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The Hall effect in a magnetized disk is considered. If the disk is used as a unipolar inductor the 
original magnetic field decreases, whereas if a current of appropriate direction is driven through a 
rotating disk the magnetic field increases (without limit in our simple analysis at constant current 
I ). The effects should be testable for laboratory sized objects and may be of crucial importance in 
pulsars. The relative change of the magnetic field is of order BN for pulsars, where f i  = RR /c  is 
the equatorial velocity of the pulsar in units of the velocity of light and, N  = eBr/mc is the 
dimensionless Hall constant. Under favorable conditions SB / B z  lo-' for laboratory sized ob- 
jects and f l N z  1 for pulsars. 

PACS numbers: 72.20.My, 85.70. - w 

$1. INTRODUCTION 

It is well known that the magnetic field in an ordinary 
disk dynamo is amplified if the inequality 

is satisfied, wherehiis the mutual inductance of the solenoid 
and the disk, R is its angular velocity, and R is the Ohmic 
resistance of the circuit. If the inequality is not satisfied, the 
current will decay as soon as the initially given magnetic 
field has disappeared (a diagram of such a dynamo is shown 
in Fig. 1). 

The disk dynamo depends on the special arrangement 
ofwires and it has remained doubtful for a long time whether 
a dynamo process can be realized in a singly connected do- 
main of nearly uniform electrical conductivity, such as that 
represented by the Earth's core. These doubts have been dis- 
pelled by the work of different authors who demonstrated in 
a mathematically rigorous way that the so-called "homogen- 
eous dynamo" is indeed possible. Since then, a large number 
of solutions have been obtained, and it is generally believed 
nowadays that almost all velocity fields are capable of gener- 
ating magnetic fields in a singly connected body of fluid if the 
magnetic Reynolds number R ,  is sufficiently high. R, is 
defined in analogy to the ordinary Reynolds number except 
that the kinematic viscosity is replaced by the magnetic dif- 
fusivity A = ( pa)- ', where u is the electric conductivity and 
p is the magnetic permeability. 

Here we shall pursue the alternative idea that in thecase 
of pulsars i.e., neutron stars, the Hall effect may play a cru- 
cial part in determining the external magnetic field. 

$2. THE HALL EFRCT IN A MAGNETIZED NONROTATING 
DISK 

Consider a magnetized disk with inner radius ri and 
outer radius r e .  Let u be the conductivity of the disk, I the 
total current driven through the disk (from re to ri). We 
introduce the dimensionless Hall constant 

where the collision time r is related to a by the well known 
relation' a = ne27/m. Ohm's law'v2 reads 

j+ [NX j] =aE, (la) 

or in tensor notation 

with the inverse 

(we use the summation convention). For future use Eq. (lc) 
also in vector notation 

j=uLE+ (G;,- - gl) (bE) b+oL [EX NJ , (Id) 

where a+ = u/(1 f N 2),uil = u, and b is a unit vector in the 
direction of the field B. 

If we apply a potential difference A@ between inner and 
outer rims, the electric field in the disk will be given by 
E = - V@, div E = 0. So that we have 

We use coordinates ( p,q,z) in the disk and e,, e,, e, are unit 
vectors in the ( p,q,z) directions, respectively. 

In the following it is convenient to consider a disk of 
finite height h ( r i .  To determine the energy dissipated in the 
disk we evaluate W = $j*E*dVand obtain the following three 
equivalent expressions 

2nh (AD)' (1+N2)Z2 re 
W=IAD=o- - - ln-. (2) 

1 +N2 In (r,/rt) 2noh ri 

FIG. 1. Sketch of a disk dynamo. 
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whence we deduce by means ofA@ = RZ that the resistance 
R is 

Note that 

I=Znhj, (r,) r,=2nhjp (ri) r,. 

Owing to the Hall effect the dissipation increases by a factor 
1 + N for a given current Zand decreases by the same factor 
for a given potential difference A@. The point is that owing 
to the magnetic field the current Z spirals from re to ri in N 
turns. The current density j ,  (which equals - Nj, , accord- 
ing to Eq. (lb), will however generate in the disk an extra 
magnetic field SBz of order SB, = - NZ/c re (see below). 
Depending on the direction of the current I, the existing 
magnetic field will either increase or decrease. If we keep Z 
fixed (which implies that we increase the potential difference 
by 1 + N Z  times) we can arrive at very large magnetic fields 
without using any coils. 

In our simple analysis, we neglect the dependence of r 
on B and the mechanical magnetic stresses exerted on the 
disk. Infinitely strong magnetic fields are therefore possible 
at a finite current I. The additional magnetic field can be 
calculated by standard techniques by using the Green's func- 
tion in polar coordinates (r,O,p ). We put S B = curl6 A and 
div S A = 0. We obtain 

The solution of this equation for r> re is 

N I  - -?:'-I 

sr, = -C an (+ ) Pznl (cos 0). 
cr, 

where the a, can be found e.g., in Ref. 3. For the dipole part 
we find 

as stated above. 

93. THE UNIPOLAR INDUCTOR 

We apply now the foregoing considerations to the rotat- 
ing disk (unipolar inductor). For an observer at rest, Ohm's 
law reads now 

where we have dropped ternis of order fi 2. The electric field 
at the rim of the disk (index e) is therefore 

For good conductivity the second term in Eq. (6) can usually 
be neglected but it is clear that it is this term which limits the 
maximum producible current I. If we connect the inner and 
outer rims by nonrotating wires and a resistor R, a current I 
will flow and energy is thus extracted from the rotation of 
the disc. Neglecting the Hall effect for a moment the analysis 
goes like this. The electric field E is given by Eq. (6) 

The potential inside the disk is 
1 

@ = - (PB) p2. 
2c 

The potential difference is therefore 
1 

A@=@ (re)-@(ri) = -(PB) 2c (r2-ri2). 

It produces a current 

The dissipated energy is W = Id@. It is drawn from the rot- 
tional energy of the disk and therefore angular momentum 
must be dissipated at a rate  such that W = 0.J. Externally 
this is achieved in the immobile wires and resistor, and inside 
the disk the angular momentum is extraced by the electro- 
magnetic torque T 

Multiplying Eq. (9) by we have 

as it must. 
Let us now take into account the Hall effect. Under 

stationary conditions and for axisymmetric flow the deriva- 
tives with respect to t and q, vanish. We then have from curl 
E = - B/c = 0 that E, = 0 everywhere since E, vanishes 
at the boundaries r, and ri . With E, = 0 we have, neglecting 
the second term of Ohm's law (6) j, + Nj, = 0 so that as in 
the nonrotating disk an extra current will flow which will 
give rise to an additional magnetic field SB, in the disk and 
the subsequent analysis can be directly carried over from the 
preceeding section. According to Lenz' rule the induced 
magnetic field will oppose the original field if we introduce a 
resistance. However, the reverse is obviously also possible: if 
we drive a current through the unipolar inductor so that the 
disk speeds up, the magnetic field will then increase and the 
energy must be supplied by the external e.m.f. which pro- 
duces the current. 

94. APPLICATION TO LABORATORY AND ASTROPHYSICS 
OBJECTS 

For a pure copper crystal at 4K a time ~ z 2 . l O - ~  sec is 
possible, whereas at room temperature ~z 2.10- l4 sec for 
ordinary copper. We find therefore for these two cases, re- 
spectively 

N=IOO(B.lO-') (z.lOe) and N=10-3 (B.10-') (~ .10" ) .  (1 1) 

For a copper disk in a magnetic field of lo4 G, having a 
radius of 10 cm and rotating at 0 = lo3 sec-' (z 160 Hz), 
the potential difference will be 5 V. At a load resistance 
Ohm, a current of 1 A will flow and induce a magnetic field 
(cf. (44) 
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compared to the original lo4 G, which should be measurable 
in the laboratory. 

In pulsars, which are believed to work essentially like 
unipolar inductors, the effect may be much larger for low 
enough temperatures, i.e., for high enough conductivity at 
the surface. If the surface is anything like a crystal lattice we 
expect the conductivity due to electron-phonon scattering to 
depend on temperature like ( T / O  )-', where O is the Debye 
temperature of the lattice. For one of the models, calcula- 
tions4 yield for the conductivity directly below the pulsar 
surface (p-lo4 g.cma3, B-1012 G) a value 
o = 1020(T.10-6)-5 sec-'. Together with the value of the 
electron density ne - lo2' cm-3 and the time - 10-l4 sec 
this gives 

For the induced magnetic field due to the Hall effect we 
obtain, knowing the current I (which can be determined 
from observation of the deceleration of the pulsar rotation" 

We have used here the relation 
QB 

Z=en,cAF=- - AF, 
2n 

where F is the pulsar surface area and A F  is the surface area 
of its polar cap. 

5. EXTENDED BODIES AND THE BUILDUP PROBLEM 

So far we have considered only thin disks, for which the 
calculations can be carried out in analytic form. From the 
viewpoint of astrophysics the most interesting case is that of 
magnetized spheres. What happens when current passes 
through such a sphere? (Expressions for the resistance of a 
nonmagnetized sphere can be found in Ref. 2). The buildup 
problem is determined by Maxwell's equations 

4n 1 . 
rot B = - j S -E, j=6E, 

C C 

1 
rot E=- -B, 

C 

where B is the conductivity tensor given by Eq. (lb). For our 
case we can neglect with good approximation the term E /c, 
and we arrive at the equation 

4n 
rot rot E=- - 6E. 

C (15) 

With the Hall effect neglected, the solution of the prob- 
lem of the damping of a magnetic field in a sphere is well 
known.2 Separating the time dependence in the form 
B = B g  - y', we obtain for the eigenvalues of (1 5) 

where the values of k, are determined by the roots of the 
equation Jo(kn re) = 0 in the case of a sphere of radius re or 
of the equations J,(kn re ) = 0 for a cylinder (of infinite length 
in thez direction); Jo and J, are Bessel functions. The lowest 
decay mode is ko = r/r0 for a sphere and k, = 1.2272/ re for 

an infinite cylinder; in other words, the magnetic field in a 
cylinder attenuates (1.22)2 = 1.5 times more slowly than in a 
sphere of the same radius. 

For a cylinder it possible to obtain an analytic solution 
of the problem also with the Hall effect taken into account. 
The complete solution is given by the equations 

with the same eigenvalues (this can be seen from (16) by re- 
calling that J; = - J,). Thus, the influence of the magnetic 
field reduces to production of an additional electric field 
EP = - NE+, . 

To understand this result better, we consider the dissi- 
pated energy with the aid of the phenomenological equation 
(for a thin conductor) 

where L is the self-inductance, R the resistance, and C the 
capacitance of the system, and U,,, is the external applied 
emf.2 In the damping problem, the total charge is equal to 
zero, and there is no external emf. We have therefore 
C- 2~~ + R I  = 0, whence 

Since both R and L have the same dependence on N, we see 
that the decay time, determined by the ratio of these two 
quantities, is independent of N. For a sphere we should use 
the telegraphy equation 

whence 

We see therefore that in a sphere, too, the Hall effect does not 
change qualitatively the decay (or buildup) of the magnetic 
field. 

We turn now to a detailed application to pulsars. 

86. EVOLUTION OF PULSAR MAGNETISM VIA THE FARADAY 
DYNAMO MECHANISM 

We shall first give some background information on 
pulsars and some motivation why we think the preceding 
considerations could be of importance for pulsars. 

Soon after the identification of pulsars with neutron 
stars it was pointed out that the observation of absence of 
long-period pulsars could be understood if one assumed that 
the magnetic field decayed on a time scale of some lo6 years. 
As shown in 95, the time-scale T, for a magnetized body to 
lose its magnetic field via Ohmic dissipation is 

It amounts to - lo6 years if the average conductivity is 
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a- loz3 sec-I, a rather large value for nondegenerate mat- 
ter. However, unlike in ordinary stars, the matter of a neu- 
tron star is extremely degenerate and due to Pauli principle 
the conductivity is very large. In fact the protons may in 
some part of the neutron star actually form a type-I1 super- 
conductor. Consequently only in the crust of a neutron star 
can the magnetic field decay and this would not lead to any 
appreciable reduction of the star's dipole moment. Im- 
pressed by such theoretical considerations, observers contin- 
ue to this day to discuss their observational results in terms 
of magnetic-field decay.6 

How can pulsars turn-off then if magnetic-field decay is 
not possible? Three viewpoints have been offered. The first is 
a clever variant of the magnetic-field decay hyp~thesis.~ It is 
clear that a magnetic field cannot be anchored stably in a 
liquid body. So either a crust must be present, or a toroidal 
field which confines the poloidal field. If this toroidal field is 
mainly anchored in the crust it can decay by Ohmic dissipa- 
tion (see §5) ,  the poloidal field may subsequently crack the 
crust and reorient itself, lowering the magnetic energy there- 
by and form a quadrupole field. 

The second viewpoint is based on the fact that external 
or internal torques may lead to considerable alignment of the 
pulsar spin axis with the axis of its dipole m ~ m e n t . ~  There is 
little observational evidence that alignment alone is the 
mechanism that turns off a pulsar, although the angle 
between dipole and spin axes is probably important for pul- 
sar evol~ t ion .~  Therefore some other mechanism must be at 
work. In line with earlier work by Sturrock,lo' Ruderman 
and his group1' have developed the idea that sparking in 
gaps in the magnetosphere is responsible for the coherent 
radio emission of radio pulsars and that this process is sensi- 
tive to the surface temperature and to the rotation period. 

The following discussion is also in line with these con- 
siderations and stresses, as will be seen, the importance of 
the surface temperature. In Refs. 5 and 9 was described in 
detail a valid model for slowing-down or speeding-up a neu- 
tron star, based on the mechanism of a disk dynamo in which 
one replaces the wires by those conducting field lines of the 

FIG. 2. Scheme of the current distribution in the pulsar polar cap. The 
forward current j, flows away from the polar cap of area A F  along the 
magnetic field lines B. The return current j, flows axially symmetrically 
about the forward current further away from the rotation axis a, which 
coincides in the present case with the magnetic dipole axis. 6 is the angle 
subtended by the polar cap. Only a few turns of the toroidal component of 
the current within the polar cap are shown. 

magnetic dipole which cannot rotate with the pulsar, i.e., the 
so called open field lines. In Ref. 5 are described the details of 
the current distribution in a magnetosphere which does not 
rotate with the pulsar and it is demonstrated that the anoma- 
lous braking index of the Crab nebula pulsar can be ex- 
plained in a quite natural manner. This is a major success of 
the model, since the explanation of the anomalous braking 
index has presented so far a major difficulty for any theory. 
The neutron star is slowed down or accelerated by a magnet- 
ic torque produced by a current which flows along the mag- 
netic field lines away from the surface of the polar caps. In 
the simplest case the return current (j, in Fig. 2) will flow 
axially symmetrically around the forward current (j, in Fig. 
2) and further away from the center of the polar cap. 

According to the considerations presented in $4 no Hall 
field can be established for geometrical reasons so the cur- 
rent which flows across the magnetic field lines inside the 
neutron star must follow a spiral and satisfy divj = 0. The 
total current I can be inferred from the observed slow-down 
or speed-up and we can write instead of Eq. (14) 

(re is the pulsar radius; the angle 0 is shown in Fig. 2). If the 
conductivity a is mainly due to electron-phonon scattering, 
it will depend on temperature like T -5, i.e., the conductivity 
will be extremely temperature dependent. In this case it is 
convenient to turn around the meaning of Eq. 23 and solve 
for T instead. For those  pulsar^'^.'^ which are believed to 
become extinct, we have typically h = - 10- l 6  sec-' 
8=. lo-', Bp = S Bp =: 10'' G, which implies a temperature 
T=. 104.7 K. For x-ray pulsars we may on the other hand put 
T=:107 OK for the surface temperature. Putting also 
8=: we obtain SBp =: 1OI2G, in good agreement with 
the observations if we use h=: lo-'' sec-' as inferred from 
their speed-up. 15' 

97. CONCLUDING REMARKS 

The evidence that radio-pulsars are slowed down and x- 
ray pulsars accelerated predominantly by magnetic torques 
is now very strong. Angular momentum is transferred away 
from the neutron star in the case of radio-pulsars or fed to the 
neutron star in the case of x-ray pulsars by means of a mag- 
netic spring, the physical origin of which is an appropriate 
current flowing along the magnetic field lines. Since this cur- 
rent must be closed on the neutron-star surface and no Hall 
field can be built up, a Faraday dynamo mechanism sets in. 
It is pointed out that this mechanism could turn on a radio- 
pulsar or turn off an x-ray pulsar. Many contradictory pul- 
sar observations could thus be explained,15 if it is assumed 
that radio-pulsars can be reactivated in the galactic plane by 
means of accretion in dense clouds and that x-ray pulsars 
must first create a sufficiently strong magnetic field to func- 
tion as a regularly pulsed emitter. 
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