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Account is taken of parity nonconservation; exchange interaction of ions with electrons leads, in 
crystals with magnetic structure, to spin-dependent long-range forces between the ions. The 
energy of the P-odd interaction reaches - 100 Hz for rare-earth crystals having a helicoidal spin 
structure. The possibility of observing parity nonconservation in these crystals, as well as in Bloch 
domain walls in ferromagnetic films, is discussed. 

PACS numbers: 75.30.Et, 75.25. + z, 75.70.K~ 

1. INTRODUCTION 

In our preceding paper, in which P-odd Van der Waals 
forces were considered, it was noted that a parity-noncon- 
serving interaction between the ions splits the energies of 
crystals with right- and left-hand helicoidal spin structures. 
This effect, which is the analog of the energy difference 
between right and left molecules (or crystals), is due to weak 
interaction, a phenomenon discussed earlier many times, but 
not yet observed in experiment. The present paper is devoted 
to a theoretical investigation of effects of parity violation in 

nent a i o ~ g  the hexagonal axis, and the anglea, depends little 
on temperature and is close to 30". The phase transitions 
''ferromagnetic helix-simple helix" and "simple helix-para- 
magnet" in holmium are not accompanied by a change in the 
spatial lattice. The electronic structures of the holmium 
atom and ion are 

HO: (4fii6s2) 4 ~ t ~ , 2  

Ho3+: (4fi0) ' I 8 .  

The spin of the most abundant isotope 165Ho is 7/2. 
magnetically ordered crystals. Even though parity noncon- 
servation in atomic ~henomena has been reliablv established P-ODD VAN DER WAALS INTERACTION OF IONS 

by now in experiments of various groups,24 observation of The energy of the P-odd Van der W a l s  interaction of 
P-odd effects in crystals would undoubtedly be of great two identical ions with angular n~Omnta J sewrated by a 
scientific interest. distance R is written in the form': 

A helicoidal spin structure is encountered in alloys and U(R) =U, (Rf f Ut (R) , 
compounds containing elements with unfilled d or f shells 
(MnO,, TbMn,, Ce,Fe,,, and others), as well as in the rare- 

N[JixJzl 1 U,(R) = 4-- 
R5 2ni 

J a a .  (1) 
earth metals Dy, Ho, and Er.5 A helicoidal spin structure is 

N ,  possessed also by domain walls in ferromagnets. We shall U, (R) = 2ekni, 
show below that the main contribution to P-odd effects is R 

made by exchange interaction of conduction electrons with 1 

ions. Inasmuch as no such interaction takes place in dielec- 
x(6, . -3~,~.)  ~ 1 : '  Q::' -j at (o)  j3, (a) o do, 

2nz 
trics, the P-odd effects in them are much smaller than in where 
metals. Although one cannot exclude the possibility that ob- 
servation of the phenomena in question in dielectrics can N= (Ri-R,) / I Ri-R, j ; Q , k ~ l , ~ k + ~ k ~ , - 2 / ~ 6 r k ~ ( l + ~ )  ; 

nevertheless be simpler, we confine ourselves to metals. a, (a), a, (a), P, (w), and B, (o) are the vector and tensor P- 
When discussing actual mechansims of P-odd interac- 

even and P-odd polarizabilities of the ions, such that 
tion of ions in crystals, all the numerical estimates will be 
made for holmium. The advantages of holmium crystals are a*((0 =a, (o)  6,k+i~,kvJ,a,(o) + Q l k a t  ( a ) ,  
the stability of the helicoidal structure at low temperatures, (2) 

8 t h  (63) =iP. (o) ~ t k + ~ t k r ] r ~ o  ( a )  +iQt.+Bt ( a ) ,  
the rather large charge of the nuclear (Z = 67), as well as the 
large momentum that forms the helix. Therefore, the P-odd a,(@) and P,(w) are the scalar ~olarizabilities, while the Po- 
energy of the holmium ion is larger than, say, of dysprosium larizability tensors a,, (a) and p,, (w) can be represented in 
or erbium. the form 

The structure of metallic holmium is the following6: the 
triply ionized Ho3+ ions are localized on sites of a hexagonal 
close-packed lattice (a = 6.77, c = 10.62 a.u.). At a tempera- 
ture lower than 132 K the magnetic moments of the ions 
located in the same basal plane lie in the very same plane and 
are parallel to one another. On going in succession from 
plane to plane, the moments are rotated through an angle a, 
that depends on the temperature. Below 20 K the magnetic 
moments of the ions acquire a small ferromagnetic compo- where d and p are the electric and magnetic dipole moments 
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of the ions: on, = En - Eo; Eo and En are the energies of the 
ground and excited states. 

In the calculation of the sums (3) and (4) we shall de- 
scribe the excited single-electron states (n) of the ion in the 
crystal by plane waves. Arguments favoring this approxima- 
tion are the following. In the orthogonalized plane wave 
method we have 

where Ik ) is a state with a given momentum, and (A ) are 
occupied electron states. In the matrix elements of interest to 
us 

Iil ) = 14d ) predominates in the sum overil, and the numeri- 
cal calculations using the Hartree-Fock wave functions of 
the holmium atom" show that 

in a wide range of (k(  (see Fig. 1). 2) It is this which enables us 
to use for In) simply plane waves with k > k,. 

We begin with calculation of the vector polarizability 
a, (w) of the ion in the crystal. It receives contributions only 
from the electrons of the unfilled shell 4f7,2. Substituting in 
(3) the relation 

(m is the electron mass; we use a system of units in which 
f i  = c = I), summing over all the f,/, electrons and integrat- 
ing over the orientation k, we obtain 

where a = 1/137; j and 1 are the total and orbital angular 
momenta of the electrons; m* is the effective mass; 

c4 

I,[ (k)= J ~ j l  ( r ) j l  (kr)? dr, (6) 
0 

j,(kr) is a spherical Bessel function and Rj,(r) is the radial 
function of the 4f electron. In the derivation of (5) it was 
taken into account that the Fermi energy is reckoned in 

practice from Eo. As o 4  the vector polarizability of the ion 
is 

where a, = l /ma is the Bohr radius, Ry = ma2/2 is the 
Rydberg constant, and the integral is already in dimension- 
less variables. 

It  is much more difficult to estimate the P-odd polariza- 
bility Pik(w), which differs from zero only when account is 
taken of the weak interaction of the electrons with the nu- 
cleus. For the vector and tensor components of interest to us, 
these electrons should belong to an unfilled shell, in this case 
f. The weak interaction of an electron with a nucleus is, how- 
ever, local in character, proportional to p8 (r), and leads to 
mixing of only sIl2 and pIl2 electrons (see, e.g., Ref. 7). 
Therefore the functions P, (o) and 6, (w) differ here from zero 
only because of the mixing of the configurations. The rela- 
tive magnitude of this mixing is J /Ry - 10-1-10-2. If we 
consider thef-shell P-odd polarizability that results from the 
admixture of thes andp configurations, it can be easily seen 
that fib, (0) can appear only in second order in J /Ry on ac- 
count of diagrams of the type in Fig. 2a. Here Vis the opera- 
tor of the interconfiguration interaction and Wis that of the 
weak interaction. A more substantial contribution to P,(o) 
comes therefore from the inner s andp shells that are polar- 
ized by the interaction with the outer f shell. This interaction 
need be taken into account only once, and this leads to dia- 
grams of the type 2b. However, since this mechanism is lin- 
ear in thef-electron spin, it contributes only to the vector P- 
odd polarizability of the ion. 

Thus, compared with the P-even vector polarizability, 
the P-odd one of a rare-earth element contains an additional 
small quantity 

where G z  10-5mp-2 is the Fermi constant of the weak in- 
teraction, R -- 5 is the relativistic factor of enhancement of 
the weak interaction of the electron with the nucleus (see its 
definition in Ref. 7); we neglect here the difference between 
m* and m. As for the tensor polarizability fi,(o), it depends 
quadratically on the factor J /Ry.  In addition, owing to the 
intermediate position of the elements of interest to us (Dy, 
Ho, Er) in the series of rare earth elements with unfilled f7,, 

shell, their quadrupole moment is small, and even zero for 
holmium. The result is an additional smallness of the tensor 
polarizabilities, both P-even and P-odd. 

We proceed now to the numerical estimates. We use, as 
already noted, the Hartree-Fock wave functions for the hol- 
mium atom. The result of the numerical calculation of the 
integral (6) as a function of k is shown in Fig. 3. As a result 
the polarizability of the holmium ion does not exceed its 
estimated value and for small o we have 

FIG. 1 .  Dependenceof (4f lrlk ) (solid1ine)and (4f jrl4d ) (4d I k ) a, ( a )  <aB3a/Ry .  
(dashed line) on k. The arrow marks the position of k, in the free- 

(9 )  

electron model. But then even an optimistic estimate yields for the interac- 
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E l  M I  
FIG. 2. Onset of P-odd vector polarizability of a rare- 
earth ion. 

Filled 
shell I 

I E l  MI 

tion of two ions crystal. For heavy rare-earth elements the exchange integral 
GZ3Rm2a4 I J is positive and amounts to - lo-' of the Fermi energy E,. 

U, - -Ni2LJ,~ 1 2 1  ($)5 RY. 
n RY 12 

(lo) In second-order perturbation theory the operator (12) leads 
- to the following interaction between two ions (see, e.g., Ref. 

The energy per ion in the crystal is in this case 6) 

2 where 
amountingforHo(Z=67;Rz4/5; IJI =8;J/Ry-0.l)to 

d sinx xi,=2kFlRi-Rjl, ~5 (2)-j1(x)/x2, jl (x) = --- 
E,-10-i6-10-'7Ry-0.1 Hz. dx x ' 

This is much less than the estimate of Ref. 1. The discrepan- 
cy is explained by the following factors. First, in contrast to 
the scalar polarizability, a contribution to which is made by 
all the electrons of the ions, so that a, - lo2 a;, the vector 
polarizability [see (9)] does not contain a large contribution 
and receives contributions only from the unfilled-shell elec- 
trons. Second, the features of the construction of the electron 
shells of the elements, among which helicoidal spin struc- 
tures are encountered, lead to the necessity for including the 
interconfiguration interaction, so that an additional small- 
ness is added to the P-odd polarizability. Going from f to d 
metals does not eliminate this smallness. 

3. P-ODD EXCHANGE INTERACTION OF IONS. FIRST ORDER 

Fortunately, there are more effective mechanisms that 
lead to P-odd long-range action of an ion in a crystal. They 
are connected with the indirect exchange interaction. We 
shall use the simple indirect-exchange, model proposed by 
Ruderman, Kittel, Kasuya, and Yosida (RKKY).*-lo The 
spin-dependent exchange interaction between a conduction 
electron and the electron of the unfilled ion shells is de- 
scribed in this model by the operator 

where s is the conduction-electron spin; Si is the spin of an 
ion located at the point Ri; V, is the volume per ion in the 

FIG. 3. Dependence of J,,,,, on k. The arrow marks the position 
of k, in the free-electron model. 

j, ( x )  is a spherical Bessel function, n is the number of conduc- 
tion electrons per ion, and k, is the Fermi momentum. The 
onset of stable spin helices in crystals with helicoidal struc- 
ture is due precisely to this interaction (Refs. I 1 and 12).3' We 
note that it decreases with distance between the ions much 
more slowly (aR -3) than the Van der Waals interaction 
(aR -6). 

Let us find the crystal-energy correction necessitated by 
the interaction (12) and by the weak P-odd interaction 
between the conduction electrons and the ion nuclei. It is 
convenient to use in these calculations the nonrelativistic 
limit of the P-odd weak interaction of the electron with the 
nucleus, whch we write in the form (see, e.g., Ref. 7) 

W (r) = - z {Zn [ (w). 6 (r-Ri) 1 + 
2'" 2m 

+ ixr[[Iio1p, 6(r-Ri) I-}. (14) 

Here [ ] - and [ ] + denote respectively the commutator and 
the anticommutator, p is the electron-momentum operator, 
and I, is the nuclear spin of the ion at the point R,. In the 
dimensionless constant 2, for the first structure the large 
factor Z was actually separated to emphasize that the con- 
stant increases with increasing number of nucleons in the 
nucleus. In the standard weak-interaction model, q z  - 0.7 
for rare-earth elements. We note that x and K' are numerical- 
ly small in the same model. 

We shall now regard the conduction electrons as free 
having an effective mass m*, and filling in momentum space 
a sphere of radius k,. 

The correction to the energy of an electron with mo- 
mentum k and with spin projection u is linear in Vand Wand 
is obviously equal to 
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The total correction E (1) to the crystal energy is obtained 
from this expression by summing over k, I kl < k,, and over a. 
From invariance considerations it is clear that the structure 
of the pseudoscalar correction should be 

[IiX SjIRijj(Rij) - 
i j 

- - 

Therefore the first, leading term in (14), which is proportion- 
al to Z but is independent of I i ,  makes no contribution to this 
correction. The term with x in the operator (14), a term inde- 
pendent of the electron spin, obviously also drops out upon 
summation over a and a'. Simple calculations yield in the 
upshot 

2Gx' m' E'i' - ,- 

- 

exp (-i(k'-k)r) 

I j  

(16) 

Integrating with respect to k and k' and introducing the fac- 
tor Z 'R that takes into account the difference between the 
conduction electron density at the nucleus and the average 
density over the crystal, we obtain hence 

Rij d# (xij) 
( k ~ a ) '  ~ y . 3 n z  [ I i~~ j ] - -  

Rii dxii ' 

~ c c o u n t  was taken here of the obvious relation V,k; 
= 377%. We recall that, as can be seen from (17). The inter- 
action between two ions decreases at large distances ( k , a  1) 
like r-3 sin (2k,r). 

If the hyperfine coupling is assumed unbroken, the in- 
teraction energy of one nuclear spin, obtained from (17), 
equals 

For a rough numerical estimate of the result we replace 
the summation over the lattice sites by integration over all of 
space. Expression (1 8) reduces then to 

Besides changing to integration, we have neglected here the 
small ferromagnetic component S and confined ourselves to 
the first order in the parameter adk,c, which is indeed very 
small. Numerical summation over the lattice sites leads to a 
result that is approximately twice as large as (19). Substitut- 
ing in (19) the experimental values (Ref. 6, p. 260 of Russ. 
transl.) J z 0 . 7  x lo-' Ry and m* -- 3m, which correspond to 
the free-electron model (k,a, z0.75), we obtain when ac- 

count is taken of the aforementioned correction from the 
numerical calculation4' 

We note once more that in the standard weak-interaction 
model the constant x' is numerically small. 

Generally speaking, in this same order there could arise 
one more correction to the crystal energy. We have in mind 
the Fermi-surface deformation, which is different for oppo- 
site spin orientation and is due to the perturbation of V, with 
subsequent allowance for W. Conversely, W would deform 
the Fermi surface, and then V would be taken into account. 
In our case, however, there is no such correction. Indeed, the 
sums over the "exchange" and "weak" sites factor out here, 
and then it becomes simply impossible to construct a pseu- 
doscalar that is invariant to translations. This eliminates, by 
the same token, the problem of the relation between this 
contribution and the usual second-order correction (see 
Refs. 10 and 13). 

4. SECOND-ORDER EFFECT IN THE EXCHANGE 
INTERACTION 

In first-order perturbation theory in the exchange inter- 
action (12) the first leading term in the P-odd Hamiltonian 
(14), which increases with the number of nucleons in the 
nucleus, has dropped out. One can hope therefore that in 
second order in V the small quantity J /Ry will be offset by 
the factor Z. The corresponding correction to the crystal 
energy is 

E ( ~ ~  = ( 2 r n . ) ' E  { Z  [ (kolVlk'of> (k'o'l Vlk"a") (k"aUl Wlko) 
(kz-k'z) (kA-kf'2) 

Ikl<b, k'k" 
(I .'.*' 

It is easy to show that the terms proportional to x and x' in 
the operator W do not work in this approximation. Next, the 
diagonal matrix element of the remaining term Won the true 
stationary states of the electron states in the crystal (standing 
waves, there are no current states in our problem) is obvious- 
ly zero. This allows us to leave out immediately the last term 
of (21). As for the remaining terms, it can be easily verified 
that in the limit of large crystal dimensions it is possible to 
use traveling rather than standing waves, a technically much 
more convenient procedure. 

The next-to-last term in (21) can differ from zero only in 
the presence of a ferromagnetic component, when 
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After summation over the momenta and spins, however, the 
answer for the term in question should, from invariance con- 
siderations, be of the form 

It can be easily seen that by virtue of the symmetry of the 
problem summation over s causes this expression to vanish. 

For a similar reason, the contributions made to the en- 
ergy by the deformation of the Fermi surface, similar to 
those discussed at the end of the preceding section, also van- 
ish. 

As a result, the correction to the crystal energy reduces 
to 

XZ [S.SJ] {(kl+k) exp (ikr'RiJ-iktR,.+ikR,.) - (kl+k") 
11s 

Xexp (-ikRfj+ik'RiI-ikURj.) + (kfk") 
- .  

X exp (ik'R,-ikR,,+ikNR,.)). (23) 

Besides the constant Z,,  we have taken directly into account 
here the already mentioned factor Z 'R connected with the 
difference between the conduction-electron density near the 
nucleus and the density averaged over the crystal. Without 
further approximations it is impossible to calculate the sum 
(23) analytically or even numerically. 

We consider therefore first the contributions from the 
terms with s = iand s = j. The corresponding energy correc- 
tion takes the form of a sum of two terms: 

When calculating the first of them, we encounter in the inte- 
gration with respect to k " the usual divergence in the calcu- 
lation of the correction of second order in the contact inter- 
action. For purposes of regularization, we introduce the 

limiting integration momentum Q, which can naturally be 
identified with the reciprocal radius of the ion f shell. Ele- 
mentary transformations then reduce (24) to the form 

which is quite similar to (17). The corresponding contribu- 
tion to the interaction energy of one spin is 

( 2 , -  GmZa2Z3Rq Q 
Eli - - - 

2% k, 

The sum here is in fact the same as in ( 1  8). Again going from 
summation to integration, we obtain 

E;,~' s5 - GmhZZ3Rq Q Jm' a. 3n 
2.n T(R?\ " X Z  RY. (28) 

Using the numerical value Q=: 1.3~; ' and taking into ac- 
count the correction factor - 2 due to the numerical summa- 
tion, as mentioned in the preceding section, we obtain the 
value of this correction: 

E : : ' ~ I , I . ~ o - ~ '  Rys535 Hz. (29) 

It can be verified that no divergence arises at large momenta 
in the ramaining terms of (23). Therefore, although the ratio 
Q /k, is actually small ( -  1.7), the presence of this literal 
parameter in the obtained contribution suggests that it is not 
fully cancelled out by other terms and can therefore serve as 
a relatively reliable lower-bound estimate of the effect dis- 
cuss&. 

No additional complications are encountered in the cal- 
culation of the contribution (25). A trival integration over all 
k gives for the corrections to the energy of the entire crystal 
E 12' and for the energy of one spin FE' the following expres- 
sions: 

2 2 3 Jm* 3nn2 
E 0)- Gm a ' Rs (-)' Rg.vz [s~xI]' 

2 i  - - 2 '  R y m  
8 

J 

We note that it can be seen from this that the interaction 
between two ions at large distances contains, besides an os- 
cillating part, a nonoscillating contribution that decreases 
like r P 3 .  

For a numerical estimate, the summation over j in (3 1)  
can be replaced by integration over all of space. Neglecting, 
as before, the small ferromagnetic component, we obtain in 
principal order in a, 
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This contribution, which of zero order in a,, stems from the 
aforementioned nonoscillating terms -r-3 in the ion-ion 
interaction. Numerical summation over the lattice sites in 
(3 1) leads to a result smaller by 15-20%. This contribution is 
thus 

E::'= 1.6.10-" Rp50 Hz. (33) 

Finally, to estimate the contribution made by the terms 
withs#i,jto thecorrection (23) for the crystal energy E (2), it 
is convenient to proceed as follows. We "smear out" the 
weak interaction over the entire crystal: 

The eigenfunction of the Hamiltonian obtained in this man- 
ner 

is equal to 

and the eigenvalues for the true stationary states of the 
standing waves (see above) remain unchanged: E, = k 2/ 

2m*. The correction to the crystal energy in second order of 
perturbation theory in V with the functions (35) -- @)=C (k; I I; I k'a') (k'a' I V 1 G) 

ex - eke  
(36) 

kk' 
00' 

is easily transformed into 

Here again, account is taken of the additional factor Z 2R, 
which was discussed above. The corresponding correction to 
the energy of one ion is 

lm' 3n Rij ( )  ~ ~ . ~ z  [Si~SjI-xij+ (3.j) (38) 
j 

Rij 

It is clear therefore that the longest-range part of the P-odd 
potential between two ions depends on the distance between 
them like r-2 cos (2kFr). 

For a rough numerical estimate we replace the summa- 
tion over j by integration over the spherically symmetric re- 
g i o n ~ > ~ , .  Putting in the expression obtained in this manner 

(39) 
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andx, = 2kFRo, where R, is the minimum distance between 
the ions, we obtain E r'=: - 0.8 Hz. Numerical summation 
over the lattice sites in (38) leads to the large result. 

E:f'= -3 Hz. (40) 

Thus, with allowance for (29), (33), and (40), the P-odd cor- 
rection to the ion energy in the crystal amount to 

E:" = E : ~ ) - I - E ; : )  +~: f )  -80 Hz. (41) 

Of course, this result, obtained within the framework of a 
rather crude description of the electrons in the crystal, is 
apparently only an order-of-magnitude estimate. 

It  is curious that in the employed free-electron approxi- 
mation the sign of the effect is uniquely determined. In the 
standard weak-interaction model (where q < 0) the left-hand 
spin structures are favored in energy over the right-hand 
ones. 

We emphasize once more that E depends only on the 
sign of the spin rotation angle a,, but not on its absolute 
value. It is precisely because of the absence of the small pa- 
rameter adck ,  that this contribution predominates in (41), 
notwithstanding the unfavorable remaining numerical fac- 
tors. 

5. CAN PARITY NONCONSERVATION BE OBSERVED IN 
CRYSTALS WITH HELICOIDAL SPIN STRUCTURE? 

The natural question is whether the effects discussed 
are observable. The obtained spin energy difference - 100 
Hz between the righ- and left-hand helicoidal structures is 
by itself not so far from the customary accuracy - lo5 Hz of 
measurements of the spin-interaction constant in solid die- 
lectrics by the paramagnetic-resonance method.I4 Unfor- 
tunately exchange interaction in metals leads to a strong 
broadening of the EPR lines. 

As for dielectrics with helicoidal spin structure, the 
more favorable conditions for EPR spectroscopy are accom- 
panied here by an additional suppression of the P-odd ef- 
fects. Indeed, the interaction responsible for the magnetic 
ordering in dielectrics is known not to be larger than the 
indirect exchange in metals. This follows from a comparison 
of the corresponding Niel points. Furthermore the P-odd 
interaction of a d or f electron in a dielectric should contain 
also an additional small quantity-the exchange interaction 
with thes andp shells of the ions (see the discussion of the P- 
odd vector polarizability of holmium in Sec. 2). Therefore 
the P-odd energy of the spin in a dielectric can hardly exceed 
1 Hz. 

Another manifestation of parity nonconservation 
might be the predominant onset of left-hand spin structures 
having a lower energy, on going throught the Nee1 point, if 
the random factors that usually determine the sign of the 
produced helix are made weaker. No matter how fantastic 
this assumption may seem, the following argument can be 
advanced in its favor. It was shown in Ref. 15 that using an 
electric field crossed with a magnetic one it is possible to 
monitor effectively the sign of the resultant spin helix in the 
compound ZnCr,Se4. The fields E = 2.5 kV/cm and H = 12 
kOe used in this experiment are quite negligible in atomic 
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scale. Furthermore the electric field influences the magnetic 
structure only via the weak spin-orbit interaction. In the up- 
shot the "warping" energy of the interaction with these field 
is roughly estimated to be only 10-100 times larger than the 
P-odd energy (4 1). 

6. BLOCH DOMAIN WALLS IN FERROMAGNETIC FILMS 

An example of the realization of a helicoidal spin struc- 
ture is also the usual Bloch domain wall in a ferromagnet. 
Let us estimate the possibility of influencing with a weak 
interaction the sign of the helix in a domain wall produced 
when a new domain is produced by reversal of magnetization 
of a monodomain film (see Fig. 4)." Weak interaction leads 
to twisting of the spins in thexy plane; this twisting decreases 
with increasing distance from the wallz = 0. Thus, a germ of 
a helicoidal structure exists even in the equilibrium state. 

Let us estimate the P-odd energy of an ion located far 
enough from the wall z = 0. Since the spin rotation angle 
decreases with the distance to the wall, a noticeable contri- 
bution to the effect can be made only by that weak-interac- 
tion part in which this smallness of the rotation angle is off- 
set by the formal divergence of the remaining integral at 
largez. It is easy to verify that neither expression (18), (37), or 
(38) leads to such a divergence. As for expression (3 I), the 
necessary property is possessed in it only by the first nonos- 
cillating term in the square brackets. Assuming the spin S, to 
be located at the point z, and S, at the point z', and taking into 
account the smallness of the corresponding angles 6 (z) and 
6(zf) of the spin rotation in the xy plane, we find that 
now [ S ,  x S, ] = - S  *[8 (z) - 8 (z')]. Substituting this 
expression in (3 1) and assuming as a rough estimate 

where zo is the characteristic dimension, we find that in this 
case 

. Here 8, the angle of the spin rotation on the surface z = 0. It 
can be easily imagined that in this case 6, > 0 corresponds to 
a left-hand helix whose initiation energy is lower (we recall 
that q <O). The order of magnitude of the energy (42) is 
E(z)- - 10HzB0. 

With what is this energy to be compared in order to 
assess the possibility of influence on the formation of domain 
walls? We begin with the fact that in soft magnetic materials 

FIG. 4. Appearance of a spin helix near the boundary z = 0 of a 
ferromagnetic film; M is the magnetization direction and H is the 
magnetization-reversing field. 

the coercive force (i.e., the field necessary to reverse the do- 
main magnetization) is H, - Oe. The energy of the in- 
teraction between the magnetic moment and such a field is 
Ec -pHc - 10-lo eV- lo-" Ry- lo4 Hz. Actually, how- 
ever, the magnetization reversal is due not to the coercive 
force itself, which is none other than the depth of the local 
minimum of the spin energy with respect to its rotation an- 
gle, but by the amount by which the spin energy in the field 
exceeds zero; this excess, however, can be made much less 
than Ec. In addition, the generalized momentK = - dE /a6 
of the P-odd forces does not depend on the angle 8, whereas 
the moment of the usual magnetization-reversing forces is 
proportional to a small deviation angle, since turning on an 
oppositely directed magnetic field leads to the appearance of 
a local energy maximum near 8 = 0. We therefore do not 
regard as hopeless and attempt to observe parity nonconser- 
vation in domain formation, i.e., to obtain predominantly 
left-hand-screw Bloch walls. We emphasize, however that 
this problem calls at any rate for the use of sufficiently soft 
magnetic films with few defects and sufficiently accurate 
magnetic-field geometry. 

It must be noted that the hypothesis of predominant 
formation of Bloch walls with the same sign of the helix was 
discussed already long and incidently without any 
hearing on weak interactions. 
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4'For the gain we assume here the value R ~ 4 . 5  which corresponds to the 
absence of derivative in the relativistic Hamiltonian of the weak elec- 
tron-nucleon interaction. 
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