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Electron acceleration under the !..-tion of an electromagnetic wave in the region of a resonance 
localized in an inhomogeneous plasma is collisionless. The effect of collisions on the acceleration 
process is considered. It is shown that collisions enable the electrons to traverse the resonance 
region many times. This results in a significant enhancement of the acceleration of the fast elec- 
trons. The theory is compared with the results of experiments on the effect of intense radio waves 
on the ionosphere. 
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When electromagnetic waves propagate in an inhomo- 
geneous layer of a tenuous plasma, the region of plasma reso- 
nance, where the wave frequency w coincides with the natu- 
ral frequency oo(z) of the plasma, becomes sharply 
pronounced.' In this region, plasma oscillations are inten- 
sively excited, modulation instability develops, and the elec- 
trons are effectively accelerated. The wave incident on the 
layer is dissipated, and an appreciable part of its energy goes 
to electron acceleration. Anomalous dissipation of electro- 
magnetic waves and generation of accelerated electrons were 
observed many times in experiment both in laboratory plas- 
ma2 and in the i~nosphere.~ 

The processes that determine the electron acceleration 
were investigated in detail in Refs. 4-6. The acceleration is 
attributed to formation in the plasma, during the linear stage 
of development, of modulation instability of striction den- 
sity wells-cavitons-filled with local blobs of electric field. 
When the caviton is crossed the energy of the fast electrons 
increases. The acceleration has a local character-it takes 
place in the vicinity of the plasma-resonance point 
o = oo(z,) in a relatively thin plasma layer. 

As will be shown below, however, the acceleration does 
not end here. Although the thickness of the accelerating 
plasma layer is usually much less than the electron mean free 
path, an electron accelerated in a layer as a result of scatter- 
ing can return to the same layer because of the collisions, and 
its energy increases again after passing through this layer. 
The process then repeats. The electron energy will continue 
to grow until the energy lost by the electrons to collisions 
becomes comparable with that acquired in the accelerating 
layer. As a result of multiple passage of the electrons 
through the layer, their acceleration in the region of plasma 
resonance becomes considerably enhanced. 

The present paper is devoted in fact to this pheno- 
menon. In $ l we present a general theory of multiple scatter- 
ing of electrons in plasma resonance. In $2 we consider spe- 
cifically the acceleration of electrons acted upon by 
high-power radio waves in the upper layers of the ionos- 
phere. 

51. FORMULATION OF PROBLEM. SIMPLIFIED KINETIC 
EQUATIONS 

We consider a plasma that is weakly inhomogeneous 

region in the vicinity of the plasma resonance, in which mo- 
dulation instability develops intensively and the particles are 
accelerated, will be cal!ed the accelerating layer. We assume 
that its thickness is much less than the electron mean free 
path I. The collisions inside the accelerating layer can then 
be neglected. Outside the layer, i.e., in the upper (z > 0) and 
lower (z < 0) parts of the plasma, which are separated by the 
accelerating layer, the collisions play an important role. In 
this case the following kinetic equation is valid: 

where f = f (t, E, p, Z) is the electron distribution function. It 
depends on the time t, on the coordinate z, on the electron 
energy E, and on the angle 8 between the direction of the 
velocity and the z axis; furthermore, p = cos 8, v = ( 2 ~ /  
m)'I2, and S is the collision integral. In Eq. ( I ) ,  generally 
speaking, it would be necessary to take into account also the 
electric field, but in the case of a weakly inhomogeneous 
plasma, when IdN/dz<N, its influence can be neglected. 

The perturbation of the distribution function of the 
electrons proceeds qualitatively in the following manner. 
The fast electron crossing the accelerating layer increases in 
energy. Next, colliding with other plasma particles, it 
changes its velocity direction as well as its energy. It is im- 
portant that the electron velocity direction usually changes 
in the collisions much more rapidly than the energy, i.e., 

Here Y ,  is the electron collision frequency and At, is the 
characteristic time of variation of its energy. Therefore with- 
in the time At, the electron manages to change its direction 
repeatedly and cross the accelerated layer many times 
( a S -'I2). It is this which leads to enhancement of the accel- 
eration of the electrons via the collisions, and also to the 
increase of the dimensions of the perturbed zone. 

It is known1.' that under conditions (2) the electron ve- 
locity distribution becomes symmetrical, i.e., dependent 
mainly on the electron energy. It is therefore natural to ex- 
pand its angular part in Legendre polynomials P,, (u): 

along thez axis. Let the plasma-resonance point z, = 0. The The kinetic equation (1) is then rewritten in the form of a 
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chain: 

Account is taken here of the fact that the collision integral S, 
for the function f, is proportional to f,: 

where Y,(E) is the electron collision frequency. The collision 
integrals S, are similar in form and have approximately the 
same values for the succeeding harmonics f,, f,, etc. (see Ref. 
7). On the other hand, the integral So(Fo) turns out to be 
smaller by a factor 1/6 under the conditions (2). Next, Fo is 
the change of the symmetrical part of the electron distribu- 
tion function as the result of the action of the accelerating 
layer: 

where f "'(E) is the unperturbed value of the distribution func- 
tion. We emphasize that in the region of the high-energy 
electrons the function f'O'(&) can differ substantially from 
Maxwellian, being determined by the balance between the 
source and the losses of the fast particles. The principal role 
in Eqs. (3) and (4) under condition (2) is played by the spheri- 
cally symmetrical function Fo(t, E, z), i.e., the one that de- 
pends only on the electron energy, while the higher harmon- 
ics of the expansion with n = 1,2, ... are small in terms of the 
parameter 6 '124 1. 

Equations (3) and (4) should be solved in each of the 
regionsz > 0 andz < 0 and matched together at the accelerat- 
ing-layer boundary z z 0 .  To find the corresponding bound- 
ary conditions we consider in greater detail the acceleration 
of electrons in a small vicinity of the plasma resonance, i.e., 
at IzI(I = u/Y,. Following Refs. 4-6, we assume that the 
pump-wave field excites in the plasma-resonance region in- 
tense natural longitudinal oscillations of the plasma. The 
plasma is then unstable. As a result of the development of a 
modulated striction instability, the distribution of the ampli- 
tude of the longitudinal oscillations in the plasma becomes 
strongly inhomogeneous-local blobs of a trapped field are 
produced, namely cavitons with scale a 2  De, where D, 
= ( ~ , / m ) " ~  ' is the Debye radius and Te is the tempera- 

ture of the bulk of the low-energy electrons. 
The collisions of the electrons in the narrow accelerat- 

ing layer can be neglected. Their motion is therefore de- 
scribed here by the simple collisionless equation 

1 
E (2, t )  = - [ E  ( z )  e-'"'+ C.C. 1, 

2 (7) 

where E = - dq, /dz is the longitudinal electric field that 
oscillates with the frequency of the pump wave w z o ,  
(z = 0); vll is the velocity of the electron along the z axis. 

According to (7), the electron-energy increment AE(z, t ) (at a 
given point of space), averaged over the rapid oscillations, 
vanishes: 

( A E  ( t )  )=O. (8) 

Nonetheless the acceleration prevails, since there are fewer 
fast eletrons than slow ones. Within the framework of per- 
turbation theory, the energy AE(z, t ) acquired by the electron 
after passing through one caviton is4 

AE ( z ,  t )  =-A& cos ( a t - o z / v l l + ~ ) .  (9) 

The amplitude AE is here a function of the "longitudinal" 
energy of the electron, E~~ = mull ,/2 = q2, and is deter- 
mined by the expression - 

AE (e,)=el  EhI, E,= 1 E (z) e-'" dz, 110) 

rC, is the phase of the electric field E, . For example, for cavi- 
ton of Gaussian and solitonlike form we obtain respectively 

AE=n%eEoae-(R"/Z)' if E ( z )  =E oe -(z/a)' 9 

A ~ = n e E , a / c h  (nka/2)  if E ( 2 )  =E,/ch ( z la )  . 
It is important, however, that the main features of the 

dependence ofAe on E~~ have a universal character, i.e., they 
do not depend on the specific shape of the caviton. Indeed, 
electrons with sufficiently high energy 

cross the caviton within a time a/vll which is short compared 
with the period l/w of the high-frequency field (vll > wa). 
The amplitude AE is in this case a maximum and equal to 

where Eo is the electric field at the center of the caviton and a 
is its half-width. In the case opposite to (1 I), that of relatively 
low electron energies, <E,, the amplitude AE decreases 
exponentially with increasing because of the fast oscilla- 
tions of E (t ). The expressions obtained show that only suffi- 
ciently fast electrons with energy E~~ ST, are accelerated by 
the cavitons [see (1 I)]. The region of applicability of expres- 
sions (9) and (10) is quite large-it is restricted by a condi- 
tion, weak compared with (1 I), that the oscillatory velocity 
of the electron at the center of the caviton be small: e E d  
mo < vll . 

After determining the electron-energy increment fol- 
lowing the passage of the caviton in the accelerating layer 
z=:O, it is easy to find the corresponding change of the aver- 
age distribution function f (z). According to the Liouville 
theorem we have at jzl <I 

where the symbol ( f )  denotes, as before, averaging over the 
fast oscillations in time, while A&(t ) is itself a function of ell 
- A&(t). In the case of repeated passage of the electrons 

through the accelerating layer, the right-hand side of (13) 
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can be expanded in terms of the small energy increment A&, 
retaining only the first nonvanishing term of the expansion. 
As a result we obtain, taking (8) into account, 

where Af is the change of the distribution function on going 
through the caviton. 

It is easy to see that by virtue of the small change off this 
expression remains valid also when not one but several cavi- 
tons that are not correlated in phase are present in the accel- 
erating layer. It must only be taken into account that the 
mean squared energy increment (A&') in (14) is equal to the 
sum of the contributions from all the cavitons: 

i-1 

Here Aei(&,, ) is the amplitude of the change of energy in the 
ith caviton (10) and n is the total number of cavitons. 

Equations (14) and (15) determine the change of the dis- 
tribution function on going through the accelerating layer. 
At the same time, in a weakly inhomogeneous collision- 
dominated plasma, on the boundaries of a symmetrically ac- 
celerating layer at 121 41 the distribution function f should 
satisfy the symmetry condition f ( ~ , p ,  z) = f (E, - p ,  - z) and 
can therefore be represented in the form 

where 

f ( * )  ( E ,  p )  = f f ( * )  (E, -p), sign z=z/ I z ( .  

Therefore that part of the distribution function f'+' 
which is even in p = cos 0 is continued through the acceler- 
ating layer without change, while the jump of the odd part is 
equal to 2f '-'. It is this jump which is determined by expres- 
sion (14), in the right-hand side of which it suffices to take 
into account only the first principal term of the expansion of 
f in  Legendre polynomials, which yields 

Equation (17) stipulates the sought boundary conditions for 
Eqs. (3), (4), and (6). These equations can be simplified be- 
cause the principal spherically symmetrical part F, of the 
perturbation of the distribution function (6) is most closely 
connected only with the first odd harmonic f, (and vice 
versa). With the aid of (3)-(5) it is easy to verify that under 
conditions (2) the influence of the higher terms of the expan- 
sion of the function f in Legendre polynomials (with n>2) 
leads only to negligibly small corrections ar S "'( 1 in F, and 
f,. This confirms also the exact solution of the stationary 
equation (1) without expansion of the distribution function 
in Legendre polynomials, given in the Appendix for the case 
of a model collision integral. Recognizing that in the same 
approximation we can neglect also the term dfl/dt in (4), we 
obtain its solution in the form 

The system (3) and (4) reduces thus to a single equation for 
the perturbation of the symmetrical part of the distribution 
function: 

with the boundary condition at z = 0, 

=- 3 V I d  d f o @  
sign z-- 

8ue a a { x  (Ae2(ell) ) 
fo=F0+f(" (e ) .  

We note that Eqs. (18)-(20) have simple conservation 
integrals. The first of them describes the change of the total 
number of particles as a result of inelastic ionization and 
recombination processes: 

and the second the energy conservation: 

Here Wis the total energy of the accelerated electrons, 
the integral term takes into account the energy loss in the 
collisions, and the source q, takes into account the acquisi- 
tion of energy in the accelerating layer: 

Further simplifications of Eqs. (19) and (20), as well as their 
concrete solutions, depend on the form of the collision inte- 
gral So. They will be considered in the next section for the 
conditions in ionospheric plasma. 

52. ACCELERATED ELECTRONS IN THE UPPER 
IONOSPHERE WHEN IT IS PERTURBED BY RADIO WAVES 

In experiments on the action of high-power radio waves 
on the upper ionosphere (heights h - 200-400 km) one ob- 
serves almost total absorption of radio waves with polariza- 
tion, due to their transformations into the natural longitudi- 
nal oscillations of the ionospheric p la~rna .~  An essential role 
in this process is played by the earth's weak magnetic field. 
Owing to the presence of the magnetic field, the excitation of 
the longitudinal waves by an ordinary radio wave has a more 
varied and complicated character than the case of an iso- 
tropic p l a ~ m a . ~ - ~  The longitudinal waves are generated in 
the ionosphere by various mechanisms: by excitation of 
striction parametric instability in the region of reflection of 
the high-power radio wave, as a result of direct transforma- 
tion of the ordinary radio wave by the smooth gradient of the 
ionospheric plasma, or via resonant scattering of the radio 
wave by the small-scale inhomogeneities that stretch out 
along the magnetic field.' It is important, however, that re- 
gardless of the actual mechanism that excites the plasma 
waves, the weakness of the collisional dissipation causes the 
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greater part of their energy to accumulate in the vicinity of 
the plasma-resonance point, where their group velocity de- 
creases sharply." The amplitude Eo of the plasma-wave field 
increases correspondingly in this region. Therefore, under 
the ionosphere conditions, just as in an isotropic plasma, 
modulation instability develops here and an accelerating 
layer is produced. Its size does not exceed the scale of the 
collisional damping of the plasma waves ( -  100 m), i.e., it 
turns out to be much less than the mean free path I = 1-10 
km of the fast electrons. The width of the individual field 
blobs is a z 1-10 cm. Consequently the conditions for appli- 
cability of the theory of multiple acceleration of the electrons 
are well satisfied here.,' 

We consider next Eq. (19). In the ionosphere, the main 
contribution to the collision integral So for electrons of ener- 
gy E 2 4-5 eV is made by inelastic collisions with excitation 
of optical levels and ionization of atomic and molecular oxy- 
gen (0 ,  0,) and molecular nitrogen (N,). In this case the 
electron loses a large energy after one inelastic impact, so 
that the collision integral So in the high-energy region can be 
represented in the form9 

Here a, is the total effective cross section of the inelastic 
collisions, N, is the total density of the neutral particles: 

a,, and N,, are the total inelastic-collision cross section and 
the density of each neutral component 0 ,  O,, and N,, respec- 
tively. The transport cross section a for the scattering of 
electrons by neutral particles in the collision integral S ,  (5) is 
written in similar form: 

The expression for the mean fraction S [Eq. (12)] of the ener- 
gy lost by the electron in one collision takes the following 
simple form: 

The dependence of the parameter S on the electron energy, 
for different heights in the ionosphere, is shown in Fig. 1 .  It 
can be seen that S -0.1. Consequently, the principal condi- 
tion 6 4  1 for multiple acceleration of electrons in the ionos- 
phere is well enough satisfied. We note also that the relative 
density N,,/N, of the neutral components varies in the 
ionosphere much more slowly than the total density N, (h ). 
Therefore the parameter S [Eq. (22)] depends relatively little 
on the height h and on the coordinate z.  

Under the conditions (21), the equation (19) for the dis- 
tribution function of the acceleration electrons depends on 
the energy E as a parameter. Let us obtain the stationary 
solution of this equation. To this end we rewrite it in the form 

Recognizing that the parameter 6 is a slow function of 6, we 

FIG. 1 .  Dependence of the average fraction 6 of the energy loss in 
the ionosphere on the electron energy E: 1 )  height h = 250 krn; 2) 
h = 300 km; 3) h > 300 krn. 

obtain hence in the WKB approximation 

(24) 
f, (E, Z) = (sign z )  (36) '"F0 (E, z) , 

where L, is the characteristic scale of the relaxation of elec- 
trons with a given energy E: 

It is shown in Fig. 2. It can be seen that the scale L, increases 
rapidly with the height h because of the exponential decrease 
of N, (h ). This can lead to a considerable asymmetry in the 
height distribution of the fast electrons. Moreover, the quan- 
tity L,(z) increases so abruptly at large heights that the inte- 
gral in the exponential of (24) always converges to a finite 
limit R _ as z-+ co . This means that a flux P of fast electrons 
that go off into the magnetosphere is produced. The value of 

h, km 

FIG. 2. Change of the relaxation scale L, (solid lines) and of the 
parameter R, (dashed) with height h for different energies: 1 )  
E = 4.5 eV; 2) E = 10 eV; 3)  E = 20 eV. 
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the flux depends exponentially on R , : 

dP 8n 0 

-=- dz 
[ S  (n)  S (z=O) ]"'Fo (e) ee-", R .  = I-. 

de 3'"m2 L.(z) 

(26) 
The integral R ,  is also shown in Fig. 2 as a function of the 
height h of the accelerating layer. It can be seen that R ,  
decreases rapidly with increasing h, all the way to small val- 
ues R < 1 at heights h 2 300 km, where the characteristic 
scale of the decrease of N,(h ) becomes smaller than L,. 
Consequently the greater part of the accelerated electrons 
goes off at these heights to the magnetosphere. We note that 
the solution (24) is valid only provided that the flux (26) is 
small, i.e., at exp { - R  , 1 .  In the case R ,  < 1 the effect 
of multiple acceleration becomes weaker. 

Next, the function Fo(&) in expressions (24) and (26) is 
equal to Fo(~) = F,,(E, z) ]  =, . According to the boundary 
condition (20), it satisfies a differential equation of the diffu- 
sion type: 

We have introduced here the notation 

where Z(E) is the average increment of the electron energy 
in the accelerating layer. It will be shown below that under 
the conditions of strong multiple acceleration [(33), (34b)l 
the parameter T,, determines a new effective electron tem- 
perature in the high-velocity region: 

The temperature T,, [(28), (29)] is a function of the electron 
energy E. This dependence is due mainly to the change of 
Z ( E ) ,  since under the conditions of the ionosphere the coef- 
ficient x depends little on the energy E and on the height h, 
namely X(E, Z) z 1.0. The increase of electron energy in the 
accelerating layer was considered in detail in 5 1 [see Eqs. (9)- 
(12) and (IS)]. Our analysis enables us to state that the effec- 
tive temperature Ten (E) increases monotonically with in- 
creasing E and reaches at the high energies (1 1) and (12) a 
maximum value 

whereas at E < E, it decreases rapidly exponentially. Here n is 
the average number of cavitons in the accelerating layer. 

Knowing the behavior of the function T,,(E), it is easy 
to analyze the peculiarities of the electron acceleration. The 
intensity of the acceleration is determined by the parameter 

where T is the effective temperature, analogous to (29), for 
the distribution function f = f 'O' of the unperturbed (back- 
ground) electrons. In the case of weak acceleration y < 1 the 

distribution function f 'O' of the background electrons is only 
insignificantly distorted. Neglecting in this case the small 
perturbation F0@'O' in the left-hand side of (27), we obtain 

2 d2fEf'') (E) Teffm 
FO (~)=T,fm d E 2  = (7)2 jEf"') (E) (&>T>Tefjm). 

(32) 
In the opposite case of strong acceleration 

Eq. (27) has the following asymptotic solution (in the WKB 
approximation): 

fa(&) = f ( ' ) ( ~ )  (&<&sad ), (34a) 

The new distribution function (34b) is a continuation of the 
background function (34a) at the saddle point E = E,,,, 
which is determined by the temperature-equality condition 

We note that the quasiclassical-approximation conditions 

are always satisfied at E < E,, and in the case of a small num- 
ber of cavitons (i.e., at T,,, ( E , )  it is satisfied in the entire 
energy interval. 

We present also the function f o ( ~ )  in the case of the 
strongest acceleration of electrons by a large number of cavi- 
tons at T,, , BE, ,  when the second condition of (36) is violat- 
ed in the region E,  < E < Term . Recognizing that in the case 

Eq. (27) reduces to a Bessel equation, we obtain at E > E ,  

Here Ko(z) is a Bessel function of imaginary argument, r (3/ 
4) = 1.225 is the Euler gamma function, Nh is the density of 
the accelerated electrons, and the normalization constant c 
is chosen in accord with the condition $f,,(~)d 3~ = N lo. The 
asymptotic forms of (34) and (37) are naturally identical. 

The form of the distribution function f,(~) of the fast 
electrons under the conditions T,, , ) T (33) of strong accel- 
eration is shown schematically in Fig. 3. It can be seen that 
the number of fast electrons in the region E > increases 
abruptly: fo) f 'O'. In this case, the rate of decrease offo(s) with 
increasing E slows down substantially already in the transi- 
tion region E,,, < E < 1. The maximum temperature T,, , 
(30) is established in the region of high energies E > E ,  (1 1) 
which greatly exceed the temperature T, of the thermal elec- 
trons. 
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From this, under conditions of relatively weak change 
S = S ( E ,  z), we obtain approximately 

FIG. 3. Distortion of fast-electron distribution function as a result 
of their multiple acceleration in the vicinity of plasma resonance. 
f0'(&) is the distribution function of the background electrons in 
the unperturbed plasma. The deformation off"' (ell ) in the colli- 
sionfess case is shown dashed. 

Special notice should be taken of the fact that such an 
energy distribution of the accelerated electrons differs qual- 
itatively from the distribution in a collisionless plasma, 
where the initial function f 'O'(E~~ )is smeared out over an ener- 
gy interval -A&, on account of acceleration by the caviton. 
Therefore, in a collisionless plasma the ratio 

is independent of at high energies ell >A&, =. T,, , (Ref. 
4), whereas in our case it increases exponentially [see Fig. 3, 
in which the collisionless function f ,(~~, ) is shown dashed]. 
The cause of the abrupt enhancement of the effect in the 
collision-dominated plasma is perfectly understandable: As 
a result of the collisions the electrons become capable of 
crossing the accelerating layer many times. Therefore their 
distribution function f0(&) in the high-energy region is deter- 
mined by the statistics (by the probability of multiple accel- 
eration in the layer) and not by the form of the rapidly de- 
creasing initial distribution function f "'(E). At the same time, 
the total number of accelerated electrons turns out to be 
proportional to the density f "'(E) of the background particles 
in the region of low energies E=.E,.~ (35). Therefore the 
change of the distribution function of the background parti- 
cles at E Z E ~  always influences substantially the number of 
accelerated electrons. We emphasize that the foregoing 
quantitative analysis of the mechanism of multiple accelera- 
tion of electrons via collisions with neutral molecules (at 
S< 1) remains qualitatively valid also in a fully ionized plas- 
maat a=. 1/2. 

Let us estimate the energy lost by a radio wave to accel- 
eration of fast electrons in the vicinity of the plasma reso- 
nance. According to (21) and (24) we have 

P = j + v . e ~ ~  ( e ,  z )  d3v dz - 
8n 

= - 3'hm2 J6' (z-0) E'F. ( e )  de J 6" (z)  

The generation of the accelerated electrons in the field of 
high-power radio waves leads to a number of experimentally 
observable effects. Thus, an increase in the number of fast 
electrons with energies E > 2 eV enhances the emission of the 
red (A, = 6300 A) and green (A, = 5577 ,&) lines of oxygen, 
with respective excitation potentials I, = 1.98 and I, = 4.17 
eV (Ref. 10). An estimate of the relative luminosities of these 
lines allows us to conclude that the effective electron tem- 
perature (29) in the energy region E=: (2-4) eV increases un- 
der the influence of the high-power radiation at least to (2-3) 
eV at an initial thermal-electron temperature T, -0.1 eV (in 
the dark time of the day). This increase of T, agrees well 
with the results of the theory of multiple acceleration of elec- 
trons; see Eqs. (30) and (1 1). Calculations show in this case1' 
that it would be possible to observe in experiment also en- 
hancement of the emission of other lines, A, = 8446 ,&, 
A, = 7774 ,&, and A, = 39 14 ,& with higher excitation poten- 
tials: I, = 10.74 eV, I, = 10.99 eV, and I, = 18.74 eV. 

Fast electrons with energies E > (12-1 5) eV lead also to 
an increase of the ionization of the ionosphere, i.e., an in- 
crease of the electron density in the region of reflection of 
high-power radio waves. This effect was observed in experi- 
ments12 during daytime hours, while at night the effect is 
much weaker. The enhancement of the action of the acceler- 
ating layer with increasing number of background electrons 
comes into play here. These are the fast photoelectrons that 
appear only in the sunlit ionosphere and have in the ioniza- 
tion-energy region a high "temperature" T [Eq. (3 I)] on the 
order of 3 eV. The magnitude of the observed effect is well 
described by expression (32). 

The increase in the number of fast electrons and in their 
effective temperature T,, can lead also to enhancement of 
the plasma noise with frequency w close to the local plasma 
frequency 0,. According to Ref. 13, the intensity of the noise 
excited by electrons of energy E is proportional to T,, (E). 

This phenomenon was observed in Arecibo with the aid of 
the facility for incoherent backscattering.14 When the high- 
power transmitter was turned on at nighttime, a consider- 
able (larger by 1-2 orders of magnitude) enhancement of the 
intensity of plasma noise excited by the fast electrons with 
E 2 22 eV was observed. The perturbing radio wave was re- 
flected at a height 285 km, and amplification of the plasma 
waves took place in a wide range of heights from 255 to 450 
km. The magnitude of the observable effect and its height 
distribution (the width and asymmetry of the perturbed 
zone) are sufficiently well described by expressions (25), (28), 
and (34b). 

The authors are grateful to G. N. Milikh for supplying 
the data and for performing the calculations connected with 
the ionospheric applications. 

APPENDIX 

We obtain now the exact solution of the stationary solu- 
tion (1) for the perturbation of the distribution function F(E, 

315 Sov. Phys. JETP 57 (2). February 1983 Vas'kov el aL 31 5 



p ,  z) = f - f 'O' in the case of the model collision integral3' S: 

We consider for the sake of argument the relaxation of F (z) in 
the region of positivez > 0. The boundary conditions for F (z) 
will be assumed specified at the point z = 0. Introducing a 
variable analogous to (23) 

* 
= j V, ( I . )  v.' dzl 

0 

and carrying out a unilateral Fourier transformation 

F,= F  (g) e-'qE dg, i 
we obtain in the case ~ S Y ~ Y ,  #S(Z) [see (20)] 

FQ = { ( 1 - 6 ) F o q + f l ( O ) ) ,  where F ( 0 )  =F (2 -0 ) .  
I+q2!J 

(A.2) 
We resolve furthermore F @) into even and odd (relative top) 
components: 

F ( p )  =F(+)  ( p )  +F( - )  ( p ) ,  where F(*) ( p )  =*F'*) ( - p ) ,  

and change over to the convenient combinations pi* ' 
= Fi*) * F(-*/. This corresponds to a continuation:' odd 

in F'-' and even in F'+' of F(z) into the region of negative z, 
viz., F( * )( - z) = * F( * )(z). According to (2) we have 

PF'= ( ~ + q ~ p ~ ) - ~  { ( 1 - 6 ) ~ ~ ~ + 2 ~ ' - )  (0) ), 1;6(-I=-iqflp(+), 

(A.3) 
where the symmetrical function p% is equal, by virtue of the 
definition (A. l), to 

pOq= {l- (1 -6 )  - 1+nz1m2 ' (A.4) 

The expressions (A.3) and (A.4) solve our problem-they de- 
termine the Fourier transform of the perturbation F(z) in 
terms of the value of its odd (in p) component F(-'(0) at the 
boundary z = 0. In particular, at the point z = 0 we obtain 

1  P arctg q  } - I d q  S'Fo -dp2 
F ~ ( O ) = - J ' { I - ( I - ~ ) -  

" 0 Q l S q 2 p 2  ' 

The inversion of as z+ + 0 leads to an identity. It is 
easy to see that in the case of small 6 = Y,JY,( 1 the first 
formula of (A.5) goes over into the solution (24): 

1 
Po ( 0 )  = - F,  ( 0 ) .  where F1 ( 0 )  = 2 j F ( - )  (0) dp2  

(36) '" 2 

independently of the values ofrhe*higber Harihodics of thk 
expansion of ~ ' ~ ' ( 0 )  in odd Legendre polynomials. 

"The plasma-resonance point z, in the plasma layer N (z) is determined in 
the presence of a magnetic field by the condition ok(z,) = 02[1 - 
sin2a/(02 - o$ cosza)]. Here o, = eH /cm is the gyromagnetic fre- 
quency of the electrons and a is the angle between the magnetic field and 
the z axis. 

"We note that the accelerated electrons in the ionosphere have a small 
Larmor radius ( -  10-20 cm) because they move mainly along the mag- 
netic field. Therefore the restriction on the transverse dimensions of the 
accelerating layer to a scale of the order of 10-100 km (due to the finite 
width of the beam of the radio waves that excite the ionosphere) does not 
really influence the multiple acceleration process considered in the pre- 
ceding section, provided that the magnetic field crosses the accelerated 
grating layer at an appreciable angle. 
Calculation of the multiple-acceleration effect in a magnetized plasma 
shows that under the influence of the magnetic field the average number 
of crossings of the accelerating layer by the fast electrons increases by 1/ 
cos y = (cos2a + v:sin2a/oL)-'I2 times, as a result of whi* the effec- 
tive temperature (28) in the case o,<o increases by l/(cos y)'l2 times. 
Simultaneously, the characteristic scale (25) of the spatial relaxation of 
the accelerated electrons increases in proportion to cos y. 

3'The chosen integral S describes well the collisions of the high-energy 
electrons with neutral molecules [Eqs. (5), (21)] under conditions when 
the differential cross section dc, 9 )for elastic scattering does not depend 
on the scattering angle 9 (the'elastic-spheres approximation). 

- 
"We note that oreciselv such a svmmetrv of Flz) is realized in a collision- - ~, 

dominated plasma in the presence of an accelerating layer, see (16). 
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