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Thermodynamic-equilibrium heterogeneous states are considered in metallic solutions in which 
the superstructure reciprocal-lattice vectors G', which manifest themselves upon ordering, are 
close to the diameters 2kF of the flattened parts of the Fermi surface. If the ordering proceeds as a 
first-order phase transition, the produced heterogeneous state is strongly modulated in the arnpli- 
tude of the order parameter and consists of alternating ordered and disordered sections. The 
physical factors that lead to stability of such a heterogeneous state are the large gain of the 
singular part of the electron energy at G' z2k ,  for small ordered regions in the disordered matrix 
compared with the homogeneous ordering accompanied by restructuring of the spectrum, as well 
as the gain energy when the sites G' become split and shifted h r  the ordered or the deformed 
ordered regions. The characteristics of the heterogeneous states (sizes, shapes and fraction of the 
disordered region, relations between the phases of the neighboring disordered regions, the tem- 
perature interval in which the heterogeneous states exist), produced in systems with phase transi- 
tion of the substitution and displacement type are considered. They correspond to the homogen- 
eous-state singularities observed in diffraction and electron-microscopy investigations of n 
number of metallic solutions. 

PACS numbers: 64.60.Cn 

INTRODUCTIONS 

The correlation in the arrangement of atoms in systems 
with short-range forces attenuates rapidly far from the 
phase-transition point (over distances of the order of the in- 
teratomic distance r,), and such systems are quite homogen- 
eous. In a number of metallic systems, however, states are 
observed with relatively large-scale inhomogeneities having 
characteristic lengths of the order of (5-10) r, and spanning 
over hundreds of atoms. Thus, an analysis of data on diffuse 
scattering of x rays and electron-microscopy investigations 
have shown that in many disordered metal solutions, at hun- 
dreds of degrees above the point of first-order phase transi- 
tion into the disordered state, there exists, under equilibrium 
conditions, an appreciable fraction of ordered regions of the 
indicated size (see, e.g., Refs. 1 and 2), contained in a disor- 
dered matrix. In some transition-metal solutions with bcc 
lattice, in which a displacive phase transition into a trigonal 
w phase can take place, extended quasilinear sections of the 
w phase in a bcc were also observed in a wide temperature 
interval (see, e.g., Refs. 3-6). Regions with strongly differing 
local order exist also in certain other metallic systems. 

In a system with short-range forces, the density of the 
thermodynamic potential q,(r) depends locally on the order 
parameter q(r) and the density of the thermodynamic poten- 
tial of a heterogeneous system consisting of extended sec- 
tions of two phases 

(y is the surface energy and S is the area of the interphase 
boundaries per unit volume) is a minimum when the fraction 
p of one of the phases is equal to zero or unity, i.e., an equilib- 
rium heterogeneous state is possible. Far from the phase- 
transition point it is practically impossible also for sections 

of a second phase to appear as a result of heterophase fluctu- 
ations.' 

The situation changes qualitatively if the long-range 
forces arc substantial. In metallic systems they can be due to 
indirect interaction due to the conduction electrons. It is 
known that such an interaction leads to the o m t  of ordered 
structures with large and of charge-density 

In these cases, long-range order arises in the en- 
tire crystal, and its large-scale inhomogeneity reduces to 
moduiatbn of the phase1' and of the sign of p(r] (and only 
within definite limits of the amplitude). As will be shown 
below, in systems where first-order phase transitions are 
possible, another strongly amplitude-modulated substan- 
tially inhomogeneous distribution of the order and of the 
composition can set in, wherein regions with high local alter- 
nate with disordered (or weakly ordered) regions. 

The advantage of this heterogeneous state over the ho- 
mogeneous ordered phase or over an ordered phase broken 
up into antiphase domains can be understood when account 
is taken of nonlocal effects in the dependence of ~ ( r )  on q(rl) 
at r'# r, which lead to a nonlinear dependence of q, on the 
fractionp of the ordered regions and limiting the growth ofp. 
These effects are of quantum origin and are due to the known 
peculiarity of the variation of the electron energy E,(k) un- 
der the action of the kth perturbation wave in the region of 
values of k close to the diameter 2k, that joins flattened or 
cylindrical sections of the Fermi surface. In the course of 
ordering there appear potential-energy waves corresponding 
to superstructure vectors of the reciprocal lattice G' and 
leading to the lowering of the electron energy. It is important 
that at Gfz2k,  the energy decrease per atom can be consid- 
erably larger when several disordered regions are produced 
in the disordered matrix than in the case of a homogeneously 
ordered crystal. 
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This difference is due, first, to the fact that owing to the 
restructuring of the electron spectrum in the homogeneous 
ordering, the usual perturbation theory no longer holds and 
in the "special" region kz2kF the energy Ee(k) does not 
have a quadratic dependence on the perturbation ampli- 
tude.I3 On the other hand, the action of a small ordered re- 
gion in the disordered crystal on the electrons is described in 
second-order perturbation-theory approximation, and the 
corresponding decrease of the energy IEe'2'(k)l per atom can 
be much larger than I Ee (k) 1. Second, by choosing a suitable 
long- or short-range order in the disposition of the ordered 
regions and their phase, it is possible to "split up" the super- 
structure site G' into a group of sites G' * q, and, just as in 
the case of long-period structures, lower by the same token 
the electron energy if the minimum of Ee(k) is shifted some- 
what relative to G' and 

- 

E, (G' +qn) +E, (GI-q,) -2E (G') (0 

(the possibility of formation of heterogeneous states as a re- 
sult of this mechanism was qualitatively discussed earlier in 
Ref. 14). Third, appreciable local deformations which occur 
when the concentration is redistributed in solutions with no- 
ticeably different atomic radii of the components shift the 
vectors G' for the small ordered regions relative to the reci- 
procal-lattice sites of the homogeneously ordered phase, and 
this can also decrease Ee and stabilize the heterogeneous 
states. 

The essential role of amplitude modulation of the local 
order in the considered case of systems in which the ordering 
takes place as a pronounced first-order phase transition with 
variation of q from 0 to z 1 is connected with the character 
of the p(q) dependence plotted in Fig. 1 for such systems. 
The presence of a second maximum or of a section with a 
small slope at q = q, - 1 besides the minimum at q = 0, and 
the strong increase of p(q) at intermediate q, favor the for- 
mation of sections with q(r) ~ 7 ,  and q = 0 (or q <  1). 

To reveal more illustratively the physical causes of for- 
mation of equilibrium heterogeneous states and to investi- 
gate their structure and characteristics, we investigate below 
simple models of such states. First, in Secs. 1 and 2 we con- 
sider the change of the electron energy upon formation of a 
heterogeneous state, and determine its thermodynamic po- 
tential. This is followed by investigation of the equilibrium ' 
characteristics of the heterogeneous state for cases of uncor- 
related and strongly correlated ordered regions in metallic 
solid solutions, in which substitutional (Secs. 3-5) and dis- 
placive (Sec. 6) ordering takes place. 

1. ELECTRON ENERGY OF SOLUTION 

The potential energy V(r) of a conduction electron in a 
binary disordered solution A-B in the customarily employed 
additive approximation can be written as a sum of contribu- 
tions of individual atoms: 

V ( r ) = V ( r ) + A V ( r ) ,  
N 

. - 

AV(r)  = (c.-c) [ V ,  (r-R.) -V. (r-R.) I .  (1) 
* = I  

Here N is the number of lattice sites, V(r) is the potential 

energy of the electron in a ideal crystal consisting of "aver- 
age" atoms, R, is the radius vector of the sth atom (static 
displacements of the atoms are assumed small and are disre- 
garded), c, takes on values 1 or 0 if atom A or B, respectively, 
is located on sites, c = (c, ) is the concentration of the atoms 
A, and V,(r) and V,(r) are the interaction energies of the 
electron with atoms A and B. Changing over from c,-c to 
Fourier components c,, we can represent A V (r) in the form 
of a sum over the reciprocal-lattice cell: 

1 
A V ( ~ )  =z ckuk ( r )  e-"', ck = - (c.-c) eikRs, 

N 

If the difference I V, - V, I is small compared with the 
Fermi energy EF, the electron energy can be determined by 
perturbation theory. The configuration part of this energy, 
which depends on c,, appears in the second-order approxi- 
mation and reduces to a sum of contribution of separate 
waves c, v, : 

where, in the single-electron approximation, 

~ ( 2 )  (k)  = - - C l v k ( x , x + k + ~ ) ~ a  n (E,) - n ( E % + ~ + G )  

xG Ex+k+~ - Ex ' 

(4) 

Here G are the reciprocal-lattice vectors, E, is the energy of 
an electron with wave vector x in the expanded-band 
scheme, n(E,) are the Fermi occupation numbers, u ~ ( K ,  
K + k + G) is the matrix element v, (r)exp( - 11-r) on the 
Bloch wave functions ( K I  and I K  + k + G), corresponding to 
the potential F( r ) .  

As already noted, greatest interest attaches to the singu- 
larity of w(k) in the region where k + G is close to the Fermi- 
surface diameter 2kF which joins its parallel sections. The 
singular part of w"'(k), designated W""(k), is determined by 
only one term in the sum (4) over G (with G z 2 k F  - k). The 
character of the singularity manifests itself more strongly 
the more flattened these ~ections".'~: a singularity of the 
type 6kzln(C116k, 1 )  appears for spherical sections, of the 
type (6kz)1'2 (at 6kz > 0) for cylindrical, while of the type 
ln(C216kz I), for almost flat ones where 6 k = k + G - 2kF, 
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the k, axis is parallel to the normal to these sections, and C,  
and C2 are constants. 

Allowance for the interelectron interaction leads to re- 
placement of w""(k) by Z(2'(k), where for a homogeneous 
electron liquid with dielectric constant ~ ( k )  we have in the 
random-phase approximation 

,-cz)* ( k )  ,w(a)' ( k ) l ~  (k+G),  

e (k) =l+u.(k)P (k) , U ,  ( k )  =&e2/k2. 
( 5 )  

Here Gz2kF - k and P(k) is determined by Eq. (4) with v, 
= 1. In a number of cases, in the region of singularity of w(k) 
the dielectric constant ~ ( k )  =: 1, and the singularity is mainly 
connected with the numeraor and not with the denominator 
of (5). When account is taken of the inhomogeneity of the 
electron liquid and of exchange and correlation effects, the 
expression for Z(k) becomes more complicated, but the 
qualitative singularities of the electron energy, which are 
described by (3)-(5), remain in force. 

Expressions (3) and (4) are valid only in the limit of low 
perturbation amplitudes ck v, . For k + G =: 2kF a perturba- 
tion with finite amplitude leads to mixing of the electron 
states K Z  - kF and K + k + G z k F ,  which have close ener- 
gies E, zE, + , + . z E F ,  and to a restructuring of the spec- 
trum in the actual "singular" region that makes the main 
contribution to the singular part of w(k). Allowance for this 
restructuring of the spectrum can be carried out with the aid 
of generalized perturbation theory and changes w(k) signifi- 
cantly compared with the result of ordinary perturbation 
theory. ".*' 

The quantity wl(k), which determines the singular part 
of the change of the electron energy (1/2)Nw1(k)lck I*, a 
change connected with the perturbation vk (r)ck, depends on 
UZ = vk21ck )', wherevt isequal to Iv,(K, K + k + G)I2 aver- 
aged in some manner over K and K + k + G, and located in 
the singular region (k + G=:2kF). As U 4 ,  wl(k) tends to 
~('"(k) [m. (4)], but at finite U it differs substantially from 
w""(k). Explicit expressions for wl(k) in the case of a small 
interelectron interaction [&(k)=: 11 were obtained in Refs. 13 
and 17 for different shapes of the Fermi surface. Let, e.g., the 
main contribution to wi(k) be made by its flattened regions 
with areas S,, namely spherical sections with large curva- 
ture radii and with small height k, and let the parameters U, 
Em = liv,k, and6E = fiv,Sk, (v, is the projection of the elec- 
tron velocity on the direction normal to the flattened section 
k,) be small compared with E,, but let the ratios of the pa- 
rameters be arbitrary. Then, according to Ref. 17, 

At sufficiently small U< 16E I and U< I Em - GE I, 
expression (6) coincides with the result of perturbation the- 
ory and is proportional to U ': 

At U- )6E 1, however, (i.e., at relatively small U<EF, if ISk, I 
(k,), wl(k) and ~""(k)  differ substantially. The expressions 
for w' and w"" for a more general form of flattened and 
cylindrical Fermi surfaces are given in Ref. 17. For a set of 
perturbation waves with different k, the change of the elec- 
tron energy E, can be determined in the f m  of the sum (3) 
over k, if the differences k, are iarge canpiwed with 
U/filv, 1. In this sum, however, it is necessary to replace 
w"'(k) by Nk). 

2. C H A W  OF THERMODYNAMIC POTENTIAL UPQN 
FORMATION OF THE HETEROOENEOUS STATE 

The long-range effects that lead to heterogienization, are 
due to the rapidly changing singular part wl(k) of the energy 
w(k) (connected with the presence of a Fermi surface or with 
the sharp extremum of vt ). Introducing the smooth function 
0 (k), which is equal to unity in the singular region and de- 
creases rapidly outside this region, we can formally break up 
w(k) into w'fk) and a smooth part w'O'(k) = wfk) - 9 (k)wf(k). 
The latter lea& only to short-range indirect-interaction 
forces. We denote the corresponding c o n t ~ t i o n  to the 
density of the thermodynamic potential e, together with the 
energy of the direct interaction of the atoms and the entropy 
term by pO(c, 7). It  depends locally on the order parameter 
q(r) and on the concentration c(r). Adding the singular part 
of the electron energy, we write q, in the form 

1 
q=q"qer, 9.' = - w' ( k ) 0  (k) lck12. 

2vo 
(9) 

In a homogeneously ordered solution, the main contri- 
bution to the sum for p: is made by p' sites of the reciprocal 
lattice G', which appear upon ordering and lie in the singular 
region. For these sites c, = g77/2, where, e.g., in the case of 
an L1, lattice and G' = (110), we havep' = 12 and g = 4, 
while in the case L1, we havep' = 4 and g = 1 (the contribu- 
tion of the terms with k#G can be neglected, inasmuch as 
for these terms Ic, l 2  a N - I ,  and the volume of the singular 
region in which B (k) = 1 is small). Therefore for homogen- 

V"kvk2 [ g ( t )  + g(h-t )  eous ordering we have w' ( k )  = 
2n3hlv,lh 

1 1 U 9 (c, II) = (c, q) + (~i-, ( k )  q2/8vo. (10) -- h +  -hln 
4 2 2ftlv,lk, In a disordered solution (which contains no ordered re- 

Here v, is the volume of the unit cell, gions), p = pO(, 0). To determine the thermodynamic poten- 
tial of the heterogeneous state we consider the simplest mod- 

h=E,/U, t=GE/U, g ( t )  ='jet3 at I tl el, el, assuming that in the ordered regions the order parameter 

g ( t )  ='Ie { t3-  (t2-i-2) ( t2-  I )  '' sign t q(r) = q is constant, and outside these regions q = 0, and 
that the dimensions Do and the shapes of all ordered regions 

ln [ 1 1 + ( t 2 - 1 )  "1 ) at 1 1 >I. (7) are the same. Since in solutions the inhomogeneous ordering 
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should be accompanied by inhomogeneous redistribution of 
the composition, the concentration c in the ordered regions 
is replaced by a certain quantity Sc = c - c,, relative to the 
average concentration c,, and in disordered regions it is re- 
placed by 

wherep is the volume fraction of the ordered regions. In this 
model, the difference between p of the heterogeneous state 
p,, and that of the disordered solution p(c,, 0) can be writ- 
ten in the form 

Here yS is the surface energy of the ordered regions per unit 
volume (with a total area S; 5- l), and 69: is the difference 
between the singular part of the heterogeneous and homo- 
geneous systems with identical q. In the approximate for- 
mula for $ we have discarded the higher-order terms of the 
expansion in W .  

The quantity Sp: is determined according to (9) by the 
values of c, in the singular region at small q = k - G'. The 
latter are connected with the qth Fourier components q(r), 
and in the model considered we have 

P (q) = exp [ iqRm+Gtd (R) I, s ( q )  = J s ( r )  exp (iqr) dr. 
Rm 

(12) 

Here V is the crystal volume, s(r) = 1 inside the ordered re- 
gion with R, = 0 and s(r) = 0 outside this region, R, is the 
radius vector of the center of the mth ordered region, and 
account has been taken of the fact that when it is shifted by a 
certain vector of the lattice of the disordered crystal d(R, ), 
the phase exp(iG' .r) of the wave is replaced by @J = G'.d(R, ). 

Separating in (9) the constant part w'(G ')from w'(k ), and 
taking into account (10) and the relation 

Is(q) 121p(q) I' dq=8n3pV1 

we represent Sp: in the form 

g3pq2 aw' (G')  
6q3' = - -z u..G.'=-K dGi' ' I  ' 3 ~ 9 ~ 1  8uo G'  

Here Sp; takes into account the change of wl(G') and of the 
specific electronic energy on going to small disordered re- 
gions, owing to the decrease of the harmonic U of the per- 
turbed potential energy [ w&,, corresponds to U = v, , cq/2, 
and&, for small Do andp corresponds to the limit U 4 ,  i.e., 
w;, (GI) = W'~"(G')], Sp; takes into account its change due to 
the smearing of the peak Ice, l 2  in the heterogeneous state, 
and 6p; is due to the shift of this peak, caused by deforma- 
tion of the ordered regions ug(i, j = x ,  y, z). In the formula for 
Sp;, the limit in the second term corresponds to the larger 
size of the particles Bo (at a givenp and under the similarity 
transformation of the structure). This term is approximately 
[neglecting the dependence of Sw,(q) on Do] proportional to 
l/Do and takes into account the need for subtracting the 
contribution Sp; to the surface energy, which is already in- 
cluded in the so defined singular part of the term yS in (1 1). " 

Equations (1 1 )-( 13) determine Ap as a function ofp, q,  
and c. In the equilibrium state 

(AT)  >0, min A q 4 ,  
(14) 

where S2(Ap) is the second variation of the funciton Aq, (p ,  
S,C). 

3. UNCORRELATED ORDERED REGIONS 

We consider first the simplest case, when the ordered 
regions are not distorted and the function Sw2(q) + 6w2( - q) 
is sufficiently small. In this case one can neglect the terms 
Sq,; and Sp; in (13), and the heterogeneous state gains elec- 
tron energy only because of the term Sp;, which does not 
depend on the location of the ordered regions, i.e., the or- 
dered regions can be regarded as un~orrelated.~' The positive 
(if y > 0) contribution yS to A p  can be decreased by increas- 
ing the dimension of the ordered regions D,. The growth of 
Do, however, is limited by the fact that the difference 
between wf(G') for the ordered regions and for the homogen- 
eously-ordered crystal manifest themselves only at small 
Do 5 D G, when the additional potential produced by the or- 
dered regions can be regarded as a small perturbation. If, 
however, the ordered regions are large, the wave functions in 
their volume are the same as in a bulk crystal, and Sw, = 0. 
Using the known estimates of the region of applicability of 
perturbation theory, (see $45 in Ref. 18), we can find that for 
the equal-axis particles 

where d is the lattice constant, i.e., D; -(5-10)d. The con- 
siderable decrease of awl for ordered regions of noticeably 
large size makes their formation unlikely. 

At sufficiently small Do and a s p 4  in formula (13) we 
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have u;,, = w'," and w;,,(G1) corresponds to U,, 
= v,, lq/2. For a qualitative estimate of the dependence of 

Sw, on p we can put U,,, = p U,, . In the case considered 
Sp:/p and $(c, p, q)  in (1 1) are then minimal as p 4 .  The 
quantity $(c, q, 0) decreases with decreasing temperature 
and is lower than the temperature T;, for which 

according to (1 I), Ap < 0, and the heterogeneous state is 
thermodynamically favored. The temperature T; can be 
considerably higher than the point To of transition to the 
homogeneous ordered state [at which A p  = $(co, q, I)]. For 
example, for a solution with structure Ll,, which has flat- 
tened spherical sections of the Fermi surface, at the values of 
the parameters 

(i.e., = 0. lk,, Sk, = kF/40), we have according to (6)-(8) 
and (13) v&, ~ 0 . 0 6  eV. Such an increase of the effective 
ordering energy raises at $%c 1 yl/Do the point T; to z 600 
K above To even in the absence of other factors that stabilize 
the heterogeneous state (see below). When the temperature 
drops below T; a decrease of IC, leads to a continuous in- 
crease ofp from the valuep = 0. However, allowance for the 
term Sp; together with Sp; makes correlation between the 
particles energywise favorable at considerable p, and can 
lead to a jumplike change ofp at the point T = T;. 

4. ROLE OF CORRELATION OF ORDERED REGIONS 

If the function Gw2(q)qp2 is not small, the correlation in 
the arrangement of the ordered regions becomes significant. 
The role of the correlation is particularly large in the case 
considered below, when G' lands in the region where the plot 
of w(k) has negative curvature, so that Sw,(q) > 0 and Sp; 
< 0. Choosing in suitable fashion the arrangement and the 
phases of the particles, it is possible to split the peak IcG, 1 by 
increasing 1Sp; I and lowering in this case Sp:. 

To estimate the value of 6p; we use a model in which 
the ordered regions are periodically arranged in space (the 
role of nonperiodicity will be discussed below). In such a 
model, only p(q) with q = q, differ from zero, where q, cor- 
responds to a lattice of ordered regions, and the integral with 
respect to q in (13) reduces to a sum over q,. By way of 
example we consider solutions with fcc lattices and with con- 
centrations in the region co=. 1/4, which have in the ordered 
state an L1, structure (Cu,Au). Four types of ordered re- 
gions of such a structure are possible, with the following 
different shifts 

and with corresponding phases @ = G1.d. Analysis shows 
that a three-dimensional periodic structure of ordered re- 
gions usually leads to a smaller value of 6p; than a one- 
dimensional one. It has cubic symmetry and an identical 
number of ordered regions with different phases in a cell. 

We assume that a cubic cell with edge length D contains 
Y' ordered regions of cubic shape with edge lengths Do. It 
follows from (12) that the nonzero p(q, )s(q, ) and the corre- 
sponding q, are defined by the formulas 

where lei 1 = 1 and e, 11 (loo), while ni are integers deter- 
mined by the structure. Thus, if the ordered regions form an 
fcc lattice (Y' = 4) consisting of four simple cubic lattices 
with different d, then Sp; is a minimum when the sublattices 
(OOO), (D /2, D /2, O), (D /2,0, D /2), and (0, D /2, D /2) corre- 
spond to shifts dl, d,, d,, and d,. In this case, e.g., in the 
vicinity of the site G' = (1 lo), the numbers n, and n, forp(q, ) I 

+O  should be even, while n, should be odd (or vice versa). 
Assume for the sake of argument that the vectors 

G + G'(110) are close to 2kF (as in alloys based on copper), 
and assume that 6w2(q) have sufficiently sharp maxima and 
almost constant values max Sw,(q) on large sections of 
planes or cylinders perpendicular to the vectors f kF and 
located at a short distance ko away from the site G'. This 
makes it possible to retain in the integral (sum) (13) only 
terms for which q, land on the indicated surfaces. For an fcc 
lattice of ordered regions with different d, these terms corre- 
spond to the sets (n,, n,) = (1,O) (2, - 1) ... with n,  + n, = 1 
for a plane, or to the pair (1,0), (0,l) for a cylinder and any 
even (or odd) n,, with 6p; a minimum at v"lr/Dzk,,. Sum- 
ming in (13) over such q, with allowance for (17), we retain 
only the rapidly varying part 6w2(q)~6wY'(q) with peak 
height W (the contributions of the smooth part in the two 
integrals in (13) cancel out) and include the second integral of 
(13), which is proportional to S, in the surface energy yS 
(without changing thereby the designations y and 89,). As a 
result we find that in this case 6p2, p, S, and D are given by 

f 2  (x) =2 sinz nx, p=v'x3, S=Gv'ID, ~ = v % / k ~ ,  

where the functions f,(x) and f,(x) correspond respectively to 
plane and cylindrical sections of the Fermi surface. 

The quantity ISp,l takes on somewhat smaller value if 
thesublattices (OOO), (D /2, D /2, O), (D /2,0, D /2), and (0, D / 
2, D /2) correspond to the shifts dl, d,, d, and d, [the numbers 
n, and n, for the site G + G' = (1 10) are then even or odd], 
but in this case D is doubled, i.e., the surface energy is de- 
creased. In this case we have 
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sin' nx 212 n 
fz (x)= - D = - ,  

naxZ ' ko 

Equations (18) and (19) describe also the case of a cubic 
lattice of ordered regions, consisting of four bcc sublattices 
with different d. It must only be taken into account that in 
this case Y' = 8. Just as in the case of uncorrelated ordered 
regions, Eqs. (18) and (19) for &, are valid only at Do < D A in 
the region of applicability of perturbation theory. When Do 
exceeds DA (15) noticeably, the wave functions of the elec- 
trons inside the ordered regions (with the exception of the 
subsurface layer) become the same as in the bulk crystal, 
thereby weakening greatly the interaction of the ordered re- 
gions. Formally this corresponds to a considerable decrease 
of f,,2 (x) at x = DJD > D &/D. 

Although the expressions presented for 69, were ob- 
tained for a model of a periodic structure of ordered regions, 
actually practically the same gain in electron energy can be 
obtained by establishing a short-range order of the ordered 
regions. It suffices only for the function Ic, l 2  (12) to have a 
sufficiently sharp peak with a width less than k,. If, e.g., the 
short-range order of the ordered regions can be described as 
an aggregate of small quasicrystals of a lattice of ordered 
regions with dimensions 20, and D is connected with ko by 
Eq. (19), then the width of the Ic, I 2  peak amounts to kd3. 
An even sharper peak is obtained in the paracrystal model.19 
This means that if the Sw2(q) peak is not very sharp, then the 
difference Sq,; for long- or short-range order of the ordered 
regions is small. Therefore the heterogeneous state corre- 
sponds apparently to a short-range order in the arrangement 
of the ordered regions. The considered example of negative 
curvature of wl(k) in the region ~ z G '  (i.e., W >  O), the neigh- 
boring ordered regions should be in antiphase. If, however, 
the curvature of wl(k) is positive (i.e., W <  0), then they have 
identical phases. 

5. ANALYSIS OF THE HETEROGENEOUS STATE 

Equations (1 I), (13), (18), and (19) specify the value of 
Aq(c, q, p). By determining the equilibrium concentration 
c = ~ ( q ,  p) in the ordered regions from the condition dAq,/ 
dc = 0, we can represent Aq, as a function of q and of 
p = v'x3: 

Here $(q,p) = $[c(q,p), q,p], and y depends on the distance 
6 between the edges of the neighboring ordered regions, i.e., 
onp (the mutual approach of the ordered regions hinders the 
spatial relaxation of the order and of the composition), in- 
creasing strongly at 6-d (usually D-Sd, i.e., at Y' = 4 we 
h a v e 6 ~ 4 d  a tp  = 1/16 andS=: 1.5d a t p  = 1/4). 

The dependence of $(q,p) + 6y/xD on q is described by 
curves of the type shown in Fig. 1, while the negative term in 
(20) depend quadratically on q and lead to an additional con- 
tribution to the ordering energy. They lower the resultant 
plots of Aq, against q (for a given p). Just as in the case of 
ordinary homogeneous ordering, at sufficiently high tem- 
peratures $is large, Aq, > 0 at a!lx and q, and the heterogen- 

eous state is thermodynamically not profitable. However, 
starting with a certain temperature T 4, at which the Aq,(q,p) 
curve for the optimum valuep = p, touches the abscissa axis 
at the point qO- 1 (as the curve does for T = T, in Fig. l), we 
have minAp(0 and the heterogeneous state becomes the 
thermodynamically equilibrium state. 

Inasmuch as at smallp we have K, = K 'P) - K ?'p2, and 
f (x) c (or f (x) cp2l3), a finite fraction of ordered regions 
appears in the model with correlated arrangement of the or- 
dered regions and K, > 0 (in contrast to the case K, = 0) even 
at T = TA. Therefore the transition into the heterogeneous 
state should be regarded as a smeared-out (owing to the finite 
dimensions of the ordered regions) first-order phase transi- 
tion. The value of p, is determined by the relation between 
K y', K,, D -'dy/dp, and dx/dp. A typical estimate ofp, is 
the interval3' po-0.05-0.2. The distance between the or- 
dered regions is a maximum (i.e., yS is a minimum) in the 
considered fcc lattice of ordered regions with different 
d(vi = 4), and in the region TZ TA such a lattice apparently 
describes a heterogeneous state at K, > 0. 

With decreasing temperature, x decreases, Aq, can be 
negative at larger p, and as seen from (20) the minimum of 
Aq, corresponds to ever largerp and q. When the value of tC, 
decreases strongly noticeably below TA (and can then be- 
come negative), the growth ofp is limited only by the strong 
increase of y at small 6, by the decrease of K,( p), and by the 
growth of $ withp, so thatp can reach values - 1. It becomes 
thermodynamically more profitable in the region p- 1 to 
have a short-range order of the ordered regions, which corre- 
sponds not to a lattice with v' = 4 (andpg 1/2) but to a more 
closely packed lattice with v' = 8 (and p( 1) or to a layered 
structure. The transitions between the structures with differ- 
ent short-range order of the ordered regions or with different 
D should be regarded as smeared first-order phase transi- 
tions. 

After reaching a certain temperature To, at which 

A9 (rl, P) =Wo, qo, l )  =.cp (co, qo) -q (co, 0), (21) 

the solution goes over into a homogeneously ordered state 
with an order parameter q0 less than r]. For systems with 
p(T0)41, the points To determined by the usual equilibrium 
condition (in the absence of a heterogeneous state) p(co, 
r ] )  = p(c,, 0) and by the condition (21) are close. If, however, 
p(To)- 1, then (21) leads to noticeably smaller To. 

At large K,, K2, and K3 the interval of the existence of 
the heterogeneous state T; - To can be sufficiently large 
and comparable in order of magnitude with To. For example, 
estimating K, for the alloy Cu3Au and assuming that its Fer- 
mi surface is the same as that of copper, we can find that 
v&,~0.01  eVatE, = 7eV, u,, = 1 eV, andSK, = 0.05 k ,  
[exact estimates of u,, and K,, K,, and K3 are made difficult 
by the insufficient information on the wave functions of the 
electrons and by the smearing of the Sw,(q) peak]. Using the 
results of the calculations of P (k) for Cu (Ref. 9) we can ob- 
tain the estimate f(x)-,0.02-0.03 eV at x--,1/4. The 
quantity k,, connected with the deformations in the ordered 
regions, e.g., at u, = - 0.03, amounts according to (13) and 
Ref. 9 to4' ~ 0 . 0 2  eV. All these factors act in the same direc- 

210 Sov. Phys. JETP 57 (I), January 1983 M. A. Krivoglaz 210 



tion and, jointly with the effects that are caused by the in- 
homogeneity of ~ ( r )  and c(r) in the ordered regions, can lead 
to values Tt, - To=: 800-1000 K (To = 667 K in Cu,Au). 

The type of local order in the ordered regions above To 
is not necessarily the same as at T <  To. Thus, in the ordered 
regions of an AB, solution, owing to the redistribution of the 
concentration, the local order can correspond to the struc- 
ture L1, (with large ISp: I), or a mixed heterogeneous state 
can arise, containing ordered regions of the type both L1, 
and Ll,. At sufficiently large p and 7, owing to the third- 
order terms in the expansions of Sp: in terms of v, /EF,  the 
stable regions may turn out to be those with structure DO,,, 
having vectors G' of the type (1 LO) and (010) (the triangle 
made up of the vectors (1 4 O), (1 4 O), and (010) is almost 
inscribed in the Fermi surface; see footnote 1). 

The small ordered regions should lead to certain singu- 
larities of diffuse scattering of x rays in the vicinity of the 
sites G', e.g., to the appearance of "crosses" of four maxima 
in the directions [loo] and [OlO] near the (1 10) site for the 
structure of the ordered regions corresponding to eq. (18), or 
of two maxima in the [I101 direction for the structure of 
ordered regions corresponding to (19). These singularities 
were observed experimentally in Cu-Au (Refs. 20 and 1). It 
appears that the foregoing results make it possible to explain 
the general picture of the distribution of the scattering inten- 
sity, to understand the physical nature of the heterogeneous 
state observed in diffraction and electron-microscopy inves- 
tigations of a number of ~ ~ s t e m s , ' . ~ * ~ '  to obtain correct esti- 
mates of the sizes of the ordered regions, to explain the type 
of the resultant local order (Ll,, Ll,, and DO,, in Cu3Au, 
Ref. 1) and the ratios of the phases of the neighboring or- 
dered regions, as well as the large temperature interval of 
existence of the heterogeneous state and the presence of 
smeared-out phase transitions To < T < Tt,, connected with 
the restructuring of the local order and of the structure of the 
ordered regions. ' 
6. HETEROGENEOUS STATES IN DISPLACEMENT-TYPE 
PHASE TRANSITION 

In a number of transition-metal solutions with bcc lat- 
tices, a first-order phase transition takes place with forma- 
tion of a trigonal w phase on account of the displacements of 
pairs of atomic planes of the (1 11) type relative to one an- 
other, by a distance u,=fid /12, while each third plane re- 
mains immobile. They can be described by a static displace- 
ment wave2, 

u,=u, sin (GfR,+@) , uollGf= (2nld) ( '13 ' 1 3  ' /J) ,  (22) 

where the phase shifts @ = 0, 2n-/3, and 4r/3 for the three 
possible subvariants of the w phase differ in the numbers of 
the undisplaced atomic planes 3n + 0, 1, 2. 

In a certain range of compositions, in place of the homo- 
geneous w phase there is produced a heterogeneous state 
containing alternating sections o f0  and bcc phases.3" When 
explaining its existence, Cookz3 has advanced an interesting 
idea that an important role is played by the slight incommen- 
surability of these phases, which leads to modulation of the 
displacement wave. In the local theory, however, this factor 

is by itself insufficient for the appearance of the observed 
amplitude-modulated heterogeneous state in place of the 
phase-modulated structure that contains only ordered do- 
mains of different sub~a r i an t s . ' ~ .~~  

The existence of the observed heterogeneous state can 
be understood by taking into account the nonlocal effects 
considered above, which are of quantum origin and are due 
to the very strong dependence of the electron energy wl(k) at 
k = G'. (Such a dependence was obtained in numerical calcu- 
lations for the Zr-Nb ~ys t em '~ .~~ . )  

Using a heterogeneous-state model in which the ampli- 
tude u, is constant in the ordered regions (in sections of thew 
phase), we can determine its electron energy from Eqs. (9) 
and (12), in which c, is replaced by the modulus iu, of the 
Fourier component of the displacements, and 67 is replaced 
by uo, as well as taking into account the fact that now v, (r) in 
expressions (4)-(8) for w(k) contains in place of the difference 
V (r - R )  - V - R), as in Eq. (2), the term 
- ieV(r - R,), where e = udu,. Accordingly, 6p: is deter- 

mined by Eqs. (13), in which ( r )  is replaced by u, and s(q) 
correspond to the nonequilibrium form of the ordered re- 
gions (since the symmetry of the problem is lower than cu- 
bic). 

We shall simulate the heterogeneous state by a lattice of 
ordered regions in which both the unit cells and the ordered 
regions themselves are parallepipeds with edge lengths Di 
and Do, = xiD, . At Sw,(q) > 0, the quantity Sp, can be made 
minimal if alternating ordered regions of different subvar- 
iants, with phases @ equal to O , 2 ~ / 3 ,  and h / 3 ,  are placed 
along the axis Z Iluoll[l 111 for the given variant of the w 
phase. For such a lattice, the only p(q) that differ from zero 
are those with q, = q,, whereq, = 2m,/D, (n, = 31 + 1,l 
is an integer). We consider for the sake of argument systems 
in which the bcc phase Sw,(q) has a sharp peak of almost 
constant height Won a large section of the (1 11) plane of k- 
space, located a short distance ko away from G' (in the direc- 
tion away from the origin). It can be connected with the 
flattened or cylindrical sections of the Fermi surface.25v26 
The main contribution to 6p2 is made by the two sites G' 
(1 1 1) and (iii) (U,.G')~ and v,, are noticeably smaller for the 
other G'( 11 1)).  Assuming that in the integral (sum) (13) the 
only important terms are those with n, = 1, for which the q, 
land on the indicated plane, we find that the minimum of Sp, 
is located at D, = 2 ~ / k ,  and is equal to 

Equations (13) for Sp; and Sp; and (23) for Sp; deter- 
mine Sp: and, according to (1 I), also Ap. If K,, Kz, and K3 
are large enough, then minAp < 0 and the heterogeneous 
state is more stable than the bcc phase. In transition metals, 
P (k) in (5) is usually large a n d ~ ( k )  - 1 - 1. Therefore Ef;;(Gf) 
can be greatly increased relative to wrA,2d:, (GI), if the hetero- 
geneous state contains ordered regions that are strongly 
elongated along the [ I l l ]  axis and have thicknesses Do, -d  
and much larger lengths Do=. The sites G' (or G' + 16) for the 
ordered regions are then smeared out into disks of width 
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-r/DOI, as a result of which the average value of 
k = GI2 + k: increases by 1.5-3 times, and u,(k)-k -2 in 
(5) decreases strongly while P (k) remains almost unchanged, 
and it is this which leads to the strong increase of E'~"(G') in 
the heterogeneous state. This increase becomes even more 
abrupt for iit'(G') because Uhd < U,,, at smallp. This factor 
can make the values of K, and )6v,l in (1 3) large, and togeth- 
er with Sp; (23) it stabilizes the heterogeneous state that 
contains elongated ordered regions. We note that for pertur- 
bation theory to be applicable at small Sk, it is necessary to 
satisfy a condition of the type (15) 

It can be seen from (23) that Sp; is a minimum at the 
largest possible x, = 1/3, i.e., at Do, = D,/3. However, the 
dimensions of the ordered regions Do,, and especially Do,, 
and their fraction p, are strongly limited by the indicated 
dependences of Uhet and Z: onp and Do,, by the growth of $ 
withp [see (1 I)] because of the redistribution of the concen- 
tration (this redistribution is quite strong, since usually dT,J 
dc- lo4 K), and also by the abrupt increase of the surface 
energy of the lateral boundaries of the ordered regions as 
they come closer together. The joint action of these factors 
makes the fractionp - lo-' small in the temperature region 
where the heterogeneous state is produced. With decreasing 
temperature, $ decreases and thereforep and the "order pa- 
rameter" uo increase until a transition takes place at T = To 
into the homogeneous w phase. Just as in the case considered 
above, the interval Th - To can be large ( -  1O2-lo3 K), and 
the order in the arrangement of the ordered regions is short- 
rather than long-range. 

Thus, the considered simplified model (which does not 
claim to describe the subtle details of the construction of the 
sections of thew phase and of the transition layers of the bcc 
matrix) provides a qualitative explanation of the physical 
nature and of the general picture of heterogeneous state with 
o-phase particles, a state observed in a number of studies3" 

CONCLUSION 

Various types of heterogeneous states are possible, due 
to the interaction of conduction electrons with inhomogene- 
ities of the order. In semiconducting systems they are the 
result of kinetic factors or of the lowering of the bottom of 
the conduction band and of the redistribution of the elec- 
trons in the region of the changed parameter of the medium, 
while the dimensions of the ordered regions are limited by 
the growth of the Coulomb en erg^.^'-^^ It follows from the 
foregoing results that the heterogeneous states with charac- 
teristic inhomogeneity scales - rlG' - 2kF 1 - ' can arise 
also in metallic systems with G' z2k,, especially if their Fer- 
mi surfaces contain flattened or cylindrical sections. It is 
thus possible to understand the physical nature of the inho- 
mogeneous local order observed in a number of systems with 
first-order phase transitions of the substitution and displace- 
ment type.1d.30.3' 

We note that in liquid metals there can also be realized 
heterogeneous states consisting of small ordered crystal- 
structure regions (not necessarily the same as in the solid 
metal), alternating with liquid sections. The factors that low- 
er the electron energy of the heterogeneous state E,, indicat- 
ed in the introduction, should manifest themselves also in 
liquid metals if G ' z2kF  and G ' < 2kF, although to a lesser 
degree because of the spherical shape of the Fermi surface. 
The "splitting" of the G' sites in the heterogeneous state can 
also lower Ee strongly if the minimum of the pseudopoten- 
tial v(k) lies at k z G  ' (as in indium). If the resultant surface 
energy is not very high, these factors can lead to stability of 
the heterogeneous state in a certain interval above Tmelt . In 
liquid alloys, the heterogeneous state should be additionally 
stabilized by the redistribution of the composition. 

I am grateful to Professor S. C. Moss, who attracted 
previously my attention to the problem of heterogeneous 
phase displacements, and to D. A. Vul' for help with esti- 
mates of the electron energy and for a valuable discussion. 

"It should be noted that at not very small v,/E, an important role can be 
played by singular contributions to 6q: due to higher orders of perturba- 
tion theory. For example, the contribution of the third order, while con- 
taining an extra factor v,/E,, has a more abrupt singularity that mani- 
fests itself when the triangle made up of the superstructure vectors G; , 
G;,  and G; is almost inscribed in the Fermi surface. 

"The quantities 6 (w,)(q) and 6w2(q), and consequently also 6p; and 6q;, 
given the function w(k), are related as can be seen from (6)-(8). If we 
neglect the dependence of on k, we find in this example, for the consid- 
ered case when G' lands in the region of small curvature of the function 
wl(k), that 6w1 <O and 6q,; > 0. Usually, however, u t  depends strongly 
on k, so that the interval of small bending of wl(k) can be shifted into the 
region of the minimum of w1(k)/v:, where 6w1 > 0 is a maximum. 

"If K2 is much larger than the other para meters,^, corresponds to the 
maximumoff (x) and, accordingto (18), ifx, < D ;/D, thenx, = 1/2, i.e., 
p, = 1/2. However, if this value of Dx, exceeds D ; (15), the aforemen- 
tioned decrease off (x) at x > D ;/D, owing to the violation of the applica- 
bility of perturbation theory, leads to a decrease of x, (to a value -D ;/ 
D ) and accordingly to a strong decrease ofp,. In addition, if y depends 
strongly on 6 (i.e., onp), Aq, may be smaller (because of the decrease of y/ 
D )if the ordered regions make up a lattice with double the period and f (x) 
is determined by Eq. (19). In this case x, = 1/4 and p, = 1/16. Usually 
K ':I- K,, and consequently (and also because of the increase of f lq ,  p)  
and y with increasingp) the cited values ofp, should even decrease. 

4'In elastically isotropic crystals, the local redistribution of the atoms does 
not change the elastic energy, and the strain u, = Tv; '(dvddc)(c - c,) 
(where r=2/3)  is determined only by the change of the concentration in 
the ordered region itself. In real elastically anisotropic crystals, appre- 
ciable strains of the ordered region can be due to the change of the con- 
centration in the disordered matrix at the boundary with the ordered 
region. Particularly favorable from the point of view of lowering 6q: in 
Cu,Au is the appearance of ordered regions with L1, structure on the 
boundaries of the ordered regions with L1, structure. They lead to con- 
siderable strains of the ordered regions Ll.. which have the reauired 
sign. Such configurations were observed inbexperiment.' We ndte that a 
considerable redistribution of the concentration. which facilitates the 
heterogenization, can be particularly easily reached near a two-phase 
region on the phase diagram. 
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