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The condensed excited state (CES) produced as a result of collectivization of excited electrons in 
atoms, molecules, or impurity centers in solids is investigated theoretically. The transition to the 
CES is similar in many respects to the Mott insulator-metal transition, and the condensed phase 
itself possesses many of the characteristic features of semiconductor electron-hole liquids. At 
high excitation levels of the condensing atoms, exchange and correlation effects are significant, 
and the density of the electron liquid in the CES is strongly inhomogeneous. The quasiequilibrium 
CES is investigated by the methods of the pseudopotential and density-functional theory. 

PACS numbers: 31.50. + w, 31.20.T~ 

In 1968 L. V. Keldysh' predicted a metal-like phase in a 
system of excitions. The new phase was a condensed state of 
elementary excitations in semiconductors, similar to the hy- 
drogen atom. This electron-hole (EH) liquid was soon ob- 
served in experiments, and recently the study of the EH 
phase has become one of the most interesting and promising 
trends in solid-state phy~ics.~.' An electron-hole liquid 
makes it possible to simulate relatively simply a number of 
extremal states such as the limit of strongly compressed mat- 
ter which is realized perhaps only in the cores of stars. It is 
also easy to investigate the spin-polarized phase by applying 
magnetic fields that are attainable by the usual experimental 
techniques. 

We have shown in brief comm~nica t ions~~~ that in a 
system of excited atoms and molecules of gases, or of impuri- 
ty centers in various media, the interaction between excited 
electrons makes possible formation of a condensed phase 
analogous to the EH liquid in semiconductors. Such a phase 
can be obtained in two ways: either as the product of the 
decay of a strongly non-ideal plasma, or as a result of con- 
densation of excited atoms" into a condensed excited state 
(CES). It is quite obvious that the condensed phase is en- 
ergywise favored for an aggregate of excited atoms, just as is 
the situation usually in a system of unexcited atoms. The 
energy gain results in this case from delocalization of elec- 
trons and from the decrease of the average kinetic energy per 
electron of the system. It is also possible to estimate qualita- 
tively the excited-atom density N,, at which the CES are 
produced, by using the known Mott criterion while the insu- 
lator-metal transition: 

- 1 
N,,'"Lz,,~c,, , (1) 

wherea, is the Bohr radius of the nth excited state and c, is a 
number of the order of unity. It can be seen therefore that the 
CES has a lower density the higher the excitation level of the 
atoms of the condensed phase. 

The electron liquid of a CES has a number of unique 
properties: the density of the CES electrons at high excita- 
tion levels corresponds to very large parameters r, ) 1, where 
r, is the radius of a sphere containing one electron and is 
expressed in atomic units. This electron liquid is strongly 
non-ideal, since the kinetic energy, which is proportional to 
r,- 2, is much less than the potential energy a r; ', and the 

principal role in it is assumed by correlation and exchange 
effects. It is known, for example, that in the presence of a 
spatially homogeneous positive compensating background, 
owing to exchange and correlation effects, a homogeneous 
electron distribution is not at all favored, so that the system 
goes over into a phase with charge-density waves, or under- 
goes Wigner cry~tallization.~.' In addition, with increasing 
excitation level the spatial homogeneity of the electron den- 
sity of the CES increases. Whereas for lower excitation levels 
the inhomogeneity can be taken into account by perturba- 
tion theory, for the higher levels the inhomogeneity plays a 
fundamental role. In particular, in a strongly inhomogen- 
eous non-ideal electron liquid one can expect the exchange 
and correlation effects, which contribute to localization of 
the electrons in the region of the largest overlap of the wave 
functions of the excited atoms, to make the CES lifetime 
longer than the lifetime of an isolated excited atom. Thus, in 
a number of cases the CES realize another limit of nonideal 
and inhomogeneous low-density Fermi liquids than of the 
EH liquid. We emphasize that these features of the CES elec- 
tron liquid necessitate a different approach to the descrip- 
tion of the properties of a condensed excited (CE) phase than 
in the case of an EH liquid. 

The purpose of the present paper is the construction of a 
theoretical formalism for the description of the properties of 
a condensed phase of excited atoms, and the determination, 
on this basis, of the parameters of the CES for certain excita- 
tion levels in gaseous and condensed media. We present also 
a comparative analysis of the general properties of the CE 
phase and discuss methods of its production. 

51. MOTT TRANSITION IN A SYSTEM OF EXCITED ATOMS 

Assume a lattice of a large number of atoms excited to 
one and the same level n. We bring the atoms gradually clos- 
er together to certain finite distances between them. If the 
atoms were unexcited, then, as is well known, in such a sys- 
tem, at interatomic distances smaller than or of the order of 
several Bohr radii, the so-called Mott transition into the 
crystalline state would take place (under the condition that 
the unit cell contains an odd number of electrons). An exact- 
ly similar phenomenon will be observed in a system of excit- 
ed atoms, and the indicated transition into the metallic state 
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takes place at densities that are smaller the higher the excita- 
tion level n. 

The critical distance between the atoms, a',"', at which 
the transition into the collective phase takes place can be 
determined, just as for the ground state, by using the tight- 
binding model. We use hereafter Mott's reasoning.' The 
transition into the crystalline state takes place under the 
condition that the hopping energy E r', which is determined 
by the energy of the ground state of the electron in the con- 
duction band in the tight-binding model, is larger than the 
energy of formation of the polar state Ef'. The energy of the 
polar state is defined in the following manner: for the nth 
excited state the ionization energy is E I;', and when a de- 
tached electron is attached to another atom in the same ex- 
cited state, the binding energy E g' is released, from which it 
follows that Er)  = E I;) - E ',"I. For the energy, generated by 
one atomic s level, of hopping into the s band and for the 
simplest cubic lattice we have (see, e.g., Refs. 9 and 10): 

,T/Li2fn) (a), (2) 

where the energy due to the overlap of the wave functions of 
two neighboring excited atoms located at a distance a from 
each other, is given by the expression 

Here H is the Hamiltonian of a system consisting of the oper- 
ators of the kinetic energy and of the electron-ion interac- 
tion, and q, (r) are the atomic orbitals of the level n. Accord- 
ing to Mott's hypothesis, if 

12ytn) (a) >E:"', (4) 

the condensed phase made up of the system of the given 
atoms is a metal. Solving the last inequality, we obtain a 
critical value a',") such that if a<a r )  the inequality (4) is auto- 
matically satisfied. Here a',"' = c,a,, where a, is the Bohr 
radius of the nth excited state and c, is determined by the 
numerical solution of the equation E r' = EF' for each exci- 
tation level. In particular c, z 4  for the ground state of the 
hydrogen atom we have. For the excited states, c, is likewise 
of the order of several units. By the same token we obtain the 
criterion (1) for the onset of a Mott transition in a system of 
excited atoms. 

There are, however, most important differences 
between Mott transitions in systems of excited and unexcited 
atoms. If, besides the excited atoms, the system contains also 
a large number of unexcited atoms, the formation of a metal- 
lic phase sets in at a density lower than that given by condi- 
tion (I), for in such a system resonant transfer of excitation 
takes place from atom to atom. This leads to a transfer of the 
excitations into regions of space where the condition (1) is 
satisfied and where metallic-phase clusters, which are en- 
ergywise favored, will be produced. 

Thus, a condensed metallic phase consisting of excited 
atoms is formed when condition (1) is satisfied. This raises 
the question of describing the equilibrium properties of such 
a phase. This problem is solved in the next sections. 

02. ENERGY OF CONDENSED EXCITED STATE 

If a CES is observed in a system of excited atoms or 
molecules of a gas or of excited donors in semiconductors, 
the collective liquid, i.e., the one belonging to the entire sys- 
tem of charged centers, is the electron liquid. If the CES is 
observed in a system of excited acceptors in semiconductors, 
the collective system is a hole liquid. Hereafter, without spe- 
cifying the type of Fermi liquid, we shall use a single term- 
electron liquid. 

At high excitation levels one should expect spatial in- 
homogeneity of the electron density. Hubbard" developed 
methods that make it possible in principle to describe the 
properties of both a homogeneous and an inhomogeneous 
Fermi liquid, but they are rather complicated for practical 
calculations. The most suitable turned out here to be the 
method of density functionals, developed by Hohenberg, 
Kohn, and Sham.12.13 They have proved that the ground- 
state energy of an electron-ion system, being a functional of 
the electron density, reaches its minimum at a density corre- 
sponding to its true spatial distribution. Most useful in this 
case is the system of reducing the nonlocal exchange and 
correlation interaction between the electrons, to a certain 
local effective intera~tion. '~"~ 

A direct extension of the density-functional methods to 
the description of the properties of the excited states en- 
counters great practical difficultie~.'~ The point is that the 
density functional corresponds to a minimum only at a den- 
sity equal to the electron density in the ground state of the 
atoms. To find the spatial distribution of the electrons in this 
excited state it is necessary to know the distributions of the 
electron density for all the lower-lying excited states. 

This difficulty, however, can be overcome by combin- 
ing the methods of the density-functional theory with the 
pseudopotential concept. Our task is to calculate the "pseu- 
dodensity" of the electron liquid, i.e., to find a smoothed 
quantity that coincides with the true distribution of the den- 
sity outside the atomic cores (outside the "cores" of the pseu- 
dopotentials of the given excited state of the atoms). It turns 
out here that the pseudodensity functional is determined by 
the pseudopotential uniquely if, as in the usual variant of the 
theory of density pseudopotentials, one considers the case of 
nondegenerate states of the system. A proof of this statement 
is given in Appendix I. We note here that, in accord with Ref. 
15, to calculate the electron density distribution in all of 
space it is necessary, as before, to know the density of the 
electrons of the low-lying excited states, but now this infor- 
mation is included in the scheme for finding the pseudopo- 
tential. It is precisely the introduction of the latter which 
makes it possible to search for the solution of the variational 
problem among the class of functions orthogonal to the func- 
tions that belong to all the states of the atomic core. 

Thus, the equilibrium properties of the CES will be de- 
scribed by using the methods of pseudopotential theory and 
density functionals. The CES energy will be written out here 
under the assumption that the temperature contributions are 
small. The latter can be included without fundamental diffi- 
culties within the framework of the computation scheme de- 
veloped below. l4 
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Let v, (r) be the pseudopotential of the system of excited 
atoms andp, (r) the pseudodensity2' of the valence electrons 
of the condensate. The energy E ( p, j of the condensed 
phase is then a single-valued functional of the density p, (r) 
and is defined by the expression3': 

T ( p, ) is a functional corresponding to the kinetic energy of 
the electrons. The second term in (5) is the energy of the 
direct Coulomb electron-electron interaction, the third is 
the functional of the exchange-correlation electron-electron 
interaction, while the last one is the energy of the electron- 
ion interaction. 

The energy exchange and correlation functional is de- 
termined by the energy of the interaction of electrons of the 
system with the charges of the exchange-correlation 
 hole^^^-^^: 

where p, is the charge density of the exchange-correlation 
hole, 

Here G (r,rl) is the electron correlation function. Weconsider 
below in detail three schemes for calculating the properties 
of the CES, based on different approximations of these func- 
tional~. We shall use the concept of the spherical Wigner- 
Seitz cell customarily used in the theory of metals. 

3. APPROXIMATION OF HOMOGENEOUS ELECTRON LIQUID 

The simplest and most fully developed as applied to an 
electron liquid is the approximation of a homogeneous elec- 
tron liquid. In this case the density p: of the electrons of the 
CES is associated with the radius of a sphere containing a 
single electron: 4.r< p!/3 = 1. We represent the pseudopo- 
tential of the ion system in the form of a sum over the direct- 
lattice vectors R, : 

The pseudopotential v, ,(r) of an individual excited atom can 
be chosen in the form of the well-knoyn single-parameter 
Ashcroft p s e u d ~ p o t e n t i a l ~ ~ ~ ~ ~  

The choice of the parameter R, should lead to an energy 
spectrum that coincides with the true energy spectrum of the 
electron in the field of the given ion. In Appendix I1 is given a 
procedure for calculating the parameter R, of the pseudopo- 
tential (9) for different excitation levels of a hydrogenlike 
atom. Using (9) we obtain for the energy per electron of the 
system a well-known expressionI9 (first-order perturbation 
theory in the pseudopotential): 

+ &c(rS) ,  (lo) 

where Vis the volume of the system. The first term in (10) is 
the kinetic energy per electron, the term in the square brack- 
ets comes from the second and fourth terms in the right- 
hand side of (5), and the last two terms in (10) are the energy 
of exchange and correlation of a homogeneous electron gas. 
There are several appr~ximat ions~ ' .~~  for the correlation en- 
ergy; for r,<5 it is customary to use the Nozikres-Pines 
expression,22 and for large r, the Wigner expression is con- 
~ e n i e n t . ~ " ~ ~  

The homogeneous-electron-gas approximation is justi- 
fied if the excitation levels of the atoms that make up the 
condensed states are not too high. Indeed, the average den- 
sity of the valence electrons inside an atomic core (r < R, ) is 
as a rule less than outside the core.19 In the quasiclassical 
approximation, according to Refs. 4 and 19, the density of 
the valence electrons inside the corep, (r < Rn ) is of the order 
of p, (r > R, )/2R A". Since R is of the order of unity for 
low excitation levels, the inhomogeneity of the spatial distri- 
bution of the density can be neglected. For high excitation 
levels, however, when R :"> 1, the homogeneous-electron- 
gas approximation is no longer suitable. 

The equilibrium value of the parameter r,, which coin- 
cides in the homogeneous-electron-gas approximation with 
the radius of the Wigner-Seitz cell R, , is obtained by mini- 
mizing E (r, ), 

aE (r.) lar, I nA=O. (1 1) 
The binding energy B, per CES atom is obtained from the 
equation 

Bn=E (Rn) -In, (12) 

where I, is the electron binding energy on the nth excited 
level of the isolated atom. In the hydrogenlike model we 
have I, = - (1/2)n2. 

Table I lists the CES parameters calculated in the ho- 
mogeneous-electron-gas model for hydrogenlike-atom exci- 
tation levels 3<n<5 (see also Ref. 5). The table will be dis- 
cussed in Sec. 5 below. 

4. INHOMOGENEOUS-ELECTRON-LIQUID APPROXlMATtON 

For sufficiently high excitation levels, the homogen- 
eous-electron-gas approximation is not valid. Thus, for ex- 
ample, even for the level n = 5 the electron density of the 
CES has a characteristic scale of variation 
pn (r < R,, )/pn (r > Rn ) -0.1 over the Wigner-Seitz cell. It is 
therefore necessary to approximate the functionals in (5) by a 

TABLE I 
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different scheme that makes it possible to take into-account 
the effects of the inhomogeneity of the spatial distribution. 
The simplext approximation is here the local-density ap- 
proximation. 12-'' 

Since we are interesting in effects due to the inhomoge- 
neity of the electron liquid, it is advantageous to calculate 
the CES energy by using certain model representations for 
the electron density p,(r). Let R, be the radius of the 
Wigner-Seitz cell. For high excitation levels, when R A"> 1, 
the average density of the valence electrons differs noticea- 
bly from zero near the cell boundary, 
p, (r < R,)/ p, ( rzR,  )( 1. We specify the electron density 
distribution over the cells by the following trial function: 

pn(r) =PO exp [- (r-Rn-An)'/A,2], (13) 
where A, = R, - R, . The coefficient po is obtained from 
the condition that the cell contain one ion and one valence 
electron. For high excitation levels, when effects connected 
with the inhomogeneity of the electron density are signifi- 
cant, we have the following small parameter: 

( AnlRn) el. (14) 

In this approximation we find that 

Using (1 3) and taking (14) into account we obtain the follow- 
ing approximate expressions for the terms in the total energy 
per electron of the condensed phase: 

where T, E,, EH, and EX, are the kinetic, electron-ion, Har- 
tree, and exchange-correlation energies per electron. Retain- 
ing the principal term in the expression for the energy 
En (A,) = T + E, + Ex* + E,,, i.e., the largest contribu- 
tions in powers of l/An of each of the factors (15)-(18), we 
find in this approximation that 

Hence, varying En with respect to A,, we find that the equi- 
librium value of the parameter A : is given by 

Substituting A : in (15)-(18) we can obtain the energy per 
electron of the CES at equilibrium. The binding energy per 
atom of the condensed phase is obtained from (12) by making 
the substitution E (RA)+E, (A :). The results of the calcula- 
tion for the excitation levels 5(n<9 are given in Table 11. 

It can be seen from the general expression for the energy 
(19) that the correlation and exchange effects tend to com- 
press the electron liquid: the gain in exchange energy and 

TABLE I1 

correlation energy is larger the higher the density. Compres- 
sion of the electron liquid takes place near the repelling cores 
of the pseudopotential. However, compression increases the 
kinetic energy, so that it is the competition of these two ener- 
gy contributions which establishes a certain equilibrium val- 
ue A : (Fig. 1). 

A more exact scheme that takes into account the corre- 
lation and exchange effects in an electron liquid with fast 
spatial density oscillations is the nonlocal-density approxi- 
mation described in detail in Refs. 16-18. Inasmuch as in the 
general case the pair correlation function of the electron gas 
is unknown, this function is usually chosen parametrically in 
the same form as for a homogeneous electron gas, but the 
parameters of this function at each point of space are chosen 
from the integral sum rules for 

The nonlocal-density formalism was used by us to ver- 
ify the calculations performed in the local-density approxi- 
mation for a CES produced at the excitation level n = 9. The 
electron-density distribution p, (r) was specified by the func- 
tion (13) in the interval (0,2R, ), where A ,+ = 12.2 according 
to (20). In this case the exchange-correlation energy obtained 
for electron was Ex, = - 0.25 eV, which agrees, accurate to 
the small parameter (14), with the results of the local calcula- 
tion for the given excitation level. The kinetic energy in the 
nonlocal approximation practically coincides in this case 
with the results of the local calculation. In addition, the ex- 
change-correlation potential of the electron interaction over 
the Wigner-Seitz cell is obtained numerically (see below). 
This result was used to determine the total cell potential (see 
Fig. 2 below). 

E9,T, ExCI rel. un. 

FIG. 1. Dependence of the energy of the condensed excited state E, (I), of 
the kinetic energy T(2) ,  and of the exchange-correlation energy E,, (3) on 
the parameter A of the electron-density distribution function at n = 9. 
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ourselves to an estimate of the surface tension of the con- 
densed phase, using the formula 

dn)= I Bn I inRa2. (22) 

FIG. 2. Effective cell potential (25) for CES electrons (n = 9). 

We wish also to emphasize here the following circum 
stance. Just as for metals, the following rule "works" for the 
CES: 

B n = T ~ ~ ~ - T a t ,  PI1 

i.e., the binding energy is the difference between the averge 
kinetic energy in the condensed phase and the average kine- 
tic energy in the isolated atom. In this sense, the appearance 
of a binding energy in the CES is explained, as usual, as being 
due to delocalization of the electrons and to the decrease of 
their average kinetic energy. This is seen from the data listed 
in Table 111. 

5. DISCUSSION OF RESULTS 

We proceed to discuss the results obtained in the pre- 
ceding sections. Tables I and I1 given the Wigner-Seitz cell 
radii R, and the binding energies B, . It can be seen that the 
binding energy per CES atom, for different excitation levels, 
can greatly exceed, for example, the energy kT correspond- 
ing to room temperature. Consequently at not too high exci- 
tation levels the CES are quite stable formations similar ap- 
parently to liquid metals, and the densities of these 
metal-like formations are close to those of gas. This notwith- 
standing, the CES can be transparent in the visible band, 
owing to the low density of their valence electrons. Thus, for 
the excitation level n = 9 we have an estimated plasma fre- 
quency w, = (3/R, 3)"2=: 0.03 eV. 

The surface properties of the condensed phase are quite 
interesting. It is knownz4 that the surface energy is defined as 
the energy needed to divide the crystal into two parts by a 
single plane passing over the atomic bonds. It should be not- 
ed that calculations of the CES surface energy is quite com- 
plicated, since great importance is assumed here by ques- 
tions connected with the spatial distribution of the electron 
liquid near the phase boundary. We can therefore confine 

TABLE I11 

From this we obtain, say for the excitation level n = 9, the 
estimate ~ '~ '= :0 .14  erg/cm2. By way of comparison we indi- 
cate that the surface tension of liquid helium is 0.36 erg/cm2. 

A substantial question is that of the lifetime of the CES. 
First to take place are radiative transitions to lower-level 
atomic states. However, a large number of radiative transi- 
tions, and in some cases all of them, can be completely for- 
bidden. To this end it is necessary that the transition fre- 
quencies be lower than the CES plasma frequency. But 
besides the rotational decays in this collective phase an im- 
portant role is played by Auger processes. If they turn out to 
be principal, the lifetime should decrease greatly. The kinet- 
ics of the decay of the CE phase on account of Auger pro- 
cesses is a separate complicated problem and will not be con- 
sidered here. 

The situation changes radically, however, when CES 
are produced at high excitation levels, when a substantial 
role is assumed by effects connected with the inhomogeneity 
of the electron liquid. In accordance with Refs. 13 and 14, we 
represent the density p, (r) as a sum over the occupied states: 

, 

5 
6 
7 
8 
9 

where $,(r) are the solutions of the single-particle Schro- 
dinger equation 

Here V,(r) is the Hartree potential and 
vxc (r) = SEX, [ p, ) /6p, (r) is the exchange-correlation po- 
tential.'*-l4 It can be verified that in the atomic-core region 
/ r  - R, I < R, the exchange-correlation interaction 
vxc (r - R,) is much weaker than in the region of space where 
the electron density differs noticeably from zero. Thus, in 
the local-density approximation the exchange-correlation 
potential vanishes exponentially within the atomic core (see 
also Ref. 4). It follows from (24) that the effective potential in 
which the valence electron of the CE phase moves is deter- 
mined by the sum of the cell potentials 

V,':;=V,, (r-R,) +VH(r-R,)  +v,(r-Rj) ,  (25) 

T , ~ ,  e~ 

0.544 
0.378 
0.278 
0.223 
0.168 

where vei(r) it is true potential of the electron-ion interaction. 
We emphasize that (24) contains in place of vei(r) the pseudo- 
potential of the electron-ion interaction vni(r), inasmuch as 
there the procedure for finding the solution of the variational 
problem on a class of functions orthogonal to all the lower 
states is carried out by making the substitution vei+uni. Fig- 
ure 2 shows the result of a numerical calculation, within the 
framework of the nonlocal-density formalism, of the cell po- 
tential (25) for a CES produced at the excitation level n = 9. 
It can be seen that in the region where the electron-density 
differs substantially from zero the exchange and correlation 
effects lead to self-trapping of the  electron^.^' The lifetime of 
the CES with respect to decay to less excited atoms can be 
estimated in the WKB approximation, by starting with the 
lifetime T, of an isolated atom at a given excitation level. 
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TCES. eV 
Eq. (15) 

0.132 
0.096 
0.070 
0.057 
0.044 
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I B ,  I . eV 
Eq. (21) 

0.41 
0.28 
0.21 
0.16 
0.12 

I B,  I ,  eV 
"exact" calculatio 

0.40 
0.30 
0.22 
0.27 
0.13 



This yields 

The parameters R,  and R2 determine here the region of the 
sub-barrier motion. From this we have for the excitation 
level n = 9 a typical estimate t'9'=: 10-100 msec. Thus, for 
high excitation levels the lifetime of the CES can apparently 
be macroscopically large. 

Methods of observing drops of the CE phase can be 
different, depending on where the CES is observed, and also 
on the level to which the condensing atoms are excited. The 
presence of a CE phase can be revealed, for example, by the 
change of the luminescence spectrum of the material or by 
passage, through the investigated volume, of radiation 
whose wavelength is large compared with the wavelengths 
corresponding to plasma oscillations of the CES electrons. 

It appears that it is experimentally simplest to investi- 
gate the possibility of formation of a CE phase in condensed 
media, particularly in semiconductors, by using the known 
method of investigating EH liquids. For semiconductors, 
the energy contributed to excitation of the impurity is rela- 
tively small. In addition, at any method of obtaining a large 
number of excited atoms it is necessary not to overheat the 
material, to prevent the CE phase from evaporating. This 
problem is also easiest solved for semiconductors by deeply 
cooling the investigated samples. 

Formation of CES in a system of excited impurity 
centers in semiconductors leads to a change in the properties 
of the semiconductor as a whole. It is known that with in- 
creasing donor density in a semiconductor its dielectric con- 
stant ceases to increase linearly, and when a definite density 
is reached one observes the so-called dielectric c o l l a p ~ e . ~ ~ . ~ ~  
The dielectric collapse occurring when a definite donor den- 
sity is reached is evidenced by the transition of the donors 
into a metallized state at this density. A similar phenomenon 
should be observed also in a system of excited impurities in 
semiconductors.5' Recently Godik and Petrov2' investigated 
the photodielectric effects on excited states of Ga impurities 
in Ge. They observed experimentally a superlinear increase 
of the dielectric constant of the crystal with increasing den- 
sity of the excited impurities. These experiments offer evi- 
dence of the presence of drops of a condensed excited phase 
in the semicond~ctor .~~ 

In conclusion, the authors thank L. V. Keldysh for dis- 
cussions and support, V. L. Ginzburg, Yu. V. Gulyaev, E. G. 
Maksimov, R. A. Suris, I. P. Stakhanov, A. M. Afanas'ev, 
Yu. A. Bykovskii, M. I. Ryazanov, and V. I. Perel' for a 
discussion and interest in the work, and G. A. Levacheva for 
great help with the computer calculations. 

APPENDIX l 

Hohenberg and Kohn proved the following theorem: 
for a given external potential Vo(r) the exact distribution of 
the electron density po(r) minimizes the energy of the ground 
nondegenerate state Eo, which is a single-valued functional 
of the density r0(r).l2 This theorem was expanded to include 
also the case of nonlocal  potential^.^^ A direct extension of 

the results of Ref. 12 to describe excited states15 greatly com- 
plicates the calculation procedures, since it calls for know- 
ledge of the distribution of the electron density for all the 
low-lying states of the potential. This is actually due to the 
fact that the solution of the Schriidinger equation for excited 
states is constructed on a class of wave functions that are 
orthogonal to all the low-lying states. This is precisely the 
situation encountered in metal theory when the orthogonali- 
zation of the wave functions of the valence electrons to all 
the wave functions of the inner shell is taken into account by 
introducing a pseud~potential.'~ A pseudopotential can 
therefore be introduced also for the description of excited 
states of quantum-mechanical systems, so that a specified 
excited state in the field of the pseudopotential turns out to 
be the ground state.30 We note that in metal theory the den- 
sity-functional formalism was already used in conjunction 
with the concept of the pse~dopotential. '~.~~ Thus, if we in- 
troduce a pseudopotential for a given excited state and the 
solutions are nondegenerate it is possible, following Refs. 12 
and 19, to introduce in the field of the latter a pseudodensity 
functional such that an exact distribution of the pseudoden- 
sity will minimize the energy of the given excited state of the 
system. 

APPENDIX II  

In the present paper we use the model pseudopotential 
proposed by Heine and Abarenkov.19 It is well known that 
the most exact calculations on the basis of the pseudopoten- 
tial can be carried out by fitting its parameters to the experi- 
mentally known values of determined parameters of met- 
als. l9 If, however, the parameters of the pseudopotential are 
determined from first principles, i.e., from data on free 
atoms, then the accuracy of the calculations is usually 10- 
20%. For CES the only possibility of determining the pa- 
rameters of the pseudopotential is at present the use of data 
on excited atoms. If we use the known compensation 
theorem,I9 it remains to determine for the model pseudopo- 
tential a single parameter-the radius of the "atomic 
core."20 To determine this parameter (the radius Rn ) a vari- 
ational procedure was used to find such R, that the energy 
levels in the Ashcroft pseudopotential [see (9)] coincided 
with the corresponding energy levels of the excited hydro- 
genlike atoms, In = - (1/2)n2. The trial wave function used 
was Gaussian and similar to (13). The result was R, = 7, 16, 
30,45, 65,90 and 120 for the respective levels n = 3,4,5,6, 
7, 8, and 9. 

We note that the pseudopotentials include formally also 
the effects of exchange in correlation between the valence 
electrons and the inner-shell electrons (if the latter exist). 

"By "excited atoms" are meant everywhere also electron-excited mole- 
cules, impurity centers, etc., unless otherwise stipulated. 

''This quantity will hereafter be called density. 
3'We use the atomic system of units throughout. 
4'The situation has a classical analog (pointed out to the authors by L. V. 

Keldysh), which explains the nature of the exchange-correlation interac- 
tion that leads to the onset of an effective potential well in the region 
where the CES electrons are localized. Let a test charge be located inside 
a sphere uniformly charged over the surface. Although in this case there 
is no field inside such a sphere without the test charge, in the presence of 
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the latter inside the sphere there are induced on the sphere image charges 
and the test charge will be attracted to its own image by a polarization 
interaction with it. 
'See Ref. 27 concerning the influence of frequency dispersion of the dielec- 
tric constant on the carrier interaction. 
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