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We investigate the propagation of a strong electromagnetic wave in a direct-band semiconductor 
following resonant excitation of excitons. It  is assumed that the given polariton wave attenuates 
because of scattering by longitudinal acoustic phonons, and the case is analyzed when the scatter- 
ing due to the absorption of the phonon wave by the excitons greatly exceeds the scattering at 
which the wave excitons emit phonons. Using a diagram technique for nonequilibrium processes, 
a system of equations is obtained for the description of the behavior of the initial polariton wave, 
of the scattered electrons, and of the scattering phonons. The polariton- and phonon-spectrum 
restructuring accompanied by an abrupt decrease of the electromagnetic-wave absorption coeffi- 
cient is considered within the framework of the model indicated. 

PACS numbers: 71.35. + z, 71.36. + c 

The interaction of electromagnetic radiation with exci- 
tons in direct-band semiconductors has been attracting con- 
siderable interest both theoretically and experimentally. As 
a rule, the problems investigated are connected with the lu- 
minescence and kinetics of exciton systems1" and with the 
description of the propagation of electromagnetic waves in 
resonant excitation of ex~itons.~- '~ For a correct treatment 
of these problems, the polariton concept is introducedI3 be- 
cause in direct-band semi-conductors at low temperatures 
there is realized a strong exciton-photon coupling that leads 
to a mixing of the exciton and photon states and to a restruc- 
tunng of the photon and exciton spectra. 

Among the problems of luminescence and kinetics of 
exciton systems is included the investigation of thermaliza- 
tion of strongly excited exciton systems, and in particular 
the consideration of the possibility of Bose condensation of 
excitons both on the upper polariton branchss6 and on the 
lower one.I4 It is appropriate to note that one of the princi- 
pal difficulties of experimentally observing Bose condensa- 
tion of excitons in the course of their thermalization is as a 
rule the long lifetime of the excitons in the semiconductor. 

The problem of propagation of electromagnetic radi- 
ation in resonant excitation of excitons, a problem connected 
with the calculation of the absorption coefficient of the elec- 
tromagnetic wave,'v8 with the experimental confirmation of 
the polariton character of the electromagnetic waves in the 
s e r n i c o n d u ~ t o r s , ~ ~ ~ ~ * ~ ~  and with others, has also a bearing on 
the manifestation of Bose condensation of excitons. In fact, 
an electromagnetic wave k, produced by an external source 
and propagating in a crystal has a finite amplitude, and thus 
the mode k, is macroscopically filled in the usual sense: 

where 6 2  and 6 2 are the photon and exciton creation oper- 
ators in the mode k, and Vis the volume of the crystal. In this 
case there can take place a relatively short-time thermaliza- 
tion with possible formation of a Bose condensate of non- 
equilibrium-excited excitons, as is proposed in the first 
group of problems, and a much faster scattering of the exci- 

tons from the initial wave and establishment of quasiequili- 
brium in such an exciton system with a condensate in the 
mode $. 

The purpose of the present article is a consistent de- 
scription of the propagation of a macroscopically filled po- 
lariton wave k, with allowance for the specific damping 
mechanism. Just as in Refs. 7 and 8, we shall consider the 
case when the cause of the damping of the wave is scattering 
of the exciton component by a longitudinal acoustic phon- 
ons. In addition, we propose that the scattering as a result of 
absorption of an acoustic-phonon wave by the exciton is 
much larger than the scattering due to the emission of a 
phonon wave by the exciton. This assumption makes it possi- 
ble, on the one hand, to investigate a number of singularities 
in the propagation of a high-power polariton wave with the 
indicated damping mechanism, and on the other hand apply 
the results to the phenomenon of ordinary equilibrium Bose 
condensation of an ideal Bose gas in a phonon thermostat 
into the mode k, = 0. We shall take into account hereafter 
only scattering connected with absorption of acoustic phon- 
ons, and defer the analysis of the indicated assumptions and 
the extent to which the model is realistic to the end of the 
article. 

In the general case the problem consists of a joint ex- 
amination of a macroscopically filled wave k,, scattered ex- 
citons k, and scattering acoustic phonons k-k,. With the aid 
of the diagram technique for nonequilibrium proces~es'~ 
used in Ref. 15 for the case when an explicit account is taken 
of the finite lifetime of interacting quasiparticles, we obtain 
kinetic equations for the distribution functions of the scat- 
tered excitons Nk (rt ), for the scattering phonons n,  _ ," (rt ), 
as well as the restructuring of the spectra of these quasiparti- 
cles, and describe the propagation of the initial wave. The 
latter will depend substantially on the state of the wove k,. 
Namely, if the wave k, is in a Glauber state, i.e., coherent, it 
is described by the Maxwell and Schrodinger field equations 
with respect to the mean values of the corresponding field 
operators, while if the wave k, is completely incoherent, i.e., 
a noise, it is described by a kinetic equation with respect to 
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No(rt )-the density of the excitons ko produced by the wave. 
The density N,(rt ) is connected with the intensity of the po- 
lariton wave Io(rt )by relation (78) below. In the general case 
it is necessary to consider simultaneously in the indicated 
manner the coherent and noise components of the wave. 

An important parameter of the problem is the quantity 
r (k,h)-the characteristic energy uncertainty in the ele- 
mentary act of scattering of the exciton by the initial wave. 
We shall obtain the following expression for this quantity: 

r ( k ,  ko) { [ y  ( k )  +y$  (k-ko)] 2+4Nomk-ko)', (1) 

where y(k) = 1/r is the reciprocal lifetime of the scattered 
exciton k and is connected with the possibility of further 
scattering by equilibrium acoustic phonons, 
$h (k - k,) = 1 /ch  is the reciprocal lifetime of the scatter- 
ing phonon k - k, because of the lattice anharmonicity of 
the crystal, and m, - ,o is defined by (17) below. The quantity 
r(k,k,,) determines the number of polariton modes k in 
which scattering of excitons by the initial wave takes place, 
and also the number of the phonon-subsystem k - k, modes 
whose phonons participate most effectively in the scattering 
process. Depending on the intensity of the polariton wave, 
we can separate different cases. 
Low intensities: 

No<y (ko) y p t  ( ko )  Im,. (2) 
These low intensities correspond to the linear theory8: the 
absorption coefficient of the wave us, is proportional to the 
semiconductor temperature T and is independent of the 
wave intensity. 

Medium intensities: 

r (ko)  7,; (ko)/m,<N0< [ y  ( ko )  + y p t  ( k o ) ]  'I4mb. (3) 

This case c~rresponds to nonliner-wave propagation, and 
the absorption coefficient us, a l/No and can reach values 
that are smaller by several orders than for low intensities. At 
low temperatures, the inequality $h (ko)(y(ko) is satisfied, 
and in this case we have phonon nonlinearity, wherein the 
phonon subsystem is greatly depleted in the course of scat- 
tering of the initial wave: the act of exciton scattering into 
the mode k is annihilation of the phonon k - k,. Such a 
strong decrease of the occupation numbers of the modes of 
the phonon subsystem is naturally accompanied by a de- 
crease of the wave absorption coefficient. At high tempera- 
tures y(ko)($,, (k,), and the nonlinear decrease of the ab- 
sorption can be attributed to nonequilibrium Bose 
condensation. This phenomenon consists in the possibility of 
filling the polariton modes k, in which the excitons are scat- 
tered up to values of the equilibrium phonon occupation 
numbers of the modes k - k,. The scattering of the initial 
wave is then effectively suppressed and the absorption is de- 
termined exclusively by the further scattering of the excitons 
k. 

High intensities: 

[Y (ko) + y p t ( k o ) ]  Z/4m,<No. (4) 

At such high intensities, a restructuring of the polariton and 
phonon spectra takes place (see Fig. 1). It consists of unifica- 

FIG. 1. 

tion and splitting of the indicated terms, in analogy with the 
formation of the polariton dispersion curve from the exciton 
and photon spectra. The restructured spectrum corresponds 
to a new excitation consisting of polariton and phonon com- 
ponents, which we shall call phonoriton for short. The wave 
absorption coefficient is nonliner, as before, and is propor- 
tional to N; '". The inequality (4) is the condition that the 
splitting of the spectrum 2(m,,~,)"~ exceed the reciprocal 
lifetime of the obtained excitation [ y(k,) + 6 (k,,)], i.e., the 
indicated restructuring of the spectrum can be observed. On 
the other hand, this condition corresponds to the case when 
the quantity r (k,k,,) is determined principally by the contri- 
bution of the last term under the square root in expression 
(I), i.e., the action of a macroscopically filled mode k,,. This 
means that the scattered excitons returns with high prob- 
ability to the initial mode k,,, this being a consequence of the 
macroscopic filling of the mode 16. Such a possibility of exci- 
ton scattering followed by return to the wave, accompanied 
by the absorption of a phonon k - k, with its subsequent 
emission, corresponds precisely to the restructuring of the 
polariton and phonon spectra. We shall show below that for 
the restructured spectrum the characteristic uncertainty of 
the energy in the elementary scattering act will in fact be 
independent of the intensity of the initial wave. Moreover, a 
consistent analysis of the problem presupposes the use of the 
restructured spectrum at any wave intensity, in particular at 
intensities defined by inequalities (2) and (3). We note that 
condition (4) is satisfied at T =  4.2 K for No- 10" - 10" 
~ m - ~ ,  depending on the type of semiconductor and on its 
quality. 

We begin the analysis of the formulated problem with 
the case when the initial wave k, is fully incoherent. For a 
consistent solution, we need introduce the retarded 
(G (R ',D ), advanced (G A,D A ), and statistical (G +,D +) 
Green's functionsI4 of the excitons and phonons, respective- 
ly. If there is no interaction between the quasiparticles, these 
functions take the form 

G:'* ( k )  = 
1 , Go+ ( k )  =-2niNr6 ( @ - o r )  ; ( 5 )  

o-ok*i6 
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k= (o, k )  . 
Here tioflh = &k (u is the speed of sound in the crystal) 

is the energy of the acoustic phonon k and o, is the energy of 
the exciton k and is determined by the polariton dispersion 
curve. Since the mode k, is macroscopically filled, the statis- 
tical Green's function (5) takes at k = k, form 

Nr,= (2n)Wo6 (k -k , ) ,  ko= ( e ,  k,)  . 

We note that the exciton Green's functions represent in 
fact the exciton part of the Green's function of the polariton, 
and should therefore be multiplied by a factor [see (79) be- 
low] that depends on k. However, as will be noted below, this 
factor, in the interesting region of values of k near the polari- 
ton splitting of the spectrum, is equal to unity with high 
accuracy, therefore the polariton character of the excitons 
can be taken into account only by assuming o, to be the 
polariton energy. In addition, to simplify the description we 
shall consider the case when the propagating wave k, is lin- 
early polarized, and the dipole moment of the exciton transi- 
tion d has a preferred direction. These assumptions allow us 
to disregardthe tensor character of the Green's functions of 
the excitons and photons. 

In this case, when quasiparticle interaction takes place, 
the Green's functions are determined by the corresponding 
Dyson equations and we can make the following assumption 
concerning their form1? 

GR(k)  = (a-&+if)-', G + ( k )  
=-2niNr.6 [ f  l o -@r] .  (8) 

Here 

is the energy difference smeared by a 6 function, and the 
generalized occupation numbers N,, are connected with the 
usual numbers N, by the relation 

The smearing i(k ) of the 6 function and the changed 
frequencies 6, are connected with the self-energy part 
Z/R(o,k) in the following manner: 

&=or+,Re ZfR (or ,  k) , (11) 

~ ( k )  =-Im ZfR(o ,  k )  . ( 12) 
Similar relations hold for thq phonon Green's functions. 

To describe the scattered excitons, the scattering phon- 
ons, and the excitons of the initial wave we shall separate 
explicitly only the first stage of the scattering, which consists 
of absorption of one acoustic phonon, by the exciton of the 
wave or of emission of an acoustic phonon by the scattered 
exciton with transition of this exciton into the mode k,. In 
addition, as already noted, the scattered excitons and scat- 

tering phonons have characteristic lifetimes T and eh re- 
spectively. The self-energy parts in the Dyson equations in- 
vestigated below will be defined by an integral convolution 
of the corresponding complete Green's functions, i.e., we 
assume the vertex part to be equal to unity. In this approxi- 
mation there are no anomalous Green's functions, for in this 
case they enter into the Dyson equations together with a 
factor m, =, = 0 for the acoustic (and also optical) phonons 
[for a definition of m, see (17)]. 

We consider first the dynamic part of the problem, 
namely questions connected with the shift or restructuring 
of the quasiparticle spectra and with the change of the char- 
acteristic lifetimes, i.e., of the widths of the energy levels, 
when the interaction is turned on. As indicated, this infor- 
mation is provided by the Dyson equations for the advanced 
or retarded Green's functions of the corresponding quasi- 
particles. For scattered excitons we have 

G R ( k )  = [ a - o r f i r  ( k )  -ZR(k) ]  -i. (14) . . 
The self-energy part Z/R(k) consists of two terms, the 

first of which ZR (k ) is connected with the first stage of the 
scattering, and the second term Zf(k ) is the self-energy part 
connected with the probable further scattering of the exciton 
k not into the mode 16. These self-energy parts are deter- 
mined by the relations 

2," ( k )  =-i/.t=-iy ( k )  , (15) 
xR(k)  = i j  [DR(k-q)GR(q)  +D+(k-q)  GR(q)  

d4q - Nomr-4 +DR(k-q)G'(q) l m k - k O w -  a-aPh -- 
k-k, ( Y N ~ + T ~ ~ )  

(16) 
The factor m, is connected here with the value of the matrix 
element M ,  of exciton scattering by a phonon in the follow- 
ing manner: 

From the relations (12), (IS), and (16) we can obtain an 
expression for the width of the energy level of the scattered 
exciton: 

ph 
~ ( k )  = 9 ( 0 ,  k )  = y  ( k )  +nNomk-k,5 [ Y p h + Y ~ o l  a-Br-ro-*bl. 

(18) 
Similarly, for the scattering phonons k - k, we have 

Yph (k-ko) = y p ;  (k-ko) + 
+nNomk-k.8 [ g N o + p J  ( a - e )  - ( a k - * k o )  I .  (21) 
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The last relation connects the width of the energy level 
of the scattering phonon k - k,, with the corresponding val- 
ues for the scattered excitons and the excitons of the initial 
mode 16. An analysis of the Dyson equation for the retarded 
Green's function of the excitons G ( R  ' (k,) of a macroscopical- 
ly filled mode yields the remaining relations needed to obtain 
the closed system of equations (1 8), (2 l ) ,  and (23) with respect 
to the widths y, yNo and kh : 

A consistent treatment of the problem within the frame- 
work of the assumption (8) concerning the form of the 
Green's function shows that the characteristic energy uncer- 

tainty in the act of the scattering of the excitons of the initial 
wave k ,  is determined by the sum of the widths of the levels 
of all the quasiparticles that take part in the scattering: 

ph r ( k ,  k o )  = v N o ( a k o ,  k o )  + p ( a k ,  k) +vph (%-k07 k - k o )  3 (24) 

After solving the indicated system of equations relative 
to the widths of the energy levels and substituting them in 
(24), we obtain for r (k,k,) the approximate relation ( 1 ) .  As 
indicated earlier, the physically unjustified strong depen- 
dence of the level widths, of the frequency shifts, and also of 
the value of I'(k,k,,) on the intensity of the wave k,, is elimin- 
ated in practice by introducing a renormalizntion of the 
phonon and polariton spectra. Namely, taking into consi- 
deration the relations (16) and (20) for the self-energy parts, 
the expressions for the retarded Green's functions of the 
scattered excitons and of the scattering phonons can be 
transformed into 

( a - e )  - (a,--B,) + i y  
D R ( k - k o )  = 

[ ( 0 - 8 )  - ~ [ : ~ , + i y ~ f ]  [ ( a - E )  - ( o ~ - * ~ , )  + i y l - N o m k - r ,  ' 

It is known that the poles of the Green's functions yield 
information on the spectrum and damping of the considered 
excitation, therefore the dispersion curves of the restruc- 
tured spectrum are determined by the equation 

ph 
( a - w k + i y )  ( a - a k - k , - i 3 k o + i y  ph A )  - N o m k - k O = O ,  (27) 

which have the following roots: 

Here, as well as hereafter, we neglect terms of order 
($,, )'/N,m, - ,,, and f / N f l k  - ,,, in the calculations. The 
dispersion curves fol(k ) and fo2(k ) shown in Fig. 1 are the 
restructured phonon and polariton spectra. Their deviation 

from the original ones is most substantial near values of k 
defined by the expression 

ph 
o k - a k - ~ ~ - ~ k ~ = O ,  (29) 

i.e., for a given scattering direction near two points of inter- 
section of the unperturbed terms. In the vicinity of one of 
them, a characteristic term splitting Ac = co, - go, 
= 2 ( N e k  - b)''z, takes place, and in the vicinity of the 

point 16, at values of k satisfying the condition 

(Vg is the polariton group velocity of the wave 16) the spec- 
trum restructuring is such that c,, a 116 - k1'I2. The final 
expressions for the Green's functions (25) and (26) can be 
written in the form 

cpiR ( k )  cpzR ( k )  GR ( k )  = ---- + ----- , 
a -  0 - E z  

where the functions q, f ( k  ) and f l ( k  - k,) are given by 

( a - e )  - ( o r - B k , )  + i y  ( k )  
[ ( 0 k - 0 ~ ~ ~ , - @ k ~ ) ~ + 4 N ~ m k - k ~ ] ' ~ ~  ' 

(34) 
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The energy 6% of the excitons of the mode k,, is given by 
Eq. (1 l), where ZR (kO) is given by expression (55) below. 

We proceed now to obtain and analyze the kinetic equa- 
tions for scattered excitons that scatter phonons and exci- 
tons of the mode k,,. The kinetic equations are derived from 
the Dyson equations for the corresponding statistical 
Green's functions by a known method,14 but in this case the 
derivation contains a number of peculiarities, and we shall 
therefore carry it out in sufficient detail. 

The Dyson equation for the Green's function of the 
scattered excitons if of the form 

+ I Go+ ( I ,  xz) XIA (x2, xl) GA (xl, xr) d4z2 d4x, 

where xi = (ti ,ri ). 

From this we obtain 

= J [XfR ( I ,  xi) G+ (xi, XI) +Xf+ ( I ,  xi) GA (xi, x') ]d4xi, 

[ao-' (x') ]'G+ ( I ,  x') 
(36) 

We now take the difference of these two equations, 
make the change of variables x = +( x' + f) ,q = f - x' and 
take the total Fourier transformS with respect to q of both 
sides of the obtained equations. After the foregoing opera- 
tions the left-hand side of the equation takes the form 

where Vi' = dloi/dk. The distribution function of the scat- 
tered excitons N,(rt) breaks up into two components 
Ni3(rt), each of which is a distribution function of excitons 
with a corresponding restructured spectrum o = lOi (k), 

f with the index i numbering the branch of the restructured 
spectrum. Such a breakdown is formally connected with the 
definition of the distribution fuction in terms of the statisti- 
cal Green's function: 

since the function G + a GR - GA and according to (3 1) it 
contains two terms proportional to 8 [ri lo - loi 1. 

The right-hand side of the equation assumes after the 
indicated transformations the form 

The self-energy parts are defined in the following man- 
ner: 

d4!7 2+(k) = i  mcID+ (k-q) G+ ( p )  - 
(2n) ' 

Here N t  are the equilibrium exciton occupation 
numbers, equal to zero, since we assume complete absence of 
excitons when there is no polariton wave in the crystal. Rela- 
tion (40) is obtained from (16) when (32) is taken into ac- 
count. After certain transformations of (39) using (40)-(42) 
we obtain the right-hand side of the equation 

( 0  + ~ , m ~ - ~ [ c p ~  (k) n:flk, (rt) -$j(k-ko)~k (rt) ]i+j 

The distribution functions of the phonons of the corre- 
sponding branches of the restructured spectrum ntl-  b(rt)  
are determined by a formula similar to (38), and the factors 
pi (k) and pi (k - k,,), which can be called the weighting fac- 
tors, satisfy the following equations: 

1 
$1 (k-k0)=~2 T[~2'(o=g02, k) +q2R*(o=g02, k) 1 
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(45) 

From (37) and (43) we obtain kinetic equations for the 
functions of the scattered excitons NE(rt ): 

d ( $ 1  2 ~ : ' )  ( r t )  
[-+v:" v.]  ~k ( r t )= -  

at 
+ Nomk-k, 

Z 

(0  1 x { l q i  (k) n:t)b(rt) -9i (k-ko)Nr (r t )  I- ri 

Similarly we derive kinetic equations for the scattering 
phonons, the only difference being that now the self-energy 
part Z;;( x,k - ko) differs from zero and is given by 

where 

are the occupations numbers of the unperturbed phonon 
thermostat. In the kinetic equations this self-energy part 
constitutes a temperature source of phonons in the phonon 
subsystem, owing to the presence of the thermostat. These 
equations take the form 

The kinetic equations (46) and (48) must be supplement- 
ed by conditions on the occupation numbers of the phonons 
and excitons in the absence of an initial wave (No = 0); these 
conditions are the initial conditions of the problem in the 
case of slow growth of the initial-wave amplitude: 

In the derivation of (46) and (48) we used the following 
approximate relations: 

Let us explain the physical meaning of the kinetic equa- 
tions (46) and (48). The left-hand side of the equations has the 
usual form of Aboltzmann operator acting on the distribu- 
tion function. The first term of the right-hand side of the 
equations describes the relaxation of the distribution func- 
tions to the corresponding equilibrium values, while the sec- 
ond term in the curly brackets describes roughly speaking 
the tendency of the phonon and exciton components of the 
given branch of the restructured spectrum to become bal- 
anced. This second term, in turn, consists of two parts, the 
first describing the aforementioned tendency for that branch 
of the spectrum whose distribution functions are determined 
by the given equation, while the second corresponds to be 
second branch of the spectrum. The second part makes a 
substantial contribution to the corresponding kinetic equa- 
tion only in the case when the reciprocal lifetime of the phon- 
oriton excitation r = r, + r, = y( k) + $h (k - k,) exceeds 
the spectral splitting 2(N0mk-b)"Z. In this case the ob- 
tained kinetic equations can be substantially simplified by 
changing over to phonon and exciton distribution functions 
with a non-restructured spectrum16: 

In the case 

y ( k )  +y pt (k-ko)  (2 (NOmk-k,)'" 

it follows from the system of quasilinear kinetic equations 
(46) and (48), under the condition that the quantity No(rt ) 
varies slowly and with allowance for the initial conditions 
(49), that the reciprocal of the characteristic lifetimes of the 
phonons and excitons having the restructured spectrum is 
determined by T, for the i-phonoriton branch, and from 
these equations it is possible to obtain equations of the form 

a (0 [-- + v:" v.] F:') (r t)  = 2 r i ( k )  [ F : ~ )  ( r t )  -Fk (rt)  1, a t  
(52) 

F,"' ( r t )  =qi ( k )  +i  (k-ko) no (k-ko) 
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relative to the phonoriton distribution function of the corre- 
sponding branch: 

(0 
F:" (rt)  =qi (k-k,,) N:') (r t)  +cp i  ( k )  nk-b(rt). (53) 

We note that, for a given branch i of the phonoriton 
spectrum, the homogeneous solutions of the two equations 
(46) and (48) at constant No have generally speaking two dif- 
ferent characteristic damping times, owing to the initial con- 
ditions (49), however, the case actually realized will be the 
indicated one, i.e., that of Eq. (52) and the damping ri. 
Moreover, to a certain degree the two equations (52) with 
allowance for (53) turn out to be equivalent to the four kine- 
tic equations (46), (48) with allowance for (49). The latter, 
however, are more lucid and also follow directly from the 
diagram technique. 

A kinetic equation for the excitons of a macroscopically 
filled mode k, is obtained from the Dyson equation 

G+(ko) =Go+(ko) [ l+ZA (ko) GA (ko) ] +GoR ( k o )  XR(ko) G+ (k , )  , 
(54) 

where ZR (ko) is defined by the relation 

(ko) 2 (Nomb) " - = [ I +  
2y (ko) 7 ;  (ko) +Y (ko) 

(57) 

According to Ref. 17, the reciprocal lifetime of the lon- 
gitudinal acoustic phonons k - k, is given by 

wherep is the crystal density andx, is a dimensionless con- 
stant of the order of unity. As for m, , it is defined in accor- 
dance with (17), and for acoustic phonons we have 

Mk= [2kC2/9puV] '", (59) 

where Cis the deformation potential of the semiconducting 
crystal.' 

Analyzing (57) with account taken of (58) and (59), we 
can distinguish, as indicated above, between three regions of 
the behavior of the coefficient of the temporal damping 
a(k,), depending on the polariton-wave intensity. 

1. Weak intensities (linear theory): 
' d3k 1 kozTk0 

IY(k0)=i j -mk-b NO< - y ( ko )  ypt (k0)  m mk. 2n2R$u5ub ' 
(60) 

4-1  (2x1 
2c2 (Tk,2) 

0 (Lo) =2y (ko) " gn2u2ukoph2. (61) 
(0 ( 3 )  

[qi (k-ko)Nr -qi ( k )  nr-41- ri ( k )  Here uko is the average value of the phonoriton velocity Vk' 
in the vicinity of the phonoriton splitting of the dispersion 

( o  2ni curves: 
+[$j(k-ko) NLO-cpt ( k )  nk-blr+j 

0 - 0  + + 1 . u<uk.<vk: 
(55) 2. Medium intensities: 

From (54) and (55) we obtain in the manner considered - 1 Y (ko) y$(ko)<N0<,-[7 1 (ko )  +7$ (kO)  1 2 ,  (63) 
above a kinetic equation for the excitons of the macroscopi- m b  4mb 
cally filled k,: 

0 = C2xo TBkoP 1 
g n 4 u 7 u k ~ h $ ~  " K' (64) a d3k 

[ x + v ~ ~ r ] ~ o ( r t ) = - ~ o C  J m m k - k o  Depending on the temperature and consequently on the ra- 
l = . ~  tio of y(ko) and dh (k,), Eq. (64) corresponds to different non- 

x { [ ,  ( k )  n&(rt) -9, ( k - k o ) ~ j i )  (rt)  ] 

where Vip is the polariton group velocity. 
Thus, the system of five equations (46), (48), and (56) for 

the five variables ntl- ,, (rt ),NL1(rt ) and No(rt ) is the sought 
system of kinetic equations. We note that it was obtained in 
the approximation of a weak exciton-phonon interaction 
and for slow variation of the amplitude of the initial polari- 
ton wave k,. 

In the case of a quasistationary spatially homogeneous 
problem, the indicated system of equations can be solved, 
and for the coefficient of the temporal damping d k , )  of the 
polariton wave we have the approximate formula 

linearity mechanisms. For low temperatures, when 

T< [ 2 C 2 ~ 2 h k o / 9 n 2 ~ k ~ o ]  '"E T,, (65) 

the phonon nonlinearity mechanism comes into play and can 
be realized even at sufficiently low intensities. Thus, e.g., at 
T = 4.2 K, phonon nonlinearity can set in at No 2 10" 
~ m - ~ .  High temperatures correspond to nonequilibrium 
Bose condensation whose meaning was explained at the be- 
ginning of the article. 

3. High intensities (phonoriton restructuring of the 
spectra): 

1 
No> - [ y  (ko)+yp;(kO) 12,  

4mb 
(66) 
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In this case, which is accompanied by restructuring of 
the phonon and polariton spectra, the damping coefficient 
(67) takes on values smaller by several orders of magnitude 
than in the linear theory. We note that such a decrease of the 
damping coefficient at high intensities of the wave k,, is de- 
termined in the general case simultaneously also by the 
phonon nonlinearity, i.e., by the depletion of the phonon 
subsystem that participates in the scattering, and by the non- 
equilibrium Bose condensation, which manifests itself in this 
case in an active return of the scattered excitons to the initial 
mode. 

The conversion to the spatial absorption coefficient 
a,, (k,,) of the polariton wave k, is by means of the formula 

in which case Eq. (57) goes over into 

We have used here the notation VL(N,) for the polariton 
group velocity V& , since this velocity will be shown below to 
be substantially dependent on the wave intensity. 

We proceed now to the case when the initial wave k,, is 
coherent. Now, as already noted, it will be described by the 
Maxwell and Schrodinger equations relative to the mean val- 
ues of the operator o! the positive-frequency part of the elec- 
tromagnetic fi$d ( E  (rt )) = E ( x) and the operator of the 
exciton field (Q,(rt )) = Q,( x) ,  respectively. To obtain the in- 
dicated equations by the diagram technique for the nonequi- 
librium processes we introduce the following quantities 

E+ (x) =E+Yx) ID,,+ ( x ,  z t )  0- ( x , )  dd'x, 

E- ( x )  =E-O ( I )  + JD,,- (1, 9,) @+ ( x i )  dd'x, 

- I ~ . c ( x ,  x i )  m- ( x i )  ddAxt. 

@+ (x)=@+O(x) + 'J'[G,+ ( ,  X J E -  (2:) -G.c(.. x,)E+ (4)  I 

(71) 
Here all the Green's functions G ( x j , )  and D ( x,x,), the 

self-energy parts 2( x,x,), as well as their connections with 
the corresponding retarded and advanced functions are de- 
fined in accordance with Ref. 14. From these equations we 
obtain a system for Q, , ( x)  and E * ( x): 

@ + ( X ) = @ ( ~ ) = < S - ~ T [ ~ ~ ( X ) G ]  ), 
x @+ ( 5 1 )  -Z+(x, 5:) @-(xi)  ld'xt, 

E+(~)=E(X)=(S-'T~~~(X)B]), (70) 
d hZ 

[ i h  - + - V:-ha, @- (x) =-a&- (3) + j  [X- ( x ,  x l )  @+ ( x i )  
@ - ( ~ ) = < [ T s - ' Q ~ ( ~ ) ]  S ) ,  at 2m 1 

where ho( x)  and do( x )  are operators in the interaction re- 4n dz 
presentation, cL atz V?]E.(X)=-- c' d-@,(x), d t 2  

+ - 
= erp [-i R~., ( t )  dt  ] where w, is the position of the exciton level relative to the 

- m valence band, E, is the background dielectric constant of the 
A semiconductor, and m is the translational mass of the exci- 

is the evolution operator, and H,,, ( t  ) is the operator of the ton. It can be easily shown that only one homogeneous solu- 
exciton-photon and exciton-phonon interactions in the in- tion with respect to Q, * ( x)  and E * ( x) of the equations of 
teraction representation. We recall that we are considering the system (72) gives a physically plausible result 
exciton-phonon interaction in the dipole approximation. Q, + ( x)  = Q,- ( x)  = @( x)  with a damping determined by the 

The Dyson equation for the quantities E + - ( x) and self-energy part B R ( x , x I )  and E + ( x )  = E - ( x )  = E ( x ) .  In 
Q, + ( x)  are of the form this case the system (72) assumes the simpler form 
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In these equations we transformed to the dimensionless vari- 
able cD(rt ), and v, is the volume of the unit cell of the crystal. 

As for the behavior of the scattered excitons and the 
scattering phonons, they are subject to all the conclusions of 
the preceding case both with respect to the restructuring of 
the spectra and with respect to the form of the kinetic equa- 
tions (46) and (48). In all these relations, which pertain to 
scattered excitons and scattering phonons, it is necessary to 
make the substitution 

No (rt) -+ 1 @ (rt) 12/vo= 1 Q)b(rt) 121vo. (74) 

If now we take into account the explicit form of 
ZR ( x,xl) in accord with (55), the system (73) assumes its final 
form 

{ tqi  (k) nklb (rt) -95 (k-ko) 

A transition was camed out here to slow envelopes of 
the polariton wave k,: 

(rt) = ak, (rt) e-ioLf+ibr, 

E (rt) = Ek, (rt) e-iokot+itr 

and second-order derivatives were neglected. The displaced 
position of the exciton level 6, (k,) is determined from (55) by 
means of Eq. (1 I) ,  while 6,, is determined directly from the 
dispersion polariton equation (75). We have thus obtained a 
system of nonlinear equations (46), (48), and (75) relative to 

(rt ),Eke (rt ),nL1- ,, (rt ) and N t ( r t  ). The dispersion equa- 
tion obtained from the polariton equations (75) takes the 
same form as in the preceding noise-wave case, where it was 
determined by the denominator of a retarded Green's func- 
tion; in particular, the absorption of the coherent wave k, 

was determined by the imaginary part of the same self-ener- 
R 

gy part I: as in the case of the noise wave. This fact greatly 
facilitates the analysis of the obtained equations; e.g., it is 
possible to treat in the same manner the spatially homogen- 
eous problem and obtain the results (57)-(69) subject only to 
the difference connected with the substitution (74). 

We dwell now briefly on the general case, when the ini- 
tial wave k, is partially coherent. The general system of 
equations for the distribution functions 
nil- ,,(rt ), and N k ( r t  ), for the noise part of the wave 
N,,(rt ), and for its coherent parts a,, (rt ) and E,, (rt ) can also 
be obtained with the aid of the diagram technique. This 
closed system will consist of the equations (46), (48), (56), and 
(75), and in all the relations, including the kinetic equations 
(46) and (48) pertaining to scattered excitons and to scatter- 
ing phonons, it is necessary to make the substitution 

No (rt) +No (rt) I @ro (rt) I "VO, (77) 

where the last expression is the total density of the excitons 
of the mode k,,. From an analysis of this system it can be seen 
that the coherent and noise components of the initial wave k, 
retain their relative shares in the total intensity in the wave 
propagation process,, and formulas (57)-(69) are again valid 
if the substitution (77) is made in them. We note that in this 
paper we define total coherence in the sense 

and do not consider at all the higher-order Green's func- 
tiosn. 

The results can be applied to the phenomenon of equi- 
librium Bose condensation into the mode k, = 0 of an ideal 
Bose gas in a phonon thermostat; in this case, however, the 
kinetic and field equations are actually not necessary, since 
the Bose gas is at equilibrium and the entire useful informa- 
tion is contained in the corresponding retarded Green's 
functions. The possibility of quasiparticle-spectrum restruc- 
turing in such a system, in the case of Bose condensation of 
dipole inactive excitons into k, = 0, was indicated also in 
Ref. 5. 

The connection between the total intensity I,(rt ) of the 
polariton wave with the concentration of the excitons of the 
wave N,(rt ), i.e., with the intensity of the exciton part of the 
polariton wave, is determined by the relation 

where S is the cross-section area, W = Io/S is the power of 
the flux of the initial wave 16, and the weighting factor a(k,), 
which is analogous to the factors pi (b) and $i (k - k,) con- 
sidered above for the case of polariton-phonon splitting of 
the spectra, is defined by the formula 

where 
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This factor is equal, with high degree of accuracy, to 
unity in the region of the polariton dispersion curve of inter- 
est to us and discussed below. 

We consider now the dependence of the group velocity 
V& = V &  (No) of the initial wave k, on its intensity. Since, 
on the one hand, the propagation of the k,, wave is described 
by nonlinear equations, and on the other hand the absorp- 
tion a,, (k,,) for weak intensities can reach large values, the 
group velocity cannot be defined in the usual manner in the 
form of a derivative of a dispersion function. A more general 
definition of the group velocity is 

where (s) is the Poynting vector averaged over the period of 
the wave and Q is the polariton-wave energy density aver- 
aged over the period. With the aid of the Poynting theorem 
and the definition (go), the following expression was ob- 
tained in Ref. 7 for the group velocity in the case of a given 
frequency of the initial wave 

VkOP ( N o )  =o(ko) [kou (ko) /Gk,+2kOf] -'. (81) 

Here k, and k 6 are respectively the real and imaginary 
parts of the wave vector and are determined from the equa- 
tion w = G,., while the dependence of the group velocity on 
the wave intensity is contained in the previously obtained 
dependence of u(k,) on the density N,,(rt ). It follows from an 
analysis of (8 1) that the values of the velocity V% lie between 
the velocity of light c' in the medium and the polariton veloc- 
ity, which is determined as a ( k 0 ) 4  in the usual manner and 
which can reach values smaller by several orders of magni- 
tude than the velocity of light in the medium. At high inten- 
sities (3), (4) of the initial wave k,, an abrupt decrease of the 
damping coefficient a(k,,) takes place, and consequently a 
strong decrease of the polariton group velocity. This can be 
physically attributed to the fact that at such a decrease of the 
wave damping the exciton-photon interaction becomes 
stronger than the exciton-phonon interaction, and this en- 
hances the polariton character of the initial wave, and, in 
particular, to decreases its group velocity. 

We now examine how realistic is the assumed neglect of 
the polariton-wave absorption due to the emission of acous- 
tic phonon wave by the excitons. This assumption holds if, 
following absorption of the phonon, the exciton of the initial 
wave lands on the essentially exciton-like part of the polari- 
ton dispersion curve, where the exciton state density is large, 
and when a phonon is emitted it lands on the essentially 
photon-like part, where the state density is low. These state 
densities are inversely proportional to the group velocities at 
the corresponding points of the dispersion curve and conse- 
quently the ratio of the state densities of the exciton-like part 
of the dispersion curve and of the photon-like part can reach 
values ;03. This can be realized in semiconductors in which 
the longitudinal-transverse splitting satisfies the condition 

and the case of the ground energy state of the excitons is 

considered. This condition is satisfied, e.g., for the semicon- 
ductors GaSe, GaAs, Cu,O, CdTe. In addition, to exclude 
the possible accumulation of excitons scattered from the 
wave k, with emission of phonons, an accumulation that can 
lead to stimulated phonon emission by the excitons k, and to 
an abrupt increase of this absorption channel, it is necessary 
that these scattered electrons leave the region of the wave 
within a time shorter than r(k). This means that the trans- 
verse dimensions of the wave should be limited to a diameter 
15 (C/E:'~)~- 1-0.1 mm, i.e., should actually be a rather nar- 
row beam. 

For a possible experimental observation of the consid- 
ered phenomena, besides the indicated conditions, it is nec- 
essary that the frequency of the polariton wave k,,, equal to 
w = 5,. , be located on the inflection of the lower polariton 
dispersion wave for best realization of condition (82), neg- 
lecting scattering due to phonon emission. In this case the 
wave intensity (78) should be high enough in accord with (3) 
and (4). If pulsed emission k, is considered, of intensity (3) or 
(4), experimental observation of this decrease of the absorp- 
tion coefficient calls for a pulse duration 7, that satisfies the 
condition 

The spectral width of the pulse dw, should in turn sa- 
tisfy the inequalities 

which are the conditions for the applicability of the obtained 
kinetic and field equations. This imposes an additional limi- 
tation on the pulse duration: r, > l/Aa, . 

Within the framework of the indicated mode, it is neces- 
sary in a general analysis to take into account the damping of 
the polariton wave on account of phonon emission. In this 
case the proposed description must be supplemented by kin- 
etic and field (if the initial k, wave is coherent) equations for 
the scattered excitons and for the emitted phonons, and also 
introduce the corresponding terms in expressions (56) and 
(75), which describe the initial wave. Such transitions of exci- 
tons with emission of phonons will also be accompanied by a 
restructuring of the spectra, and the corresponding system 
of equations actually reflects processes of stimulated Bril- 
louin scattering. 

Excitons of the initial wave can also be scattered by 
impurities as a result of exciton-exciton interaction, etc., 
therefore in the general case the results obtained above on 
the decrease of the absorption coefficient of the k, wave 
should be regarded as a suppression of the contribution of 
one of the scattering mechanisms, namely scattering as a 
result of absorption of acoustic phonons by the wave exci- 
tons. Even in this case, however, when the condition (4) is 
satisfied, where y(k) is determined by all the possible exciton- 
scattering mechanisms, a restructuring of the phonon and 
polariton spectra is also possible. Moreover, it appears that a 
similar restructuring of the spectra of the scattered waves 
will take place for any anti-Stokes scattering, when the ini- 
tial k, wave is intense enough. We note case of simultaneous 
presence in the semiconductor of several microscopically 
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filled polariton waves, a restructuring of the phonon and 
polariton spectra, much more complicated in structure than 
considered in the present paper, is possible. 

The authors thank V. S. DneprovskiY and S. S. Fan- 
chenko for a discussion of a number of questions touched 
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