. In this case the field remains 
frozen into the plasma up to temperatures TR T,, therefore 

1/2 ~ = n = ~ - ' a t ~ > f l ; ' / ~ a n d H = n = f l ~ ~ ~ a t T < ~ ~  . 
In the region T- T, the thermal drift of the magnetic field 
and its diffusion lead to a rapid decrease of H to a value 
H = 2/15 at T = T,. Inasmuch as at T <  T,  the solution re- 
mains unchanged, in all the considered cases the rate of ex- 
pansion of the hot plasma is determined as before by Eq. (42). 

In conclusion, we consider the regions of applicability 
of the described different regimes of plasma cooling. To this 
end it is convenient to plot the characteristic plasma-cooling 
time T, against its dimensions. At small thicknesses of L 
plasma column we have T, -L '/x,, and according to (23) 

r,-LZeHo/cTo. 

This holds true so long as the heat flux to the wall by heat 
conduction exceeds the total loss to radiation. It is easy to 
verify that at 

L- L,  - p"m6? ( ~ 0 . c ~ )  '" 

the radiation from the wall layer becomes comparable with 
the heat flux to the wall. Therefore at L > L, the cooling of 
the plasma is determined by the radiative wave. In this case 

and the cooling time turns out to be proportional to the first 
power of the thickness of the plasma column. At 

an important role is assumed by the radiation from the entire 
volume of the hot plasma, so that at L 2 L, we have T~ -7,. 

As noted in the Introduction, the radiative cooling 
wave can describe not only the energy lost from the hot plas- 
ma, which is of interest for thermonulclear applications, but 
also the condensation of the hot plasma on intergalactic 
clouds under astrophysical conditions. In the latter case 
such a wave is meaningful also over times exceeding the ra- 
diative time To of the hot plasma. It follows from the solution 
obtained that cooling of the hot plasma takes place adiabati- 
cally slowly relative to the radiation wave in a plasma with a 
magnetic field. Therefore Eq. (42) for the rate of onflow of 
the hot plasma remains valid also in this case, but the quanti- 
ties 60, x0, and r0 now vary with time. 

The author thanks B.N. ~ rek rnan  for helpful discus- 
sions. 
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