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A criterion for the applicability of perturbation theory to the description of the dynamics of two- 
level systems in a phonon field is considered. It is shown that in the case of dielectric glasses 
perturbation theory is most likely not to be valid. This is followed by calculation of the generalized 
susceptibilities that characterize the response of a two-level system to external actions. In first- 
order perturbation theory these susceptibilities consist of the customarily employed resonant and 
relaxation parts, whose amplitudes are somewhat decreased, and of smooth phonon parts that 
correspond to single-phonon intermediate states. In addition the renormalizations of the spacings 
of the levels and their population differences are determined. The results are used next to analyze 
the low-temperature properties of glasses. It is shown that the interaction increases the density of 
the tunnel states, and that the amplitude of the interaction of the latter with the phonons de- 
creases. It is found as a result that if these phenomena are not taken into account, the tunnel-state 
density determined from the heat-capacity data should be larger than that determined from sound 
absorption and thermal conductivity. It is shown next that the heat capacity receives a contribu- 
tion proportional to Tzln(w,/T), which can become comparable with the Debye heat capacity at 
sufficiently low temperatures. Arguments are presented, according to which both results are 
independent of whether perturbation theory is applicable or not. 

PACS numbers: 63.50. + x, 65.40.Em 

1. INTRODUCTION 

Two-level tunnel states are quite widely encountered 
defects in solids. They attracted particular interest after An- 
derson, Halperin, and Varma' and PhillipsZ were able in 
1972 to explain with their aid the high-temperature proper- 
ties of glasses. Many facts accumulated since that time indi- 
cate that the existence of such states is one of the characteris- 
tic properties of amorphous substances. At the same time, 
detailed experiments performed since have revealed a num- 
ber of quantitative discrepancies between theory and experi- 
ment. The most important of them are the following: 1) The 
tunnel-state density P determined from data on sound ab- 
sorption and heat conduction is found to be less than that 
obtained from heat 2) The theoretically predict- 
ed logarithmic growth, with increasing measurement time, 
of the heat-capacity component that is linear in temperature 
is practically unobservable.' 3) The part of the heat capacity 
remaining after separating the contribution linear in tem- 
perature exceeds the Debye 

Additional "anomalous" tunnel states were introduced 
to explain the disparity between the values of P obtained in 
different The assumption that such states ex- 
ist leads in turn to a number of difficulties. The question thus 
remains in essence open. 

At the same time, up till now the interaction of tunnel 
states with phonons was always considered in first order of 
perturbation theory. There actually no grounds whatever for 
this. First, as shown in Ref. 8, in the case of fused quartz, at 
the experimentally obtained values of the strain potentials, 
the level width of the tunnel state becomes comparable with 
its energy at E- 10-30 K. Well defined levels exist thus only 
at much lower energies. Next, an integral criterion of the 

validity of perturbation theory was obtained in Ref. 9 (here- 
after cited as I) in an analysis of the interaction of a degener- 
ate center with phonons. If the level spacing is small com- 
pared with the limiting phonon frequencies, this criterion is 
applicable also when the degeneracy is lifted. For a two-level 
system it can be written in the form 

1  " d o  
l = - j - [ 2 ~ ( 0 ) + 1 ] d ( o ) ~ l ,  

n o2 

n kZyhtb, 
d ( o ) =  [ ~ ( W - W ~ . . ) - ~ ( ~ + W L , . )  1 .  (lb) 

k,a 

Here N (w) is the Planck function, d (w) is the spectral density 
of the phonon field acting on the two-level system, a = I, t is 
the polarization of the phonons, wk,, are their frequencies,~ 
is the density, Vis the volume of the system, and y,,, are the 
constants of the deformation potential; we use a system of 
units in which fi  = k, = 1. In the low-frequency limit we 
have for d (0) the simple formula 

Substitution of this expression in (1) leads to an integral that 
diverges quadratically at the upper limit. If we use for the 
parameters in (2) their values for fused quartz, taken from 
Ref. 4, we obtain for J at T = 0 

where w, is the maximum phonon energy, measured in de- 
grees. Thus, if w, = 110 K, then J = 1. Nothing is known at 
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present on the behavior of the constants yk,, and of the fre- 
quencies w,, at large k; in other words, we do not know 
where the integral in (1) is cut off at high frequencies. It is 
clear, however, that there are no grounds whatever for re- 
garding J as small. It is more readily of the order of unity,, 
and accordingly perturbation theory cannot be used to de- 
scribe the interaction of phonons with tunnel states in 
glasses. 

The purpose of the present paper is a systematic study 
of the corrections, in next order of perturbation theory, to 
the observable quantities. It is found that all physical quanti- 
ties are differently renormalized. In particular, the correc- 
tion to the linear contribution to the heat capacity is positive, 
while that to the amplitude of the resonant absorption of 
phonons is negative. This can be interpreted as an effective 
increase of the density of the tunnel states in experiments on 
heat capacity, and as a decrease in experiments on sound 
absorption and heat conduction. It turns out here that the 
same takes place also when the interaction is not small. 

This result agrees qualitatively with experiment. It 
should therefore be assumed that to explain the experimen- 
tal data there is no need at present to introduce anomalous 
tunnel states, as was done in Refs. 3 and 4. Further, the 
standard procedure of averaging over the distribution of the 
parameters of tunnel systems3 likewise leads to a tempera- 
ture-independent correction to the heat capacity, thus indi- 
cating that such a procedure is wrong at low probabilities of 
tunnel transitions between two states. It must be noted that 
the same averaging procedure leads to a logarithmic depen- 
dence of the heat-capacity component linear in Ton the du- 
ration of the experiment. No such dependence was actually 
observed in experiment, h~weve r .~  

Finally, it should be noted that the expression for the 
heat capacity acquires a term proportional to PT2w;' 
X ln(w, / T ) ,  which can become comparable with the Debye 
heat capacity C, at temperatures of the order of tenths of a 
degree. 

The plan of this article is the following. In Sec. 2 the 
corrections, which arise in first-order perturbation theory, 
to the spacing of the levels and to their population differ- 
ences, are calculated and expressions are given for the gener- 
alized susceptibilities of two-level systems. A number of 
mathematical details are relegated to the Appendix. The re- 
sults of this section are valid for any two-level system in a 
phonon field, and no details peculiar to glasses are used. The 
use of the results for an analysis of the low-temperature 
properties of glasses is contained in the third section. 

2. GENERALIZED SUSCEPTIBILITIES 

Following Ref. 3, we write down the Hamiltonian that 
describes the interaction of a two-level system with phonons 
in the form 

H = l / z E ~ , + B , ~ , + B z ~ z ,  (4) 

where a, are Pauli matrices that describe the two-level sys- 
tem, B,, are the strain-tensor components acting on the 
pseudospin and multiplied by the appropriate strain poten- 
tial constants. Generally speaking the operators B, and B, 

are independent. A connection between them can exist only 
within the framework of some particular detailed model. 
Thus, in the so-called model of standard tunnel states con- 
sidered in Refs. 3 and 4 we have 

where E is the level spacing, A is the parameter of the asym- 
metry of the potential wells, and A, is the energy of the tun- 
nel interaction between them. 

All the observable physical quantities can be calculated 
if we know the generalized susceptibilities defined by the 
equations 

( o )  i J dterwf( [ a . ( t ) ,  ( ~ ~ ( 0 )  1). 

To calculate these susceptibilities we shall use the method 
developed in I. This method is based on the Abrikosov pseu- 
dofermion formali~rn,'~ according to which the pseudospin 
operators o, are written in the form a: a r a , ,  , where a: and 
a, are the creation and annihilation operators for pseudofer- 
mions with spin projections + 1. 

In I, the temperature diagrams were analytically con- 
tinued to real frequencies and a diagram technique was for- 
mulated for such frequencies. This technique reduces to the 
following: straight lines correspond to Green's functions of 
pseudofermions (particles), and wavy lines to Green's func- 
tions of phonons. The phonon-field propagator is the imagi- 
nary part of the retarded Green's function, taken with a mi- 
nus sign and multiplied by T-'N(w), where N(w) is the 
Planck function, of the operators B. Integration with unity 
weight is carried out over all the phonon frequencies, which 
are chosen such that they enter in the arguments of the parti- 
cle Green's functions with positive sign. Generally speaking 
there are three Green's functions: D, = Do, D, = Dl, and 
D, = D,; correspondingly there are three phonon-field 
propagators: 

In the standard tunnel model, by virtue of ( 5 ) ,  all the di are 
expressed in terms of the quantity d corresponding to the 
Green's function of operators B and coinciding with (lb). 
Conversely, for a defect in a crystal we have D,, = 0 (the 
results of I for two-level systems with degeneracy corre- 
spond precisely to this case). Just as in I, we begin with a 
calculation of the pseudofermion Green's function. In I, 
owing to the degeneracy, a finite level width appeared only in 
second-order perturbation theory. In our case, however, 
where there is no degeneracy, a finite width obtains already 
in first order, to which we confine ourselves. Altogether 
there are four Green's functions (a$ = + I ) ,  and the diag- 
onal ones will be designated simply g+ and g-. 

The first-order diagrams for the self-energy parts gaD 
are shown in Fig. 1, where the numbers 0, 1, and 2 above the 
phonon lines designate the propagators (7) to which they 
correspond. 

The zero-order Green's functions are of the form 
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FIG. 1. 

g:O' = (oTE/2-)L+id)  - I ;  g.!O: =O, (8) 

where R is the chemical potential taken with a minus sign. 
After completing all the calculations it is necessary to go to 
the limit R-+oo. As shown in I, after the analytic continu- 
ation of the temperature diagrams it is possible to shift the 
energy origin by A, after which R drops out of all the expres- 
sions. Calculations perfectly analogous to those in I lead to 
the following result for the diagonal Green's functions: 

g*(o)=Z,(o-x*)-1+g2*(o), (94 

y,=mI ( F E )  =d, ( E )  2 2 

We see that, just as in I, the Green's functions g , have pole 
partsg, , and smooth background additions g, * . The resi- 
due at the pole Z +  is now complex because the last term of 
(9b) is complex. TO calculate this term it must be integrated 
by parts, after which the real part is found to be an integral in 
the sense of principal value, and the imaginary part of Z ,  
will be y', = @ ; ( f E ). We note that E(wm we have 
Re Z + = 1 - 0 (J) ,  where J i s  the parameter ( la)  of the per- 
turbation theory. From (9c) it follows that the interaction 
renormalizes the distance between the levels 

In the limit E(wm we have E = - 2E0 (J ) ,  i.e., the renor- 
malization is again small if J is small. It is likewise easy to 
verify that the functions g + satisfy the sum rule 

Knowledge of g *  permits calculation of the numbers of 
pseudofermions with up and down spins, determined by the 
expression 

1 1 
N ,  = - J d x  n ( x )  1rn g, ( r )  =e-"" - J dxe-O" Im g,. (1 1) 

n n 

The quantities N + enter in the definiation of the normaliz- 
ing factor N = N ,  + N - ,  which enters in the definition of 
the susceptibilities (see I and below) and of the average 
"magnetization" 

o = - ( 0 , )  = N - ' ( N - - N + ) .  (12) 
After simple calculations we obtain 

N=eEIZT+e-E/2T 
I (1 3 4  

E 2n. 5 d x @ , ' ( x )  
a=th-+- - 

2 ( 1 - 4  f dx:?;) 
2T n x+E x 

(13b) 

where n, = [exp(E / T )  + 1 ] -' and the factor exp( - R /T)  
is omitted from the expression for N. Here and elsewhere it is 
necessary to use in the terms of zeroth order in @ for the 
energy E the renormalizedvalue E ' (10). It follows from (13b) 
that the interaction decreases the magnetization. In the case 
E( T(om we have then 

if T(E(om we have a = 1 - W,, and finally at E>wm we 
have 

We shall need subsequently the off-diagonal. Green's 
functions. In our approximation we have for them 

We proceed now to an analysis of the susceptibilities. 
We consider first the transverse susceptibility X, . We calcu- 
late it with the same accuracy as the Green's function: we 
determine the first perturbation-theory correction to the re- 
sidue of the resonant terms, and the smooth "background" 
part linear in the interaction, similar to that calculated in I. 
As always, it is most convenient in such cases to determine 
the circular susceptibility components x and x , 
where a * = 1/2(ax + ia,,), and then reconstruct the Carte- 
sian components. It is necessary in this case to calculate only 
x - + andx _ - , since the following equalities are obvious: 

The expression we need later for the retarded suscepti- 
bility in terms of the corresponding vertex part is given by 
the Ginzburg formula',": 
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FIG. 2. 

where the Green's functions to the left and to the right of the 
vertices F correspond to the incoming and outgoing lines, 
and in each of the terms the signs of the imaginary parts of 
the arguments of the vertices are the same as those of the 
corresponding g-functions. 

To calculatex - + it suffices obviously to use the ladder 
approximation (see Fig. 2). In this case the integration con- 
tour for the first and third terms of (16) passes on the same 
side of the singularities of the Green's function, so that the 
first two diagrams can be used for the corresponding ver- 
tices. On the case of the two other terms, however, the inte- 
gration contour is "clamped" between the singularities, and 
it is necessary to solve the corresponding integral equations. 
For the second term we have thus 

1 
=I - - J dxt 0. (xi-x)g+ (x,+w)g-*(x,) r- (x,+o, r r )  . 

n 
(17) 

This equation is solved by the method of I. The singularities 
of the function 0, lie far from the real axis (we assume that 
w, ,T, E s y .  ). We can therefore transform the integration 
contour into the contour C+ (see Fig. 3), separating the resi- 
due at the poleg? (x). After this the integral along C+ must 
be calculated in the lowest order of perturbation term and 
return to the real axis from above. This yields 

2 i L W  m0 (x-'-x) I'- (x-'+a, Z-*) - 
o-E+iy 

, (184 

y =d, (E) cth (E/2T), (1 8b) 

We have taken it into account here that @,(O) = 0. Similar 
formulas hold also for r- from the last term of (16); in this 

case the integral along the real axis must be transformed in to 
an integral along the contour C -  (Fig. 3). We note also that 
the first two terms of (18a) coincide with the expression for 
the vertex in the first term of (16), while (18b) is the custom- 
arily employed width of the resonant level l/T,; in addition, 
it must be remembered that these expressions contain the 
renormalized energy (10). 

The equations obtained for the vertices must be substi- 
tuted in (16), and the integration contours must be trans- 
formed in the manner described above. In those terms in 
which r - + l  it is necessary, prior to returning to the real 
axis, to represent the function g F  (x) in the form 
g ( y  (x) + g(y(x)a (x) (and the same for g: (x)). Next, the 
pole parts in the terms containing the resonant denominator 
must be separated from the smooth background. The result 
is 

Here, in (19d), the function d,(x) is the result of the property 
@, ( - x) = @, (x) + d, (x) ,  which is due to d, (x) being odd, 
while the second-order poles stem from the expansion of the 
Green's functions on the contours C ,  in powers of the inter- 
action. As noted above, it is easy to get rid of such poles by 
integrating by parts. In particular, derivatives of @, and d l  
appeared in (19b) as a result of such an integration. 

The physical meaning of the background terms is the 
following: an external-field quantum of frequency w causes a 
transition between levels and an additional emission or ab- 
sorption of a phonon. The amplitude of the resonant term 
must categorically be smaller than in the zeroth order; this 
follows from the sum rule discussed below. 

The set of diagrams for ,y - _ is also shown in Fig. 2. It 
is easy to verify here, using (18a), that there is no need to 
consider the renormalization of the vertices r - .  As a result 
we obtain after calculation perfectly similar to those de- 
scribed above 

FIG. 3. 
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Equations (lg), (20), and (1 5) enable us to calculate the Carte- 
sian components of the transverse susceptibility. In our ap- 
proximation we have x - - = x + + , and therefore 
xxy = - xyx, as usual. However, x,, #xYy. Simple calcula- 
tions yield 

We shall not write out the remaining transverse compo- 
nents, which we do not need. We note only that xYy is ob- 
tained fromx, by reversing the signs of the last terms in the 
expressions for 2, and ~ 5 , .  The approximate equality in 
the right-hand side of (21b) takes place at o,)E. It is also 
obvious that at o = + E the susceptibility x:~, is finite, 
since all the singularities of the integrand lie on one side of 
the integration contour. 

In what follows we shall need the imaginary part ofxXx. 
It must be calculated with the following taken into account. 
Im xfx contains terms proportional to (w + E )  [(w + E )* 
+ ? I - ' ,  which we shall understand hereafter to be the 

principal values of the quantities (w + E ) - I .  The quantity 
Im xxx, is finite at w = + E, but it is convenient to separate 
in it the terms that cancel out the aforementioned principal 
values, after which the remainder as w+ + E becomes infi- 
nite and must now be understood in the sense of the principal 
value. As a result we have for Im X, 

Obviously, Im xXx is an odd function of o ,  as it should, and 
decreases rapidly at w)w,, E. 

It is well known that the generalized susceptibilities sa- 
tisfy the sum rule 

In our case AB = a2, = 1, and it can be easily verified, by 
using (22), that the sum rule does indeed hold. 

We proceed now to discuss the longitudinal susceptibil- 
ity xZz. Unfortunately the simple ladder approximation is 
insufficient for this purpose. The point is that in expression 
(16) forx, the contributions from Tz in the second and last 
terms cancel out in lowest order, in contrast to the case 
x - + . Therefore the principal term is formally of the order 
of the correction linear in 4P (it is of the order of unity only at 
wM2iy), and it is consequently necessary to calculate the 
vertices in the next order in 4P. It is simultaneously necessary 
to take into account the next-order corrections also for the 
imaginary parts of the poles of the Green's functions g * ;the 
corresponding diagrams are shown in Fig. 4. Generally 
speaking, it is necessary here to take into account not only 
the diagonal parts Do and Dl of the interaction, but also the 
off-diagonal part D,. It can be shown, however, that 
allowance for this interaction influences only the two- 
phonon contribution to the longitudinal relaxation (the "Ra- 
man" processes). We therefore disregard it. The correspond- 
ing rather cumbersome calculations are given in the 
Appendix, but the final result is quite simple: 

( 2 2 ~ )  FIG. 4. 
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Here 2yll = 1/T2 is the reciprocal time of the longitudinal 
relaxation. At our accuracy it coincides with the expression 
for 2y, where y is given by Eq. (18b). In the Appendix, how- 
ever, 2y,, is calculated with higher accuracy, with account 
taken of both the renormalization of y, which is of the order 
of J, and the two-phonon Raman contribution, which is of 
the order of T 5  at ExT. Allowance for this last contribution 
makes it possible to go to the limit E = 0. This is impossible 
in expression (21a) for xfX, since the Raman terms are not 
taken into account, and it therefore vanishes at E = 0.'' 

The imaginary part of the longitudinal susceptibility 
can be reprsented in the following form: 

The last term in Imxf; plays a double role: it ensures 
Im X, (0) = 0, and at o)E, w,  it cancels out the first term in 
I r n x ~ ' ,  ensuring thereby a good decrease of Imx, as 
o * ~ .  (Allowance for the second term in Im ~ 2 '  at such w is 
an exaggeration of the accuracy.) It is easy to verify also the 
satisfaction of the sum rule (23), whose left-hand side now 
contains 1 - 2, where u is given by (13b). 

It remains now to discuss the off-diagonal part of the 
susceptibility, which we calculate in the lowest order in the 
interaction @ '. As before, it is convenient to calculate in lieu 
of xu and X, the quantities ,y ,, and x2 * , and obviously 
x + (E ) = x - , ( - E ). Diagrams for the function x -. are 
shown in Fig. 5, where the lines with the point in the last two 
diagrams show the off-diagonal Green's functions g - + (see 
! 14)), while r L* ' are the longitudinal vertices corresponding 
to incoming lines with spin projections +_ 1. It is easy to 
verify that the equality x -. = X, + holds also in the consid- 
ered order, so that to calculatex, andx, it suffices to know 
,y - , . The corresponding calculations are completely analo- 
gous to the calculations of x,. It turns out here, first, that 
the resonant part of x _ is equal to zero, and second, that 

FIG. 5.  

the relaxation part is of the same order as the correction term 
in (24b); we do not need its exact form. Finally, the back- 
ground is of the form 

For the quality of subsequent interest xCz + X; we obtain 

These equations forx,, do not depend on the actual form of 
the operators B , ,  in (4). The criteria for the validity of per- 
turbaton theory, however, are different, depending on the 
forms of the functions d,(w). In the case of interest to us, that 
of interaction with phonons, the values of J ,  are determined 
by a frequency region of the order of w, . In other cases, for 
example in interactions with phonons, in quasi-two-dimen- 
sional and quasi-one-dimensional cases (see I), or else in in- 
teraction with spin waves in amorphous ferromagnets, an 
important role is assumed by the convergence of the inte- 
grals as o 4 .  We, however, shall not discuss these questions 
here in greater detail. 

3. PHYSICAL CONSEQUENCES 

All the physical consequences, such as the corrections 
to the heat capacity, to the sound absorption, to the thermal 
conductivity, and others can be determined if one knows the 
phonon Green's function, which can be represented in the 
following manner: 
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(28) 
where Mp are the dimensionless constants of the phonon 
interaction with ax and a,, and the angle brackets denote 
averaging over all types of tunnel states with a distribution 
function P,. The integration is over all possible unrenorma- 
lized distances between the levels E, while Em is the maxi- 
mum possible distance. We shall find it convenient to use a 
normalization of the constants M, in the form 
(Mf Po) = F,, where is the average density of the tunnel 
states (per unit volume and in a non-unity energy interval). 
With this choice of the interaction we have @, = Mt@, 
@, = M f  @, and @, = MxM,@. In the standard tunnel 
model, according to (5 ) ,  M, = AdE, Mx = AdE, and the 
averaging procedure, which is discussed in detail with Refs. 
3 and 4, is conveniently written in the form 

Em E 

A (E, A.). A=Po J'EE J Ao(~z-~02)r ,*  (29) 
0 Ao nun 

where A, ,in is the minimum value of the tunnel parameter 
A,. A characteristic feature of this procedure is the logarith- 
mic dependence of the mean values on A, ,, if A (E,O) # 0. 
We recall also that for tunnel defects in crystals there is no 
integration with respect to E or averaging, and in addition 
only diagonal terms with p = q = x,z are contained in the 
sum over p and q. 

We proceed now to the effects connected with sound 
propagation. The principal result is obtained here if account 
is taken of two facts: the decrease of the amplitude of the 
resonant scattering because of the appearance of the factor 
ZR in (21a) and (22a), and the renormalization of the spec- 
trum (10) of the tunnel states. The renormalization causes 
the mean free path I ,  (GI) of the phonons to take the form 

Here I E' is the standard expression for the unrenormalized 
mean free path.3 An expression for Zph in terms of Mx, ex- 
ists in the limit E(o,. In the standard tunnel model, by 
virtue of (5) and (29), we have Zph = 1, i.e., there is no renor- 
malization in the first-order perturbation theory considered 
by us. Such a renormalization does exist in any other model. 
It follows also from (30) that the phonon thermal conductiv- 
ity is also renormalized by the factor Zph 

where x,  is the thermal conductivity without allowance for 
the interaction effects (see, e.g., Ref. 4). 

We note also that the influence of the background on 
the sound absorption was recently investigated in Ref. 8. It 
was shown there that it must be taken into account only if the 
resonant absorption is suppressed by a sufficiently strong 
sound signal. 

We proceed now to discuss the influence of the interac- 
tion on the heat capacity. We recall first an expression from 
the standard tunnel mode13p4 

where T,,, is the minimum time of transverse relaxation at 
the temperature T and corresponds to A = E = 4T2, 
while r,,, is equal to the duration t of the experiment if it is 
shorter than T,,,, = Tlmi, (T/Ao ,in)2 and to TI,,, in the 
opposite limiting case. As already noted in the Introduction, 
no such dependence on the duration o f t  of the experiment 
was observed in e~periment .~ We shall therefore use below in 
place of (32) the formula C = ( ~ / ~ ) T ~ F , T ,  where 5 is the 
density of states, which we assume to be independent of ener- 
gy. Our purpose is to determine in the lowest order of 
perturbation theory. This is simplest to do by using expres- 
sion (10) for the renormalization of the energy E. It turns out 
then that 

(We recall that we have defined Mx such that (Mf  ) = 1.) 
Thus, by softening the spectrum in first order, the inter- 

action increases the density of the tunnel states that enter in 
the expression for that part of the heat capacity which is 
linear in T. Therefore, if we forget the effects of the interac- 
tion, the tunnel-state density determined from acoustic ex- 
periments should in this approximation be less than the same 
density determined from heat-capacity data. This conclu- 
sion should remain in force in the general case. The point is 
that both (30) and (33) contain the factor 1 - d d d E  that 
renormalizes the density of states. In addition, Zph (30) con- 
tains the quantity Z R ,  which is always less than unity. In 
fact, when account is taken of higher orders of perturbation 
theory, the background part of xXx should increase, for it 
acquires a multiphonon contribution on top of the single- 
phonon one. Sincex, is normalized by the sum rule (23), an 
increase of the background should lead in this case to a de- 
crease of the resonant paper, i.e., of ZR . It follows from the 
foregoing that, in our opinion, the difference in the values of 
P determined from different experiments is natural. It seems 
to us therefore that to explain this difference there is at pres- 
ent no need for introducing anomalous tunnel states, as was 
done in Refs. 3 and 4. 

We proceed now to a more detailed analysis of the cor- 
rections to the heat capacity. We use for this purpose a 
known formula for the correction to the free energy, in the 
form of an integral with respect to the interaction,13 intro- 
ducing formally in place of the constants y,, the quantity2' 
gy,, . After changing from discrete to real frequencies (see I) 
and using (28), we have in the approximation linear in P, 
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AF= dgg [ 

(34) 
With the aid of (lb) we obtain from (34) 

It is convenient to transform this equation by using the sum 
rule (23). It is necessary for this purpose to separate XI- '  

from (x -XI)-'. The corresponding term is easily trans- 
formed, with the aid of (23) and of the fact that Im x is an odd 
function of x, to the following form: 

where a is the "magnetization" (13b). In the remaining term 
of the numerator there appears a factor x ,  thanks to which 
the relaxation parts of Imx, and Im (y, + x,) make a 
negligibly small contribution. It is therefore necessary to 
take into account only the resonant part of Im X, and the 
background terms (22b), (22c), (25b), and (27b). 

In the lowest order in the interaction the resonant part 
yields expression (33). Next there appear in the heat capacity 
terms of the order of 

where A -B-  1 stem from the logarithmic renormalization 
of the speed of sound on account of the resonant interaction 
and the irregular correction to the density of states. The 
large logarithm notwithstanding, the smallness of & makes 
these terms very small compared with the Debye heat capac- 
ity C, and therefore of no interest. Finally, the contribution 
from the background contains terms proportional to T and 
T3. The former are next-order corrections to expression (33) 
and are therefore of no interest to us here, while the latter are 
also small becauseFo is small. It remains to consider expres- 
sion (36). It describes the contribution to the energy from the 
fluctuations of the "spin." If we replace a in it by the first 
term of (13b) we obtain a term linear in T that makes no 
contribution to the heat capacity. This, however, is not true 
in the case of the "standard tunnel state" model, for which 
the corresponding term is proportional to ( - T)ln(T/ 
A, ,,). As a result, the contribution to the heat capacity is 
independent of temperature at T >  A, ,, , in strong contra- 
diction to experiment. This indicates once more that this 
model does not correspond to reality. 

At T = 0 the expression for the interaction-induced 
corrections to o takes the form a + bE + cE 'ln(w,/E ). If 

we substitute this expansion in (36), the first term makes no 
contribution to the heat capacity, the second makes a linear 
contribution, and the third yields finally, after accurate cal- 
culations 

This is the heat capacity of the magnetization fluctuations 
and is due to the coupling of two-level systems with phonons. 

We see thus that the interaction gives rise to a heat- 
capacity correction proportional to % ~ ' l n ( w , / ~ ) .  This 
correction is small compared with the linear part of the heat 
capacity, but at temperatures on the order of tenths of a 
degree it can be comparable with the Debye heat capacity 
C,. We note also that the terms proportional to E 'ln(w, /E ) 
appeared in the expressions for a and E because of the single- 
phonon intermediate state. It is easy to verify that intermedi- 
ate states with a large number of phonons contain in the 
expansion in E the quantity ln(w, /E ) multiplied by a higher 
power of E (the two-phonon E 41n(w, /E )). Therefore an 
expression of the type (37), but with a renormalized ampli- 
tude, should take place also in the case when perturbation 
theory does not hold. In the general case, therefore, the low- 
temperature heat capacity of glasses should be of the form 

Thus, the customarily employed approximation of the 
heat capacity, C = C,T + C3T3 or C = C ;  TI+", should 
not fit well the experimental data. It should be noted that 
indications of the presence of a heat-capacity contribution 
proportional to  a are contained in ~ e f i .  5 and 12. In addi- 
tion, the theoretical data of Ref. 13 (Fig. 9 of Ref. 13) are also 
in qualitative agreement with (38). 

In conclusion, the author thanks Yu. N. Skryabin for a 
large number of discussion of the questions touched upon in 
this article. It is also a pleasure to thank V. L. Gurevich and 
D. A. Parshin for an opportunity to read Ref. 8 prior to 
publication and for interesting discussions, and to E. M. 
Pavlenko for much help in preparing the paper. 

APPENDIX 

We demonstrate now how to calculate the longitudinal 
susceptibility. As explained in the main text, the simple lad- 
der approximation is insufficient for the calculation of the 
vertex part r, and it is necessary to take into account the 
diagrams shown in Fig. 4. We consider this question in 
greater detail. First, since a, has two nonzero matrix ele- 
ments, the productggrin (16) must be regarded as the differ- 
enceg+rif  'g, - g - r i -  'g-. Next, if the second and third 
terms of (16) are transformed as described above, using the 
contours of C, (Fig. 3), and expression (9) is used for the 
Green's functions, the following terms are separated: 
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rr(lh=rlr(*) (x: +a ,  X; ) ,  F:=r:*) (x*, x,-a). ( ~ i b )  

If we neglect the difference between x , and x: , i.e., the 
damping y, , and calculate the expression for r!') in the 
simple ladder approximation, it turns out that (Ala) is equal 
to zero. It is therefore necessary to calculate rz more accura- 
tely. The gist of our approximation is to determine T, both at 
a)?' * and at w - y , with account taken of the terms linear 
in the interaction. This leads formally to the need of calculat- 
ing r, with allowance for terms of order @ 2. But then these 
terms are important only ifw - y + . We consider for the sake 
of argument the vertex r j +  l(x j w j )  which enters in the 
second term of (16). The equation for it is 

1 + - Jdx,i-+(x,, x ) ~ -  ( X ~ + ~ ) ~ - . ( X . )  1.2- (zl+O. x i ) .  
n 

(A21 
Transforming the integrals along the real axis into integrals 
along the contour C+ (Fig. 3) we obtain 

1. xrl-)  (x,+o, x,) +2i@++ (x+', x) 1Z+1 
of 2i7, 

where T!+' are defined by Eqs. (Alb). In these formulas, 
y + = - Im x + must be considered with allowance for the 
second-order perturbation-theory diagrams shown in Fig. 4. 
The corresponding result is 

c o  1 [ X  mi - I' (XI @I(--x) 
9. = - jdx { - 

n xrtE xZ-EL 

where the pJ are defined by Eq. (9d), 2 renormalizes the 
~in~le-~hono;  contribution to the damping, and the last two 
terms in (A4a) give the two-phonon contribution. 

The integral terms in (A3) are transformed in the fol- 

lowing manner. It is necessary again to substitute in them 
expressions for T,(x + wj) .  This separates single integrals 
with respect to C, ,  in which T$ is replaced by + 1, and 
double integrals in which the second integration is along the 
real axis. It is convenient to transform these last integrals 
into integrals with respect to C,, separating again the con- 
tribution from the residue. This contribution, just as in I, 
takes into account the nonsingular part of the second iter- 
ation of the ladder diagram and should be included in 8, as 
shown in Fig. 4. In the double integral, however, we can now 
replace r!* by f 1 and put o = 0. It is now easy to obtain 
the following equations for r !* ): 

The values of A + in the lowest order in the interaction de- 
pend on w and are given by 

I t  is also easy to verify that 7'!* '(0) = r !* I*( - w). To cal- 
culate the relaxation part of X, in the lowest order in the 
interaction it is necessary to take into account the r: ob- 
tained in the simple ladder approximation, and the incre- 
ment that distinguishes T, from pz, which is obtained if only 
the imaginary parts are taken into account in the expressions 
for $, and 7,. 

Using the foregoing formulas, we can easily obtain the 
following expression for the determinant of Eqs. (A5a): 

Here 2 [y(T + y'? ] 2 is the reciprocal time 1/T2, renormal- 
ized by the interaction, of the longitudinal single-phonon 
relaxation, and yR is the two-phonon Raman increment. At 
T g E  it is of the order of d iE and is consequently signifi- 
cant if d& 2 1. This is again the same parameter whose 
existence was pointed out in Ref. 6. As noted there, if 
d& < 1, it is necessary to consider processes with an arbi- 
trary number of phonons, i.e., analyze the entire perturba- 
tion-theory series. If, however D E ,  then yR - d i  T5, and 
again perturbation theory is applicable only ifdoT2 < 1. We 
note also that one of the roots is equal to zero, but the entire 
expression forx, is so formulated that there is no infinity at 
all at w = 0. Substitution of the solutions that follow from 
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(A5) for T!* ) in expression (16) corresponding to X, leads 
after quite prolonged and cumbersome calculations to Eqs. 
(24). 

"We use the opportunity to correct an error in Eq. (25) of I. The correct 
expression is 

Expressions (24) go over into this formula with 4, = 2 and P2 = 1 in the 
limit E = 0 if expression (A7c) is used for y,, . 
2'Since the number of tunnel centers is constant, we are dealing with the 
free energy and not with the potential 0. 
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