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It is shown that, owing to the interaction of electrons localized near the plane of a defect with free 
electron, superconducting states that penetrate deeply into the interior of the superconductor are 
produced at a temperature exceeding the critical temperature of a homogeneous superconductor. 
The diagram of coexistence of the normal and superconducting phases as a function of the angle 
between the direction of the magnetic field and the plane of the defect is constructed. The appear- 
ance of characteristic kinks on this diagram is predicted. The possible connection of the theory 
with the experiments of KhaTkin and Khlyustnikov is discussed, as is also the possibility of a 
Kosterlitz-Thouless transition in such a system. 

PACS numbers: 74.10 + v 

1. INTRODUCTION 

Inhomogeneous superconductors are now the subject of 
intensive research. The inhomogeneity may be due to the 
presence in the metal of strains (dislocations), surfaces, twin 
boundaries, composition inhomogeneities (layer of one met- 
al on the surface of another, periodic intermetallic struc- 
tures). (Here and elsewhere we consider only inhomogen- 
eous systems of the metal-metal type.) 

Naturally, the inhomogneity affects all the quantities of 
importance in superconductivity: the electron and phonon 
spectra and the electron-phonon interactons. Within the 
framework of the weak-coupling model this should lead both 
to a change of the Debye frequency and to inhomogeneity of 
the electron-electron interaction constant. In most cases it is 
qualitatively correct to take into account the inhomogeneity 
of the electron-electron interaction. Indeed, since the critical 
temperature T, -exp( - l/g), a relatively small change of 
g(r) leads to substantial effects. In this approximation there 
appear the so-called proximity effects, wherein regions with 
good superconducting properties induce superconductivity 
in regions with poor superconducting properties, while re- 
gions with poor superconducting properties suppress the su- 
perconductivity. Since the characteristic quantity upon on- 
set of superconductivity is the coherence length {, the 
averaging of the superconducting properties can likewise 
take place over such distances. 

This model of the phenomenon served as the basis for 
the description of metallic inhomogeneity in Refs. 4-10. 
There exists, however, a situation when such a decription 
cannot be used. 

If electron states localized in a certain region are pro- 
duced in a crystal, the Green's function of such states, and 
with it also the kernels of the integral equations that deter- 
mine the critical characteristics of the superconductor, will 
decrease over a distance D<{, where D is the characteristic 
length of the localization of the state. An example of such 
systems can be Tamm states near the surface of a twin 
boundary in a single crystal, states whose importance was 
pointed out by KhaZin and Khlyustnikov" and to which 
they have attributed the relations observed by them; electron 
states near dislocations are a similar example. 

The ordinary proximity effects may be absent in these 
cases. If, for example, the superconducting properties of a 
localized subsystem are "better" than that of the bulk sub- 
system, the superconducting transition will take place in the 
localized subsystem, in analogy with its ocurrence in a thin 
film on the surface of a dielectric12 (or in a system of Tamm 
electrons on a dielectric substrateI3), and its critical tempera- 
ture will not be lowered by the volume electrons. In contrast 
to states on the surface of a dielectric, however, deeply pene- 
trating superconducting states will be induced in the interior 
of the superconductor. Application of a magnetic field H to 
such a system gives rise to effects due to the fact that the field 
acts differently on the localized and bulk superconducting 
states. 

Our paper is devoted to a description of the supercon- 
ducting transition within the framework of the two-band 
model with a zone of localized and volume electrons that 
interact with each other. 

2. BASIC EQUATIONS 

We write the Hamiltonian of the electron system in the 
form (fi  = k, = 1) 

Here and elsewhere the indices 1 and 2 pertain to the volume 
and localized electron zones, respectively, mi is the effective 
mass, A,,, is the set of electron-electron interaction con- 
stants, I +ui(r) and Iu,i(r) are the creation and annihilation 
operators of an electron with spin a in the i-th band with the 
usual commutation relations for the Fermi operators, A is 
the magnetic-field vector potential, e is the electron charge, 
f i  is Planck's constant, k,  is Boltzmann's constant, E, is the 
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energy of the electron bound state, p,, is the momentum of 
the electron along the localization plane. 

The normal and anomalous Green's functions are de- 
fined in the usual fashion14: 

Gi,,,, ( x ,  x') =-<T, {g;  ( x )  I&: (x')  S )  > / < s > ,  

F~&. ( x ,  x') = - < T , { ~ & ~  (x)$$y ( z l ) S ) ) / < S ) ,  (2)  
b 

S=T. exp ( - J &,.,(T)dr) . B = I / T ,  x= (r ,  TI. 
0 

Here T, is the T-time-ordering operator, (...) are Gibbs 
mean values, T is the temperature, and are Matusbara 
operators. 

It must be borne in mind that in the principal approxi- 
mation in the interaction, both G,, and F,, are diagonal in i 
and j: 

G$) ( x ,  s') = G ~ , G ~ ( O )  (x ,  X I ) ,  ( x ,  x') - =s~$':~' ( x ,  x') . (3) 

(i andj are not tensor indices, and there is no summation over 
repeated indices.) 

From (1)-(3) we obtain in the usual manner, near the 
critical point, a linearized system of Gor'kov equations for 
such a two-band model15: 

z 

Fit ( r )  = Aij  d3z'K, (r ,  r') Fj+ (r') . 
K* (r ,  r l )  =T y. G!:,~ ( r f ,  r )  G:,: ( r ,  rt  ) , (4) 

Here G :,, (r, r') and G :,, (r, r') are respectively the Green's 
functions of the volume and localized electrons, 

The wave functions p, depend on the type of inhomogeneity. 
In this paper we consider planar inhomogeneity. We confine 
ourselves for simplicity to the case of a single localized level 
near the inhomogeneity. 

The Kernel Kl(R ) of the integral equation (4) is of the 
usual form"? 

K ,  ( R )  = (N3To/2u0) [RZ sh ( 2 x T R / u o ) ]  -I ,  (6) 

where N, is the three-dimensional density of states on the 
Fermi surface and v, is the Fermi velocity. 

The kernel K,@ - p', z, 2') is of the form 

In a magnetic field there appears in the kernels Ki a phase 
factor1' 

(The spacing of the magnetic levels is E, (T.) 

3. TRANSITION TEMPERATURE IN THE ABSENCE OF A 
MAGNETIC FIELD 

To determine the temperature of the superconducting 
transition it is necessary to solve Eq. (4) with account taken 
of the forms (5) and (6) of Ki. As a result we have for the 
functions F ,+ (z) and F $, 

OD 

Fzo= J F' ( z )  dz, Fz ( I )  = F z o ( ~ ~ ( z / D )  I 

the system of equations 

Dgtz 
-EGV,ZF1+ ( z )  +e0Ff+ ( 2 )  - - @ ( z )  Fzo+=O; 

g,  
(9) 

e o = l n ( T 0 / T , ) ,  Ti=1.14mD exp ( - l / g i ) ,  (lo) 

@ ( r )  = (TO/2vOi) [ R  ~h (2nTRIu.i) I-'d2p, 
R>ro 

R= ( p Z f  Z 2 )  ", ?'0=0 .3~oi /0~ ,  A i k - A i k i k .  

Here Ni is the density of states on the Fermi surface and w, 
is the Debye frequency. 

In the derivation of the system (9) and (lo) we used the 
fact that the function F,+(z)-q, '(2) decreases rapidly over 
distances z-D compared with the other functions, while 
F ,+ (z) decreases over a distance greatly exceeding {,<, and 
could therefore be expanded in a series. 

From (9) we obtain for the Fourier component F ,+ (p) of 
F ,+ (z): 

Taking the inverse Fourier transform and recognizing that 
the characteristic length ( -  I/{,) of the variation of @, is 
much less than l / p  at the pole of the denominator of (1 I), we 
obtain 

F,+ ( z )  =F,+(O)exp( - -  1 zl l L ) ,  ~ = = e , / 6 ~  . (12) 
The dispersion equation for the linear homogeneous 

system (9), (lo) is of the form (g, , #O, g,, #O) 

This equation determines the temperature To at which the 
superconducting sets in. The temperatures T, and T, are the 
transition temperatures of the localized and free electrons 
neglecting the interactions between them, and the parameter 
tt characterized the intensity of the interaction. 

We consider some limiting cases. We introduce the pa- 
rameters y and t that characterize respectively the proximity 
of the transition temperatures and the value of the interac- 
tion: 
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1) At t(1 and TI > T2 we obtain g2, 1.140 
E- In ------ 

T K +  (0,  p) , A= (0,  H,x-H,z, 0 ) .  
g2 To-Ti x2 1 D2 1 

-=---- 
Ti " 

T, 4 g16 5,. y2 ' ( ) (I5) Herep is a vector in the localization plane andp is the bohr 

In this case the main cause of the transition is the interaction 
between the volume electrons, and the localized electrons in 
fact merely redefine the interaction. This situation corre- 
sponds to the effective-proximity situation considered by us 
earlier. The effective interaction constant g takes then in the 
vicinity of the lcoalization plane the form 

1 1  K 1 = g  -'-G-' , G-'=?c/2glZy. (16) 

2) At t(l and T2 > TI we obtain 

magneton. 
The magnetic-field components Hz = H sin6 and 

Hx = H cose (0 is the angle between the magnetic-field di- 
rection and the localization plane) act differently on the su- 
percondcuting state. The component Hz leads to localiza- 
tion in the plane of the plate and cannot be accounted for by 
perturbation theory. The field component Hx can be calcu- 
lated by perturbation theory in weak fields such that aH#L, 
where aH is the magnetic radius: 

a,= (cl2eH) '". (21) 

(17) In strong fields a,  ( L  use can be made of the smallness of 
a, /L.  

In this case the main cause of the transition is the interaction We consider first weak fields. In this case the solution 

of the localized electrons that induce, via interaction with takes in the principal the form 

the volume electrons, superconductivity in the volume at a Fl (r) =exp (- 1 z ( / L ) e x p  (-x2/2a,2)F1 ( O ) ,  
distance L from the plane. With respect to both the character 

Fzo ( I )  =exp (-x2/2aH,2) Fz0, aH.2=c/2eH sin 8. 
(22) 

of the dependence on D and of the size of the localization 
region, Eqs. (I7) differ from the equations for The dispersion equation that determines the H,(T) depen- 
the proximity effects. dence is 

3) At t)l  the interaction between the subsystem is 
strong compared with the difference between their critical T 2e 2e2 

g12Ho sin 0 + - Ho2 cos2 0 L2512 
temperatures. In this case cz 

A special case occurs when there is no pairing in one of 
the subsystem. 

4) The values of To and L at gZ2 = 0 ar obtained by a 
transition to the limit from Eq. (15). At g,, = 0, separating 
the small terms in (9), we obtain 

F1+ ( 2 )  -pi+ ( 0 )  ( 2 )  , (19) 

To-T2 2g12g2, D -=-- vo,= L 2 f f T .  
T2 gzzz ro ' T2 

We present asymptotically exact solutions of this equation. 
We note first that the terms quadratic in Ho are significant 
only at very small angles. For the expressions in the first and 
second parentheses in (23) these angles are bounded: 

1) At t( 1 and TI > T2 we can neglect in the second par- 
entheses the terms with the magnetic field and set T z  TI. We 
obtain for Ho(T, 6 ) angular-dependence equations that agree 
with Tinkham's result for thin films1? 

4. DIAGRAM OF COEXISTENCE OF SUPERCONDUCTING 
Ho AND NORMAL PHASES IN A MAGNETIC FIELD 

To-T ( ) ' = I ,  .= - sine+ -cos 0 
We determine now the coexistence curve H,(T) of the HL T '  

C 
(25) 

superconducting and normal phases for different magnetic- Hl = - T, HI, . 
field directions. We confine ourselves for simplicity to the 2eE12 e LEI 

superconducting-transition point, where the Ginzburg-Lan- 2) In the case t( 1 and T2 > TI we obtain atO)(r/y)(f 
dau equations are valid. In this case we obtain in place of the [J2: 
system (9)-( 10) 

At 6 < we land in the strong-field region, which 
will be considered below. 

(20) 3) At t )  1 and T, =. T2 z T, formula (25) is valid with { : 
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replaced by 6: replaced by 242/3 + gI2/3. 
In strong fields (a, <L) the interaction is weak com- 

pared with the terms with themagnetic field. In the principal 
approximation the critical field simply coincides with the 
larger of the critical fields of the volume of localized elec- 
trons. These critical fields are given by 

2e 
T I  + - Hog,"=O, (27) 

C 

2e 7E(3) p2 
zz  + - gzzHo sin 0 + - - H,Z=O, 

c 4nZ TZ 

where ri = (T - Ti )/Ti. 
Depending on the parameters ri , ci and 8 several situa- 

tions are possible. We denote the solution of (27) by H,,, and 
the solution of (18) by HO2. We obtain 

a ) a t  \r21 > lrll andg2<g1, at all8>8, (Fig. la) 

Ho=Hoz; (29) 

b) at 1r21 < lrl 1 and g2 < 6, at all angles we have 
Ho = Ho2 in the temperature interval r > r0 and Ho = Ho, at 
r < r0 (Fig. lb) 

T~=~,'AT/(E,' sin 0-b,'), A T = Z ~ - ' F ~ ;  (30) 

c) at r2 < r1 and 6, >g,, Ho = Hol always in the angle 
interval 8 > 8,; Ho = HO1 in the angle interval 8 < 8, at 
r > rO;HO = HO2 at r < ro (Fig. lc), 

sin Oo-E,'/E:; (31) 

d) at > r1 and 6, <C2 we have Ho = Ho2 in the angle 
inteval8 > 8, at r > ro; if r < rO, then Ho = H,,; Ho = HO2 at 
8 < 8, for all r. 

The conditions under which the magnetic field is strong 
can be written in the form rBy in the case of weak coupling 
between the subsystems (cases 1 and 2) and r s t  "3r112 for 
strong coupling (case 3). 

It should be noted that in situations (c) and (d) the kink 
on the phase diagram lands in the region of applicability of 
the theory at angles 8 close to 8,. 

In the region far from the kink on the phase diagram 
(r = rO) the corrections to the critical field on account of the 
interaction of the subsystems are small compared with the 
field itself. To find the corrections in the system (20) it is 
necessary when Ho = Hol + h,, to seek Fl and F2 in the form 

Here pln and p2, are the normalized eigenfunctions of the 
operators (iV + (2e/c)A), and (iV + (2e/c)A):, respectively, 
a tHo = HO2 + h, 

In the equations obtained by substituting (32) and (33) in (20) 
it is necessary to transform to Fourier compoennets, so that 
from the obtained dispersion equation we obtain expressions 
for the increments to the critical field 

c1c2D2 
in4 ----- ----- s ine  C f n 

hi =- 
Bet, E 2  ' (34) T l+sin0 l+s,+2n ' 

FIG. 1 

T i  Ez2 c 2  (2n)  ! ( l -s in 0 s z = - , s i n e ,  H o z - 5 - & ~ z ~ ,  - f n = -  - 
.rz g, 4" ( n ! )  l+sin 0 . 

Near the kink on the phase diagram, the corrections hi are 
no longer small and to find the critical magnetic field in this 
region it is necessary to solve the secular equation. Expand- 
ing the functions Fl(r) and F,(r) in terms of the eigenfunc- 
tions p ,, and p,, we obtain the dispersion equation in this 
case 

2e 2e 79(3) p2HZ 
E~~ = - Et2H, eOZ = - EzZH sin 0 + - 

c c 4n2 I' 
2n-'[sin 0 ( l+s in  0 )  I-'", O ~ A h l H c z  (TO) 

I= { 
4n-' (sin 0 )  '"/ (aHpo) ' ,  OaAh/Hcl  ( z o )  (36) 

( ~ , P ~ ) ~ = A ~ ~ H ~ Z  ( T O ) .  

For the increment A h  to the critical field in the kink region 
we obtain from (36) 

- To-Tz To-T 
't = ------ , 6~=--- 

Tz To 

The critical magnetic field at the kink point differs from 
Ho by the amount 

The general form of the diagram of the coexistence of the 
superconducting and normal phase is shown in Fig. 2 (solid 
curve). 
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FIG. 2 

5. CONCLUSION 

The expounded theory of interacting localized and free 
electrons describes the superconducting transition in sys- 
tems containing localized electrons. The effects indicated 
above can be observed in a single-crystal semiconducting 
superconductors, near a twinning plane, or near the surface 
of the sample, where localized electronic states are usually 
present, as well as in systems containing thin films on a semi- 
conducting or metallic surface. 

To observe the effects indicated in the paper, the follow- 
ing experiments can be performed. 

When the magentic moment of such a system is varied, 
the derivative a M  /aT undergoes a jump at 7 = to. 

The temperature dependence of the resistance of sys- 
tems, in the case when the current flows parallel to the sur- 
face, effects analogous to those of Kosterlitz and Thouless 
(KT) for supercondu~tors~~ can be observed. Indeed, from 
the electrodynamic viewpoint the near-surface supercon- 
ducting states are analogous to a pair of superconducting 
films on a dielectric surface, with thicknesses D and L and 
with respective order parameters A ,,F2 and A, ,F,. Near the 
KT transition point at TKT < To te resistance decreases to 
zero in a region whose width is determined by the relation 

b here d is the film thickness and a is the interatomic distance. 
To estimate the contribution made to the free energy by 

the localized electrons and of the superconducting "tails" 
that penetrate deep into the superconductor, we write down 
the mean value of the interacting part of the Hamiltonian (1) 
in the form 

(%~nt)=AL,FIZL+2AlzFIFZOD+A2~F~ZD. (40) 

Using the connection between F2, and Fl(0) we find that in 
case 1 the condition A, ,F: L)A,,F:D, is satisfied, i.e., the 
main contribution to the energy is made by the supercon- 
ducting "tails" in the interior of the superconductor. To esti- 
mate the values of8T it is necessary in this case to substitute 
d-L in (39). This leads to the estimate 

ATKT-TO (a/E2)', To--TI-To (alg,)'. (41) 

In this case TKT differs only insignificantly from the formal 
transition temperature To. In case 2 we have 

The same estimates holds for case 3. 
The estimates obtained here can be used for comparison 

with the experiments of Khaikin and Khlyustikov.20 In these 
experiments the electric resistance of single-crystal tin con- 
taining a twin plane decreased with a characteristic variation 
interval ST  = 0.6 K. Recognizing that for tin To=:3.7 ==: 
3500 A, and a = 5 A, we find that one of two cases, 2 or 3, in 
which ST=: lop2 K, is possibly realized in the experiments. 
Another possible explanation is that case 1 is realized, but a 
number of parallel twin planes are present, and the size of the 
temperature region increases rapidly with increasing num- 
ber of twinning planes. 

In addition, since the twin planes in the experiments of 
Ref. 20 is not parallel to the current flowing through the 
sample, a resistance is produced not due to the Kostelitz- 
Thouless vortices, but to the penetration of the electric field 
and to the resultant inhomogeneous superconducting layer. 

In our theory the localized electrons have only one 
bound energy level. When a large number of such levels is 
taken into account, the temperatures TI and T, will no long- 
er be independent, and TI tends to T,. 
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