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A dynamic spin-glass model that is a natural generalization of the Sherrington-Kirkpatrick mod- 
el is considered. An exact solution of this model above the vitrification point is obtained. 

PACS numbers: 75.40.B~ 

1. INTRODUCTION 

Much progress was made recently in the understanding 
of the static properties of spin glasses. The description of the 
dynamic properties, however, remains somewhat contradic- 
tory. For example, numerical experiments' predict a nonex- 
ponential relaxation of spin glass even above the vitrification 
point T,, whereas theoretical papers2 predict, within the 
framework of the mean-field theory, an exponential relaxa- 
tion above the transition point, with a time 

(SS>caexp ( - t /z)  , T- (T-T,) -". 

A very useful model for the study of the static properties of 
spin glass is that of Sherrington and Kirkpatrick (SK),3 
which was f ~ u n d ~ - ~  to be solvable at all temperatures. In this 
model each spin interacts with all others, which corresponds 
to an infinite interaction radius, i.e., to the mean-field the- 
ory. The SK mean-field model admits of a natural dynamic 
generalization-to the so-called "soft" SK model. There is 
no exact solution analogous to that obtained in Refs. 4 6  for 
the dynamic SK model. In this paper the dynamic SK model 
is solved above T,. It is shown that the order parameter of 
the model is the susceptibility, as was indicated in Refs. 7 
and 8, and an integral equation is obtained for the order 
parameter. This integral equation can be solved both at high 
temperatures and near the transition point. The susceptibil- 
ity near the transition point is of the form 

It follows from ( I )  that it decreases like t -'I4 at the transition 
point. 

The plan of the article is the following: the model is 
described in Sec. 2, and its transformation into a one-point 
model with an interaction that is nonlocal in time is de- 
scribed together with the self-consistency condition. In Sec. 
4 is constructed a statistical one-dimensional model whose 
transfer matrix constitutes the laws that describe the dynam- 
ics of the model from Sec. 3. The static problem is solved in 
Sec. 5, and in the last, 6th section, is investigated an integral 
equation obtained for the order parameter from the self-con- 
sistency condition and from the solution of the one-point 
problem. 

2. DYNAMIC SHERRINGTON-KIRKPATRICK (SK) MODEL 

In the static SK model the spin takes on a value 1, 
and the interaction energy of the spins located at the lattice 
sites i is equal to 

where (J, ) = 0 and ( J  ) = J Z / N .  In addition, it is usual- 
ly assumed that the distribution of J,  is Gaussian and that 
there are no correlations whatever between integrals J, with 
different pairs of ij. 

To write down the dynamic equations that describe the 
static model in the static limit, it is necessary to introduce a 
continuous variable S that has a potential energy H,, in the 
form 

In the limit r = u ) 1 the variable S will almost always take 
on the value * 1. This limit will in fact be implied through- 
out. The equation of motion for S will be assumed to be of the 
Langevin form: 

as la t=s~ l s s+p  ( t ) .  (3) 

Here < (t ) is the thermal noise: 

< g ( t ) f  ( t ' )  )='/,ti (t-t'). 

The static properties of the model will be given by the Gibbs 
distribution exp( - H ); they coincide with the properties of 
the static SK model. The physical justification of Eq. (3) can 
be the following picture: classical spins that can be rotated in 
a substance with large anisotropy by the action of the matrix 
phonons. 

3. TRANSFORMATION OF THE MODEL INTO A ONE-POINT 
ONE 

We describe now a transformation that enables us to go 
from Eq. (3) with an infinite number of variables to an equa- 
tion that is nonlocal in time for a single variable. 

We transform first Eq. (3) by the method proposed by de 
D~minicis .~ We introduce an auxiliary boson field e, and two 
fermion fields ($,$). The correlators of S can be calculated 
with the aid of the generating functional 
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-qJiZ+.Jii -+- S I X  ) $ j + l ~ ]  at. (I SSi SS, 
The generating functional can already be averaged over ran- 
dom Jv.  This yields 

<F ( 1 ) ) ~  = S cis$, s $ ,  9 9 ,  ~ J S ,  
where 

L:=La+Li,t, 

The products in (6) that pertain to different points can 
be separated with the aid of the Hubbard-Stratanovich 
transformation. In the mean-field approximation, the addi- 
tional Hubbard variables can be replaced by mean values 
which, to be sure, are now nonlocal in time. For example, the 
first term of the sum in (6) is transformed in the following 
manner: 

where we have introduced the correlators 

D(t-t') = ( S ( t ) S ( t l ) ) ,  C(t-t1)=(cp(t)cp(t')). ( 8 )  
All the remaining terms of the sum (6) are similarly trans- 
formed, and equations of the type (8) are the self-consistency 
equations. Above the transition point, the fermion mean val- 
ues that do not conserve the fermion number and are pro- 
duced in analogy with C and D can be set equal to zero. This 
assumption is justified by the fact that under its terms there 
exists a solution of Eqs. (8) above Tc. It is still questionable, 
however, whether this assumption is valid below T, when 
this solution ceases to exist. It seems more probable that this 
is not the case, because the corresponding susceptibility 
($p~$)  has at the transition point the same singularity as 
the correlator (SS), concerning which it is known that 
( S  ) # 0 appears below Tc . We have 

C=4i2F ( 0 )  /6h2=0, 
therefore the term CSS can be discarded. In addition, by 
adding to H, the term as and differentiating F(0)  with re- 
spect to a we obtain the useful identity 

Lint assumes ultimately the rather simple form 

~ i n t = ~ x  J [Si ( t )  qi ( t l )  G (1-tr) +,i ( t )  ,i ( t T ) D  (t-t l)  
i 

+$i(t)$i(t f)  G(t-t') ]dt  dt', G=(cp(t)S(tl) >=(6Sf/6h). 

(9) 
The total Lagrangian is quadratic in p, therefore Eq. (5) 

can be integrated with respect top,  and the new Lagrangian 
takes the form 

x [6 (t-t') +D(t-t') I-' 

We now use the condition r = u ) 1 of proximity to the 
Ising model. In this case the main contribution to the inte- 
gral (5) are made by field configurations of the soliton type, 
with the average time between solitons cc exp( - r), while 
the duration of each is r- '. Consequently, the characteristic 
times (7) of the decrease of D and C are of the order of 
exp( - r). The expression in the round brackets in the La- 
grangian (10) differ from zero only at the instant of passage 
of the soliton. The contribution made by the soliton to the 
action is -r; in this case the contribution of the terms con- 
taining J, i.e., the interaction of order J, is much less than the 
total action. The smallness of the terms that contain G is 
offset by their long-range action, whereas the operator 
( 1 + D )- ' is not long-range; the term D can therefore be ne- 
glected in comparison with G. 

Making now the inverse transformation from field the- 
ory with Lagrangian (10) to the Langevin equations, we ob- 
tain 

Equations (1 1) describe one variable situated in a field 

which the variable itself produces in the preceding instants 
of time. 

4. TRANSITION TO THE ONE-DIMENSIONAL STATIC MODEL 

The Fokker-Planck equations corresponding to the 
Langevin equations (1 1) are equivalent to the equations of 
the transfer matrix of the static problem. Let us obtain the 
free energy of the problem and express the susceptibility of 
the dynamic problem (1 1) in terms of the static correlator. 
The static problem is define by the free energy of the spin 
systems Si, namely 

The probability of any static-problem spin distribution given 
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by the free energy (12) is equal to the probability of the corre- 
sponding time-dependent process for an individual spin. 
Therefore, by calculating the reaction to the external field he 
for the static problem, we obtain the susceptibility of the 
initial time-dependent model. The self-consistency condi- 
tion relates thus the susceptibility of the static problem with 
the AV that enter in (12). We note that the subscript i 
numbers the points in "time," and subsequently the "dis- 
tance" between neighboring must be made to tend to zero. In 
the operator A we separate two parts: 

A=Ao+A1, 
(13) 

Ao=loyo exp (-yol i-jI ), l o ) l ~ y o .  

The operator A, ensures here the correct behavior of the 
variable without the field h; its interaction radius is much 
smaller than that of Ai, and its actual form is of no impor- 
tance for the answer and was chosen in the form most con- 
venient for later use, to satisfy the condition that the correla- 
tor (SS ) of the dynamic model without any field h coincide 
with the correlator of the static one without the term A,. The 
term A, is obtained by equating the spin-flip probabilities 
within the time A t  in the dynamic model (1 I), equal to At 
exp( - h ), to the corresponding contribution to the partition 
function (12). We obtain 

(14) 
For B we have analogously 

B 4  (t) (At-'lzdldt-At&) G. 

From this we get an expression for the susceptibility in terms 
of the correlator of the static problem: 

G=e (t-t') (At-'lzdldt-AtG)b, D=(S(t)S(t l )  >. (15) 

Equations (12)-(15) determine completely the static moment 
and the self-consistency equations that relate the spin inter- 
action with their correlator. 

5. SOLUTION OF STATIC PROBLEM 

The static problem can be solved, i.e., the correlator 
(SS ) expressed in terms of the interaction, by using a tech- 
nique developed by Kac." It will now be convenient to 
change over to the Laplace transforms of the operators A, G, 
and D, i.e., 

A. = j dyp (y) eTTr = ~ l k e - v ~ * ,  
k 

(16) 
G = dyp ( y ) e - ~ ~ ,  D = dyd(y) e-7'. 

The condition (14) is then rewritten in the form 

P (Y) = ~ t  (I-y- J d y )  p (Y) .  
Y'+Y 

(17) 

We use an identity transformation that eliminates the 
long-range action: 

where B i = (A ;)-I. 
It  is convenient to transform back from the partition 

function (1 8) to the transfer matrix, for the eigenfunctions of 
which we obtain a multidimensional Schriidinger equation 
with a potential 

k k 

We note that all the yk(k #O) 4 yo, therefore the "motion" 
in the x, direction is much faster than along the others; this 
gives grounds for using the adiabatic approximation with 
respect to the coordinates xk with k #O. Along the coordi- 
nate x, there are then two close levels spaced AE = yo 
x exp( - Jd2y0) apart and corresponding approximately to 
the symmetrical and antisymmetrical wave functions; the 
remaining levels are much higher, AE- yo, and can be disre- 
garded. The effective Hamiltonian that depends only on the 
slow variables becomes a 2 x 2 matrix: 

(20) 
We recall that Jk =p(yk )A yk + 0, therefore the second 
term in (20) can be determined by perturbation theory, re- 
calling however that the level spacing is small, -Ay,. It 
suffices therefore to take into account transitions between a 
state that is antisymmetric with respect to the fast coordi- 
nate and corresponding to the null level of the slow oscilla- 
tors, and states that are symmetric with respect to the fast 
coordinate and correspond to the first excited levels of the 
slow oscillators. In final analysis, to calculate (SS ) it is nec- 
essary to find the eigenfunctions that contribute to the ma- 
trix element 

and their eigenvalues E,. The correlator (SS ) is then equal 
to 

(SS)= erp (-Eir) I ail2. 

i 

The main contribution to (22) is made by the matrix elements 
with functions $i that are perturbed states symmetric in xO, 
and first excited states with respect to one of the xk. The 
perturbation introduces into these wave functions an admix- 
ture of a wave function that antisymmetric in xO, therefore 
the matrix element (21) is not equal to zero. When account is 
taken of only such transitions, the perturbation matrix has 
nonzero elements on the zeroth row and zeroth column, 
which correspond to the antisymmetric wave function, and 
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on the diagonal. It is therefore easily diagonalized and leads 
to an equation for the shift E - y, in the form 

The weight of the zeroth antisymmetric wave function in a 
state with energy E is equal to 

The sum over k in (23) and (24) must, to permit transition to 
the continuous limit in y, be broken up into two parts: the 
contribution from the y, that are close to E, and from the 
remote ones. We obtain 

where E = y + A y(($ + y)/.rr). By eliminating y from (25) and 
substituting the expression obtained for a from (24) into Eq. 
(22) for the correlator, we obtain 

Equation (26) together with the self-consistency condition 
(17) forms a closed system of integral equations, sufficient 
for the determination ofp(y). Equation (26) can be verified at 
a specific form ofp(y), namely: 

At small J we have 

On the other hand for p in this form we can write down 
directly and solve the Fokker-Planck equations that corre- 
sponds to the Langevin equation. This leads to the same val- 
ue of d (y). 

6. INVESTIGATION OF THE INTEGRAL EQUATION 

We note first that p(y) = 0 satisfies the integral equa- 
tions (26) and (17) at those points where the expression in the 
square brackets of (26) does not vanish. It is natural to as- 
sume that p#O on the segment (y,,y2) andp = 0 outside it. 
Then Eqs. (26) and (17) can be rewritten in the form 

We shall investigate the solution of these integral equations 
in two limiting cases: J 4 1 (high temperatures) and y, 4 1, 
J - 1 4 1 .  

At high temperatures p 4 1 and the region (y,,y2) is 
small and is concentrated near unity. The contribution of the 

integral of p to (27) and (28) can be neglected; (27) is trans- 
formed into a closed integral equation forp, and its solution 
is 

P=p=(2/n) [ (y -7 , )  (yz-y) l" ,  yi, 2 = 1 * J .  (29) 

We proceed to the case of temperatures near the transi- 
tion point. We investigate first the analytic properties of so- 
lutions that are valid at all temperatures. To this end we 
continue the system (27) and (28) over the entire complex y 
plane, using the identity 

P dy' d" + inp ( 7 ) .  
1'-y+ie 

Substituting (30) in (27) we find thatp andp have no singular- 
ities on the complex plane, with the exception of the two cuts 
( - yl, - y2) and (y,,y2), and possibly poles at the points 
where 

Let us calculate the jump on the cuts of the right- and 
left-hand sides of Eqs. (27) and (28). We find that Ap = - 2@ 
on the right cut, therefore this singularity is eliminated by 
separating the factor [(y - y,)(y, - y)]'/'. 

At small I?, the equations are simpler. We eliminate p 
from (27) and (28). To this end we express p on the basis of 
(27) and the known formulas of the theory of integral equa- 
tions with singular kernels": 

1 atp ( t )  

X (t+r) I (t+rl) (t+r2) 1'" I 

At the transition point we have J = 1 and y, = 0. The 
form ofp(y) at y 4 1 follows from (32): 

where a is a number of the order of unity. 
Assume that p(y) retains the same form also near the 

transition point at y $ y,, but y 4 1. Let y- y,; then p is 
equal to 

The transition from (33) to (34) takes place at y - y1 - dl2. 
This makes it possible to express y, through the same num- 
ber a: 

Equations (33)-(35) determine the susceptibility at tempera- 
tures close to Tc.  Above Tc the asymptotic form of the sus- 
ceptibility at the longest times t > ?I2 takes the usual form 
t -112 exp( - t /T), but at shorter times t > T the asymptotic 
form is different: t - ' I4 exp( - t /T). At the transition point 
the susceptibility decreases very slowly, like t -514. 

In conclusion I wish to thank A. I. Larkin, I. E. Dzyalo- 
shinskg, and M. V. ~ G ~ e l ' m a n  fore helpful discussions and 
interest in the work. 
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