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Effective equations of motion that describe the nonlinear dynamics of magnetization in an aniso- 
tropic ferrite with two magnetic sublattices are derived and investigated. Solutions that describe 
localized dynamic solitons (including two- and three-dimensional ones) as well as plane topologi- 
cal solitons (domain walls) are obtained and analyzed. 
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Nonlinear magnetization waves are being intensively 
investigated theoretically at present and are widely used for 
the description of experiments on the motion of domain 
walls and of magnetic domains. The dynamics of nonlinear 
waves was investigated in greatest detail for two types of 
magnets: one-sublattice ferromagnets (see, e.g., the review' 
and compensated magnets with two equivalent sublattices- 
antiferromagnets and weak ferr~magnets.'-~ The investiga- 
tions have shown that the laws governing the dynamics of 
the nonlinear waves differ fundamentally for these two 
classes of magnet. These differences are most pronounced in 
the maximum steady-state velocities V, of the domain wall; 
whereas in ferromagnets the maximum wall velocity is small 
to the extent that the relativistic-interaction constants are 
small, in antiferromagnets the value of V, is expressed only 
in terms of the exchange-interaction constant and can reach 
tens of kilometers per ~ e c o n d . ~  

There is one more important class of magnets, viz., fer- 
rimagnets or ferrites, which includes magnets with several 
nonequivalent sublattices. Practically all nonmetallic mag- 
nets with spontaneous magnetic moment of pure exchange 
origin are ferrites, by virtue of which the study of ferrites is 
timely from the practical viewpoint. In addition, the study of 
nonlinear dynamics of ferrites is of considerable interest also 
for purely theoretical reasons: as shown in Ref. 7, the equa- 
tions that describe the dynamics of an isotropic ferrite in the 
exchange approximation belong to the class of those exactly 
integrable by the method of the inverse problem of scattering 
theory. 

stant. For Heisenberg magnets,/3 /6 is a small parameter,P / 
8 5 10-2-10-3. In many known ferrites, however, particu- 
larly in those widely used to study the motion of domain 
walls of epitaxial iron-garnet films, the magnetization 
lengths of the sublattices are close enough to each other, and 
inequality (1) may not hold. In addition, this inequality is 
known to be violated near the ferrite compensation point, 
near which M,-+M2. 

1. EFFECTIVE EQUATIONS FOR FERRITE MAGNETIZATION 

We consider a model of a two-sublattice anisotropic fer- 
rite whose state is determined by two sublattice-magnetiza- 
tionvectorsM,(r,t ),M2(r,t );M:,, = M :,2 ,MI,, = const. We 
write the energy of the magnet in the form 

Here S > 0 is the constant of homogeneous exchange 
between the sublattices, ai are the inhomogeneous-exchange 
constants, and W, is the magnetic-anisotropy energy. The 
ground state of the ferrite corresponds to antiparallel orien- 
tation of the sublattice magnetization, and the total ferrite 
magnetization is IM, - M2(. 

The dynamics of the vectors M, and M, is determined 
by the Landau-Lifshitz 

eff d ~ , i d t = - g [ ~ , x  H, I ,  H : ~ ~  =-ti WIGM,,  U = I ,  2,  (3) 

We investigate in this paper magnetic solitons in an an- whereg is the gyromagnetic ratio, assumed to be the same for 
isotropic ferrite having two sublattices. We study various both sublattices, g = 2p,/ii, where p, is the modulus of the 
types of magnetic solitons whose existence calls magnetic Bohr magneton. 
anisotropy. These include plane topological solitons that de- The ferrite magnetization M is determined by the sum 
scribe the dynamics of domain walls, as well as localized of the sublattice magnetizations. It is convenient also to in- 
dynamic solitons, among them two- and three-dimensional troduce the vector L, 
ones. 

It will be shown that the effective-ferromagnet model 
customarily used to describe experiments on the dynamics of 
nonlinear waves in ferrites is adequate only when the lengths 
of the sublattice magnetization vectors M, and M2 are not 
too close to each other, namely, when the following inequa- 
lity holds: 

I Mi-Mz I / M i ,  2B (B/6) "'7 (1) 
where /3 is the anisotropy constant S is the exchange con- 

L=M1-M, ,  M = M , + M ,  (4) 

and express the equations of motion (3) in terms of the vec- 
tors M and L. We note that by virture of the constancy of the 
sublattice-magnetization lengths, the vectors M and L are 
connected by two identities: 

M L = M 1 2 - M z z ,  M2+L2=2 ( M l 2 + M Z 2 ) .  ( 5 )  

In place of Eqs. (3) it is convenient to consider their 
linear combinations, sum and difference. Using (2) and (3) it 
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is easy to verify that the exchange constant enters only in the 
difference of these equations. Within the framework of the 
long-wave approximation whose applicability we shall dis- 
cuss below, it must be assumed that the characteristic di- 
mension xo of the inhomogeneity in the distribution of the 
magnetization is large compared with the lattice constant a, 
xo)a. It is then obvious that the term proportional to the 
exchange constant is patently larger than the terms propor- 
tional to the spatial derivatives of the vectors M, and M,, 
whose order of magnitude is Ma/xg -6M (a/~,)~(6M, and 
is larger than the terms that stem from the anisotropy ener- 
gy. It follows therefore that the difference between Eqs. (3) 
can be approximately written in the form 

Solving this equation for the vector M with allowance for 
relations (5) we obtain 

We see from this formula that the magnetization of the fer- 
rite consists of two parts: the first term has the same form as 
in the equilibrium state and is due to the inequality of the 
sublattice magnetization lengths. The second term, how- 
ever, is purely of dynamic origin and is determined by the 
ferrite sublattice noncollinearity that takes arises in the dy- 
namics. Allowance for the second term is not an exaggera- 
tion of the accuracy only if IM, - M,((M,,, . In the equilib- 
rium state of the ferrite we have here (M((JL1 -MI,, . It is 
just this case, in which the ferrite dynamics does not reduce 
to the one-sublattice model, that we shall be interested here- 
after. We introduce the notation 

and rewrite (7) in terms of the unit vector 1: 

Using the relation (8) we can eliminate the magnetization M 
from the system of equations for the vectors M and L(3) and 
obtain for 1 an expression that is advantageously written in 
the form 

where c = gMo(2a6)1'2; the quantity a has the meaning of 
the effective inhomogeneous exchange constant, 
a = (a, + a, - 2a3)/2; W, is the magnetic-anisotropy ener- 
gy density expressed in terms of the vector 1. 

Equation (9) generalizes the equations used before the 
describes the nonlinear dynamics of magnets. If MI = M,, 
i.e., M, = 0, this equation goes over directly into the one that 
describes the dynamics of antiferromagnets or weak ferro- 

If, however, the noncollinearity of the sublat- 
tices is neglected (formally-if we take the limit as 6 - t ~  or 
c2 -+m,  Eq. (9) goes over into the Landau-Lifshitz equation 
for a one-sublattice ferromagnet with magnetization 

M, = Msl. One can therefore speak, when investigating var- 
ious solutions of (9), of "antiferromagnetic" (Ms-+O) and 
"ferromagnetic" (6--t m ) limits. 

It is convenient to introduce the angle variables for the 
vector 1: 

L=sin 0 cos cp, &=sin 8 sin 9, l,=cos 6, (10) 

in terms of which (9) takes the form 

[ 
1 39 I aw. 

-a sin 8 cos 0 ( V q )  '- - c2 ( Z ) I - ~ T ~  (1 1) 

v a8 a d 
--sin8=aV (sin9Vq)--- 

c2 a t  (sin' 8 $) gM0 at  

- 1 aw. -- 
2M,2 d q  . 

Here Wa is the magnetic-anisotropy energy density ex- 
pressed in terms of the angle variables @ and p, and v = M,/ 
2M0. Without loss of generality, we can assume v>O. 

2. ONE-DIMENSIONAL SOLITIONS IN A UNIAXIAL FERRITE 

Consider a ferrite with purely uniaxial anisotropy. As- 
suming that IMJ (ILI, we can write the magnetic-anisotropy 
energy in the form 

W,='/,~(L'-L,') --j3Mo%inV, (13) 

where f l  is the effective anisotropy constant and the pre- 
ferred crystal axis coincides with the axis. 

The ground state of the ferrite corresponds at B> 0, as 
can be readily seen, to L = L or to 0 = 0 , ~ .  We consider a 
one-dimensional soliton solution that describes a nonlinear 
solitary wave propagating along a certain axis x with veloc- 
ity V. We can seek this solution in the form 

This two-parameter soliton (the parameters are V and 
o) corresponds to magnetization precession with frequency 
o in a reference frame moving at the soliton velocity V. Such 
solitons were investigated both in ferromagnetsI0 and in an- 
tiferromagnets., 

Corresponding to the localized solution of the equa- 
tions of motion (1 l )  and (12) are the natural boundary condi- 
tions 

0+0, dO/dE-+O, d ~ ) / d g < w  for g-+3tm. (15) 

We proceed to investigate the soliton structure. Since 
the anisotropy energy (13) is independent of the angle p, Eq. 
(12) with allowance for (14) and (15), is integrated in elemen- 
tary fashion: 

Substituting expression (16) in (1 I), we obtain an ordinary 
differential equation for the polar angle 8: 

sin (812) 
0"SA sin 0-B sin 0 cos 8 S D  = O ,  

cos"0/2) (17) 
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where .- 

vo pcz ( l -V / c2 )  - a d  
A =I B = -  

agilfo ( l - - ~ / c ~ ) ~ '  ac z ( l -V2 / c z )  

D=v2Trz/2u2 (gM0)' ( 1 -  PIC') ' .  
(18) 

Integrating (17) with allowance for the boundary conditions 
(15) we obtain the explicit form of the soliton solution: 

where the quantity x = x(V,w) is determined by the relation 

It is easily seen that the solution (19) exists subject to satisfac- 
tion of the condition x2>0, which can be written in the form 

The region of admissible parameters of a soliton on the plane 
(V,o) is thus located inside an ellipse (see Fig. 1). 

We discuss now the structure of a nonlinear wave of the 
form (19). The singularities of this solution are, first, points 
located at the boundary of the region where the solution 
exists (x2 = O), and second, those values of the parameters V, 
w, and Y for which A = D = 0. Everywhere except at these 
singular points the solution (19) describes a localized soliton, 
i.e., a nonlinear wave to which corresponds one and the same 
magnetization value (0 = 0) as g+ - oo and 6- + ccr . 

With approach of the soliton parameters (V, w) to the 
boundary of the region of exsitence of the localized solutions 
(21), the soliton amplitude decreases, and the region of its 
localizationdc- l/x increases. The behavior of the solution 
on the boundary itself, however, depends essentially on the 
sign of A + D. If A + D > 0 (corresponding to this condition 
are the points of the upper half of the ellipse (22)), the soliton 
amplitude tends to zero as x 2 4  and the soliton is complete- 

ly delocalized and vanishes at xL = 0. In the lower half of the 
ellipse (A + D < O), the behavior is in principle different: at 
x2 = 0 the soliton amplitude remains constant, but the de- 
pendence of the magnetization on the coordinate 6 becomes 
algebraic: 

0 tg2 - = 
IA+DI 

2 (A+D)Zg2+D/2 ' (22) 

the solution (22) describes the so-called algebraic soliton. 
Far from the compensation point, when the inequality 

v> (F/6)'12 (23) 

is satisfied, the soliton solution (19) goes over into the analo- 
gous solution obtained in Ref. 10 for a ferromagnet. The 
boundary of the soliton states is then transformed as follows: 
as S+oo the center ellipse drops down to infinity away from 
the origin, so that the upper part of the ellipse becomes a 
parabola and the lower part does not manifest itself at all. ' In 
the ferromagnetic limit the soliton frequency is therefore 
bounded only from above by the parabola 

o<gpM0lv-vzV/4ap (gM0)'. (24) 

Naturally, no algebraic solitons of the type (22) exist in the 
ferromagnetic limit. 

We consider now the case A = D = 0. Equation (1 7) has 
then a solution of the form 

tg (012) =exp (B'"E), (25) 

which differs fundamentally from the localized solution (19). 
It corresponds to different values of the magnetization as 
6-r- oo andc- r+  oo: 

e ( - w )  =0, 0 ( + O D )  =n. 

This solution describes a 180-degree domain wall constitut- 
ing a plane topological soliton. 

The coefficients A and D vanish simultaneously in two 
cases. First, at Y = 0 (strictly at the compensation point) we 
have A = D = 0 for all values of the parameters Vand w .  At 
this point in a ferrite, just as in an antiferromagnet, there are 
no localized solitons, and the two-parameter solutions de- 
scribe moving domain walls. 

At any nonzero (even arbitrarily small) value of v the 
situation is different: A = D = 0 only if V = 0 and w = 0. In 
this case the solution (25) describing a domain wall at rest. 
Thus, everywhere except at the compensation point itself, 
motion of the domain walls is impossible in the model of a 
purely uniaxial ferrite (13). The dynamics of the domain 
walls in a more general model will be considered in Sec. 4. 

We dwell now on the conditions for the applicability of 
the soliton solutions obtained above. In the derivation of the 
effective equations of motion (1 1) and (12) we used in essence 
the approximation I MI ( 1  L1. Starting from relations (8), (1 8), 
and (20) it is easy to show that this condition is satisfied if the 
following inequality holds at Y( 1 : 

FIG. 1 .  Region of existence of localized solutions of Eq. (17). Here o, 
gM,,(2@)'1Z, c = gM,(2a~5) ' /~ .  1 - v(1;2 - v = 0; 3 - v=. I .  The arrows 
mark the part of the ellipse in which algebraic soliton (22) exists. 
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The condition for the applicability of the long-wave approxi- 
mation, i.e., that the soliton be macroscopic, namely (a/ 
x,)-ax(1, also leads to the inequality (26). 

Thus, at v(1 the approximations used by us are thus 
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valid in the entire region of existence of soliton solutions, 
with the exception of a narrow region of velocities close to c. 
This region is shown shaded in Fig. 1. 

If v- 1, however, inequality (26) ceases to be significant. 
The condition for the applicability of the macroscopic de- 
scription reduces in this case to a limitation of the precession 
frequency in the soliton: 

tic resonance. It can be easily seen that v z  1 we have wl + , 
zgPMo, with decrease of the parameter v the value of w( + , 
increases, and as v-+O the frequency w( + ,+gM,(W )'I2. 
Without dwelling in detail on all the properties of the soliton 
solutions of Eq. (30), which were investigated in Refs. 1 1 and 
12, we note only that the amplitude of the soliton (the quanti- 
ty 6 (0)) and the region of its localization depend substantially 
on the parameter 0 ,  i.e., on the precession frequency w. In 
particular, as 0-1 the soliton amplitude tends to zero 
(0 (0) cc (1 - 0 )'I2), i.e., the soliton is degraded. More inter- 

3. THREE-DIMENSIONAL AND TWO-DIMENSIONAL 
SOLITONS esting is the case 0 4  1. In this limit the soliton is a spherical 

region of radius R)Io, in which the angle 9 is close to T; this 
The one-dimensional solitons considered in the preced- region is separated from the remainder of the magnet, in 

ing section are dynamic. Their existence is due to the pres- which 8,-0, by a transition layer having a thickness of the 
ence of integrals of motion of the system-the momentum P order of I,. The soliton radius R is determined at 0 ( 1 by the 
and the number of spin deviations (summary projection of formula R = 21~0sl, ,  ( ~ ~ f .  111, or 
the z-projection I, of the magnetization) 

R=o 
2 (aB>'"gMo 

V O  ( I  -g)"2. I.  = Jdr (M.-M, (r, t )  ) =M. dr { i-cos 8 4- } . 
(34) 

We discuss now the dependence of the soliton radius on 
(28) 

It can be assumed (in analogy with the case of ferromagnets" 
and antiferromagnets2) that in this system there can exist 
non-one-dimensional solitons. 

We confine ourselves to an analysis of immobile soli- 
tons ( V  = 0). At V = 0 the one-dimensional solution deter- 
mined by formulas ( 14), ( 16), and ( 19) become much simpler: 
the azimuthal angle q, ceases to depend on the coordinate. It 
is easy to verify that in the three-dimensional case there also 
exist soliton solutions with uniform precession. Correspond- 
ing to these solutions are 

ql=ot, e=e ( T I ,  (29) 

where ? = x2 + Y2 for the two-dimensional and 
? = x2 + y2 + z2 for the three-dimensional case. 

Substituting (29) in (1 1) and (12) we find that the angle 
6 = 6 (r) satisfies the equation 

ke " )  +Q sin 0 - sin 0 ca. 0=O, (30) lo2 (- + yz 
where d = 2, or w is the dimensionality of the solution; 

Investigation and numerical integration of an equation simi- 
lar to (30) were carried out in Refs. 11 for d = 3 and 12 for 
d = 2 in an analysis of solitons in a ferromagnet, and we can 
use these results directly. 

It is shown in Refs. 11 and 12 that an equation of the 
type (30) and at 1 > 0 localized solutions with boundary 
conditions 6 4  as R+CO and 6 '-0 as r-0, provided that 
the inequality 

O<Q<I, (32) 

is satisfied; this imposes a limit on the precession frequency 
w: a localized soliton exists at 

The quantity o( + , is the frequency of the linear ferrimagne- 

the frequency w. It can be easily seen that at v z  1, just as in 
ferromagnets," we have RBI, only at low precession fre- 
quencies: w(o( + , zgaM,. With decreasing v, the frequency 
interval to which R,Io corresponds increases and as v 4  it 
is practically equal to the entire soliton-existence interval 
(O,w( + ,). For example, at v((f3/S )'I2 the soliton radius is 
much larger than I, even if w -o( + ,, but if the following 
inequality holds 

(oc+,-o)l~(+,wv(slS)". (35) 

The point v = 0 is singular for Eq. (39), since at v = 0 the 
parameter 0 = 0 for all values of the precession frequency w. 
In this case the solitons can exist only when account is taken 
in the anisotropy energy of terms of the type bL ,4 and only in 
the narrow frequency interval (of the order of (b / /3)w, +,) 
near the antiferromagnetic-resonance frequency w( + , (Ref. 

2). 
Thus, the conditions for the existence of on-one-dimen- 

sional solitons in ferrites at arbitrary nonzero values of v 
(even small ones, v4(f3/S)'12) differ in principle from the 
corresponding conditions in an antiferromagnetic. At Y #O 
the soliton solutions, just as in a ferromagnet, exist in the 
entire interval 0 < w < o( + , . When the ferrite approaches the 
compensation point ( v d ) ,  first, this frequency interval ex- 
pands on account of the increase in the frequency w( + , of the 
linear ferrimagnetic resonance. Second and more important, 
an increase takes place in the relative size of the frequency 
interval in which solitons with RBI, (magnon drops), which 
are known to be stable,' exist [see Eq. (35)l. 

4. DOMAIN-WALL MOTION IN A FERRITE 

As noted in the preceding section, in a uniaxial ferrite at 
V = o = 0, there is no localized soliton state that satisfies 
the boundary conditions (15). In this case, however the equa- 
tions ( l l ) ,  (12) have a solution (25) that differs in principle 
from the soliton solution in that it corresponds to different 
values of the magnetization as x = - co and x = + co : 
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In other words, the solution (25) describes a plane 180-de- 
gree domain wall (DW) that constitutes a one-dimensional 
topological soliton. When such an object moves, a change 
takes place in the summary z-projection of the ferrite magne- 
tization (28), whereas motion of the soliton (19) leaves this 
quantity unchanged. The last circumstance, as shown in Ref. 
13, makes impossible the motion of a domain wall in an un- 
compensated magnet, such as a ferrite at v#  0, in the case of 
uniaxial magnetic anisotropy. To obtain for the equations of 
motion a solution that describes amoving DW it is necessary 
to consider a more complicated form of the anisotropy ener- 
gy W,; for example, account must be taken of the anisotropy 
in the basal XY plane of the magnet. 

Consider a ferrite with biaxial (rhombic) anisotropy, 
whose magnetic-anisotropy energy is chosen in the form 

wherep is the effective constant of the rhombic anisotropy. 
The equations of motion (1 1) and (12) admit then of a solu- 
tion that satisfies the boundary conditions (36) and describes 
a moving 180-degree DW. Corresponding to this solution 
are 

q=cp ( V )  =const, cos 0=-th [ x  ( V )  (x -Vt )  ] . (38) 

The azimuthal angle q(V) and the reciprocal thickness x(V) 
of the domain wall are connected with each other and with 
the velocity V by the relations 

V x  ( V )  =- (pgMo/2v) sin 29 ,  (39) 
x"V) =(fi+p cos2 c p ) / a ( l - V l c 2 ) .  (40) 

An analysis of (39) and (40) shows that the solution (38) exists 
at velocities V that do not exceed a certain limiting steady- 
state velocity Vc given by 

V.=c[ (fi+p) "-$"I { [ ( f i+p)  " - f i " ]  2+26vz)-"'. (41) 

The relations obtained generalize the corresponding results 
for a ferromagnet (the so-called Walker solution, see Ref. 14) 
and for an antiferr~magnet.~" As already noted, in the de- 
scription of DW dynamics and in the calculations of the ve- 
locity Vc the model usually employed is that of an effective 
ferromagnet with fixed length of the summary magnetiza- 
tionvector IMI = IM, -M21 =MS.Itcanbeseenfrom(41) 
that this approximation is valid only if the inequality (23) is 
satisfied. 

It  must be emphasized that at arbitrary small but non- 
zero values of the parameter v the limiting velocity Vc van- 
ishes a tp  = 0. Only at the compensation point, where v = 0, 
does the value of Vc become equal to the minimum phase 
velocity c of the spin waves, determined only by the ex- 
change-interaction parameters. This result is typical of com- 
pensated magnek2-' 

It can be easily seen from (39) and (40) that to each value 
V < V, there correspond to values of the angle p( V) and of the 
reciprocal DW thicknessx(V), i.e., two types of DW. At low 
velocities (V< Vc) one of them corresponds to an angle close 
to rr/2, and theother to zero. By analogy with a ferromagnet, 
these DW can be called respectively quasi-Bloch and quasi- 
NBel. Both types of DW coincide at V = V,. 

The solution (38) describes DW motion "by inertia," 
i.e., without allowance for the driving force and for the dissi- 
pative processes. The driving force usually employed is an 
external magnetic field H applied in such a way that on ac- 
count of the Zeeman energy 

WH=- (M,+Mz) H=-MH 

one of the separable DW of the homogeneous phase of the 
magnet (the wall in which M*H > 0) becomes advantageous 
in energy over the other (in which M*H < 0). The DW is then 
acted upon by a magnetic pressure pH directed towards the 
less advantageous phase. In addition, a moving DW is acted 
upon by a deceleration force F (  V) due to various dissipative 
processes and dependent on the DW velocity. At a definite 
value of V equilibrium sets in, pH = I: ( V ), and the DW mo- 
tion becomes steady. The V = V(H) dependence was ob- 
tained by Walker for ferromagnets (see Ref. 14), and in Refs. 
3 and 4 for weak ferromagnets. 

Let us consider the motion of a DW in a ferrite assum- 
ing that both the relaxational constant A and the driving field 
H are small compared with the characteristic quantities of 
the problem (in particular, H&Mo and A &?;a ). In this case 
it can be assumed that the DW structure is the same as at 
H = A = 0 and is described by Eqs. (38)-(41). 

The magnetic pressurep, is determined by the equilib- 
rium values of the vector M to the right and to the left of the 
DW. From (8) and (38) we get 

p==H (Ms ( - m )  -Mz ( + m )  ) 
- - 

= H M .  ( I ,  ( - m )  -I,(+-) ) =4M,Hv. (42) 
To calculate the decelerating force we introduce into 

the equation of motion (3) the phenomenological relaxation 
terms in Gilbert's form. In this case we easily obtain for the 
deceleration force the expression 

F ( V )  = (4hMolg) V x  (8 ) .  (43) 

Equating (42) and (43) and using the relations (39) and (40) we 
find that the steady-state velocity V of the DW is connected 
with the field by the relation 

where 

H,=.)LpMo/2vz, 

the minus and plus signs in (44) pertain respectively to the 
quasi-Bloch and quasi-Nee1 DW. We see from (44) that 
steady-state motion of a DW is possible only at H(H,. This 
result (the presence of a critical field) is typical of uncompen- 
sated magnets. For compensated magnets there is formally 
no such re~triction.~.~ From (45) we see also that H,-+co as 
v-+o. 

In weak fields (H(H,) the DW velocity is linearly con- 
nected with the value of the field H, and the mobility of the 
quasi-Bloch DW wall ( p,) is larger than that of the quasi- 
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NCel wall ( p,): 

The limiting DW velocity V, is reached at a field value H, 
<H,:  

At H  = H,  the velocities of both types of DW coincide and 
are equal to 

V (H=H,) =cp [86vZ (p+p/2) +p2] -Ih< V,, (48) 

while the differential mobility d V / d H  becomes infinite. 
We discuss now the region of applicability of (44). It was 

derived under the assumption H@Mo, i.e., it is meaningful 
to speak to DW motion in fields H - H ,  only if H,  @Mo, 
i.e., at YSR ' I 2 .  In addition, the phenomenological allowance 
for the relaxation is approximate, and to calculate the decel- 
erating force acting on a DW it is necessary to use a macro- 
scopic approach that takes into account both the relaxation 
due to scattering and emission of magn~ns , '~  and on account 
of other subsystems of the crystal, particularly p h ~ n o n s . ' ~  

'The lower part of the ellipse corresponds at v- 1 to frequencies of the 
order ofgsM,, at which the conditions for the macroscopic description of 
the soliton are violated, since its characteristic dimension becomes of the 
order of the lattice constant a. 
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