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The threshold value for the interaction between small-size defects and a vortex lattice, such that 
the vortex lattice loses its stability and metastable states can be formed, is found. The size of the 
region within which the rearrangement of the vortex lattice takes place is very large, for numerical 
reasons. Therefore, the mutual influence of the defects becomes significant at a comparatively low 
density of the defects. 

PACS numbers: 74.60.Ge 

1. INTRODUCTION 

A magnetic field penetrates into an ideal type-I1 super- 
conductor in the form of quantized vortices that form a regu- 
lar triangular lattice.' The flow of current in the volume of 
the superconductor is accompanied by motion of the vortex 
lattice as a whole and by dissipation of 

Defects of various kinds, which are always present in a 
superconductor, lead to a dependence of the free energy on 
the position of the lattice relative to the defects and, by the 
same token, to the possibility of flow of a nondissipative cur- 
rent of finite density. Two essentially different forms of pin- 
ning turn out to be possble here-the so-called single-parti- 
cle and collective types.4 

Collective pinning arises in the weakest possible inter- 
action, but the density of the critical current turns out to be 
small in this case. The single-particle pinning arises only in 
the presence of defects whose interaction with the vortex 
lattice exceeds some threshold value.5 In the model with 
smooth deformations, the threshold value of the interaction 
of the defect with the vortex lattice turns out to be so high 
that it cannot be attained for small-size However, 
as was shown by the author,' the presence of the defect leads 
to the development of instability of the vortex lattice near the 
defect and to the formation of metastable states. The vortex 
lattice is strongly deformed in the transverse direction at 
distances of the order of the correlation length 6 (T); there- 
fore, such states cannot be described within the framework 
of elasticity theory. The loose vortex lattice makes formation 
of such metastable states relatively easy. 

We shall investigate below the vortex lattice near a 
small-size defect (dimensions of the defect R (6 (T)); we shall 
find the criteria for formation of metastable states on such a 
defect and calculate the jump in the free energy on going 
from the metastable to the stable state. 

2. EQUATIONS OF STATE OF THE VORTEX LATTICE IN 
SUPERCONDUCTORS WITH DEFECTS 

For the investigation of the possible states of the vortex 
lattice in superconductors with defects, we use a model in 
which the defects can be described by the introduction of 
superconductor parameters that depend on the coordi- 
n a t e ~ . ~ . ~  In this case, the free energy of the superconductor 

near the transition temperature T, can be written in the 
form4 

6 5  = 2% J d3r6 ( I I D )  I d-A I'+V d%g, ( r )  I A 1'. 
8T (2) 

 where^ = 1 - T/T,, v = mpO/2r2 is the density ofstates on 
the Fermi surface, (3) is the Riemann zeta function, 
a- =a/& - 2ieA, Ho is the external magnetic field, 
D = v1,,/3 is the diffusion coefficient, 

and ly (x) is the psi function. 
The parameters g,(r) and S (vD) determine the local 

change of the constant of interelectron interaction and of the 
mean free path of the electrons. 

g-' (r) =gm-'+gl ( r ) ,  (4) 
where g, is the effective constant of interelectron interac- 
tion in the superconducting matrix. 

We limit ourselves below to the study of magnetic fields 
close to the critical field H,, . In this case, Eq. (1) for the free 
energy reduce to the form 

where 

x2=63t  ( 3 )  /2n3e2p2u3arr2q2 

is the Ginsburg-Landau parameter. The z axis in Eq. (5) is 
directed along the magnetic field H,. 

Equation (5) leads to strong dispersion of the elastic mo- 
duli C4, and C, , :9 
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The singularity of the type kW2 in these formulas is connect- 
ed with the neglect in the equation for the current density of 
terms that lead to screening of the magnetic field at distances 
of the order of k ,  I .  The quantities k ,  and k,  are deter- 
mined by the equations4 

' e ( H 2 - B ) ,  k.hZ=k*2/ [BA(h2-1)  + I ] ,  (8)  
where fl, = ( lA 14)/( lA 12)2 is a numerical coefficient that 
depends on the type of the lattice. For a triangular lattice, 

8,=1.1596. (9) 

We choose a special gauge of the vector potential A, in the 
form 

Dm,Dm, 
Ao=Ho (0 ,  X ,  0 ) .  (10) +- 2m,+m2+l M'(m,+m,-m) . 

The order parameter A (r) in this gauge has the form1' - - r (m,+m,+l)  

A = A . + ~  Cm(z)  exp[izy+imrp- (xz+yz) /2]pm,  ( r ( m + l )  I '(m,+l)  I'(m,+l) I ' ( & + m , - m + ~ ) ) ~  

na - n -- d2D, 
Ao=C exp [% n2+inB+2iy (T+  .a)-(Z - - .a )'I. 2 (1-Ho/H,,) dz' nDm 

n--m ,. 
( 1  1 )  M (0) (eH) * J d3rg, ( r )  

In Eq. (1 I ) ,  we have transformed to the dimensionless vari- 
C6m'06 "' 

+ 7 ) r (1-Ho/Hcz) 

able neH 
+6ms'6 (') (D' + F) 4~~ ( I - H J H ~ , )  ( e ~ ) ~ j  d3r6 (qD)  =O. 

(p, Z )  = (eH) li'r, az=2n/3'", (12) 

wherep is a two-dimensional vector in a plane perpendicular 
to the magnetic field 

The parameters a and0 fix the position of the lattice, and we 
choose them in the form 

With such a choice of the parameters a andfl, the zero of the 
unperturbed solution is located at the point - (Sx,Sy). In the 
following, we shall be interested in the small quantities 

16x1, I ~ Y I < I .  (15) 

Following Ref. 7 ,  we introduce the new variables D, 
according to the formula 

C,=CD,,II"" ( m + l ) ,  (16) 
where r ( x )  is the Euler gamma function. 

Assuming that the defect has a small size [R ({ (T )] and 
is located at the origin, we get, from the extremum of the free 
energy 

6F/6Dm'=0 (17) 
a set of equations for the coefficients Dm (z) 

It follows from Eq. (18) that the interaction of the vortex 
lattice with a small-size defect can be described by two di- 
mensionless parameters z and z,: 

The matrix elements M (m),  I ( m )  and I (m,m, )  were deter- 
mined and investigated in Ref. 7 :  

I ( m )  =*z M ( N )  M (m-N) r ( m + l )  

N-0  
nzm+* 

M ( N )  M' (m,+N-m) 
(20) 

N-0  

A structural transition first arises in the vicinity of the 
point (Sx, Sy) = 0 ,  when the zero of the unperturbed solution 
coincides with the defect. In the vicinity of the point (Sx, 
Sy) = 0, Eq. (18) breaks up into four weakly coupled subsys- 
tems:' 
{1+6k'), {6K, GKf 21, ( 3 f  ~K,~+~K),{?+~K),K=o, 1 ,  2 ,  . . 

(21) 
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A structural transition arises in the subsystem { 6K, 6K + 2) 
and induces weak transitions in the other subsystems. Near 
the transition point, only the coupling with the subsystem 
( 1 + 6K ) turns out to be significant. As has already been 
shown in Ref. 7, the matrix elemenst M (m) contain the phase 
factor 

which we can easily eliminate if we transform to the new 
variable 

D m ( 6 ~ , S y ) = e x p [ ~ ( $ 2 ) ' 6 y + i ~ x 6 y  1 1 1 . ( 8 ~ , 6 ~ ) .  (22) 

We shall assume in what follows that this substitution has 
been made. 

We now proceed to the investigation of two special 
cases, one in which the defect is a region with a changed 
value of the constant of the interelectron interaction (2, #0), 
and the other in which the mean free path of the electrons 
changes inside a small region of the superconductor (2 # 0). 

3. FORMATION OF METASTABLE STATES ON A DEFECT 
WITH CHANGED VALUE OF THE INTERELECTRON 
INTERACTON 

In the case that we have considered (Z = 0, 2, #O) the 
critical value of the parameter z T , at which the metastable 
state is first formed on the defect, is determined from the 
condition for the appearance of a nonzero solution of the set 
of equaitons 

where the matrix S is determined by the set of equations (1 8) 
and is equal to 

S(m, m,) =21(m, m,) +Z(m+m,) 

The matrix S (m, m,) must be taken at the point (Sx, Sy) = 0. 
We denote by A; the eigenvalues of the matrix S and by F(K, 
i) the corresponding normalized eigenvectors. Then the 
point of instability is determined from the condition 

det {h:~ (k, i) +Gk,lZICF (I, i) ) =O. (25) 
The solution of the set of equations (23) at the point ZT  is 
proportional to the vector 

where 
ti= [2hi(l-HoIH,z)~n3"B~~l '", (27) 

(C; ) is a vector normalized to unity. 
As was pointed out in Ref. 7, the relatively easy onset of 

instability is connected with the anomalously small value of 
the first eigenvalue of the matrix S. For the determination of 
the numerical value of the quantity ~f we have restricted 
the matrix to the size ( l o x  10). The critical value of z;, the 
eigenvaluesil; , the vector Ci and the first eigenvector F(k,  1) 
are equal to 

Z; =-0.89; {h,} ={0.04; 0.278; 0.406. . .), 
{C,} ={0.741; -0.504; 0.295; 0.187; -0.197; 0.115. . .), 
{F (K, 1) )  ={0.233; -0.306; -0.548; 0.535; -0.228; 0.215; 

0.3; -0.264; 0.057; -0.053). (28) 

Using Eq. (19), we rewrite the criteria (38) for formation of 
the metastable states on the defect in a more illustrative 
form: 

( e ~ . 2 ) ~  J h r g ,  (r) =-1.8~ (I-H0/He2) ', (29) 

where 

It follows from Eq. (29) that the metastable states are 
easily formed only at g, < 0, i.e., for defects that have a high- 
er transition temperature than the Tc of the matrix. 

In the case of a small supercriticality, the form of the 
perturbtion of the homogeneous state is determined by Eq. 
(26). We find the amplitude Y as a function of the displace- 
ment (Sx, Sy) and the value of the jump in the free energy. For 
this, we must consider the nonlinear terms in Eq. (18). We 
define as follows: 

wherem,,m,=0,2,6,8 ,...., m = 1 + 6 ( K - 1 ) , K = 1 , 2 ,  
3, ... . 

From the set of equations (18), we obtain the following 
form = 1 + 6(K - l), K = 1,2, 3... with account of Eq. (30) 

(Do, Dz*, De, DB*.. .)=Y{F(K, z)) ,  
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In Eq. (31), m, m, = 1, 7, 13 ,... . The matrix Wis equal to 

W(m, mi)=- I (21 (m, m,) +I (m+m,) 
3"'pa 

) 5 -n6m,m,. 

(32) 

Dm= z s ( z )  Y(K, j), m=1+6(K-I), K=l, 2,3.. . , 
f 

(33) 

where Y(K, j) is the normalized eigenfunction of the matrix 
W corresponding to the jth eigenvalue p, ; 

where 
T,= ( ~ c L .  (1-HoIHa) In)  '"a 

Using Eqs. (26) and (33) for the coefficients D m ,  we can 
obtain a cubic equation for the quantity Y by the standard 
method. To this end, the set of equations (18) must be mulit- 
plied on the left by the column (26) and integrated with the 
respect to z. As a result, we get 

0.1641 Y I 2Y+1.036ZlY+ 2,84(6x+i6y) -18-[Y I2(6x+i6y) =O. 

(36) 
The last term in Eq. (36) is small in the supercriticality pa- 
rameter SZ, and is needed only for an estimate of the region 
of applicability of Eq. (36). For its calculation, it is first nec- 
essary to find the matrix W,(m, m,) (m = 0, 2, 6, 8, ..., 
m , = 1,7, 13, ...), which is proportional to the small param- 
eter (Sx + iSy). This matrix is easily found from Eqs. ( 18) and 
we shall not write it out. 

Setting 

6x+i6y=peiq, Y=yeiq, (37) 

weobtain for thequantity Yat the point ofdiscontinuity Ydi, 
and in the final state Y,, 

The jump in the free energy in the transition from the metas- 
table state to the stable state can be found from Eq. (5): 

Using the equations (38) for the quantity Ein the initial and 
final states, we reduce Eq. (39) for the jump in the free energy 
to the form 

Comparing the two terms in Eq. (38) for ydiS, we find 
the region of applicability of Eqs. (36), (38) and (39): 

4. FORMATION OF METASTABLE STATES ON 
INHOMOGENElTlES OF THE MEAN FREE PATH OF THE 
ELECTRONS 

The study of metastable states formed on inhomogene- 
ities of the mean free path of the electrons (Z #O, Z ' = 0) is a 
more difficult problem, since the development of the insta- 
bility takes place against a background of a finite perturba- 
tion of the homogeneous state by the defect. The smallness of 
the first eigenvalue of the matrix S will be of major impor- 
tance for us. 

As follows from the set (18), the presence of the defect 
(Z $0) leads to the appearance of non-vanishing values of 
Dm with m = 1,7, 13, .... With accuracy up to terms of sec- 
ond order, we find 

The matrices K $ are determined in the following way: 

where 

m=1+6(K-I), ml=1+6(Kt-l), m,=1+6(K2-I), 

K, Kt, Kz=l, 2, 3 . .  . 
The quantity B is connected with the constant 2 by the rela- 
tion 

a 

(y + B'C 
ZJV py'I2 ( p y ' / ~ f ~ , " ~ f ~ j " z )  

}. (44) 

As was noted above, the instability develops in the sub- 
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system m = [O, 2, 6, 8, ...I. At the point of instability there 
appears a nonzero solution of the homogeneous set of equa- 
tions. 

- X aaDm 
,-+- ,/,' C ~ ( m , m . ) ~ r n ,  

( I - H )  dz2 3 P A  
mt 

+ L x  Q (v ,  I )  I? (m, mi) Dm,=O; 
3"'SA 

(45) 
"J", 

The matrices E (m, m,) in Eq. (45) are defined as fol- 
lows: 

EY (m, nz) 

where 
m 1 = 1 + 6 ( K - l ) , K = 1 , 2 , 3  ..., m,m2=0 ,2 ,6 ,8  ... 
We are interested in the solution of the set of equations 

(45) that corresponds to the lowest value of the parameter 2. 
The basic contribution to this solution is made by the eigen- 
function F(K, 1) of the matrixS. The corrections can be found 
from perturbation theory. As a result, we get 

x C exp(-lzl (t,+T,+T,,)) hl"+yv," exp (-121 (ti+T,) ) -- 
(h,'h+y,"+y,,'h) ~ - h ,  hi'" (hi'"+yv'") ,-hi 1 

where 

The critical value Z' at which the metastable states first 
appear is found from the condition of the vanishing of the 
jump in the derivative at z = 0 of the expression in the curly 
brackets of Eq. (48). Numerical evaluation gives the follow- 
ing values for & and B: 

The criterion (50) for the formation of metastable states can 
be written more illustratively in the form 

We now proceed to the calculation of the free-energy 
jump in the transition from the metastable to the stable state. 
For this we must first find in the quantities Dm the term that 
is proportional to ( Y 1'. From the set of Eqs. (18), with ac- 
count of (42) and (47), we find 

ZY(1,  v )  -- exp (-1.4 T v )  

where 

In Eq. (53), m, = m(K,), m, = m(K,), and the function m(k ) 
is determined by Eq. (49). In Eq. (52) we keep only the first 
term of the expansion. The remaining terms are omitted by 
us because of their cumbersome nature. In the numerical 
calculations, we have kept terms up to the second order of 
smallness inclusive. 

In the supercritical region, at values of z close to 2, 
the form of the solution is, as before, determined by Eqs. (47) 
and (52), and it is necessary to find only the value of Y. For 
this purpose, we multiply the subset { 6K, 6K + 2 ] of the set 
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of equations (18) by the vector (Do, D,, D,, ...)* and integrate 
over z. As a result of the numerical calculation, we obtain a 
cubic equation for the quantity Y: 

0.1831 Y /2Y-0.66ZY+ 4.07 (6x+i6y) -38.3 1 Y I "(6z+i6y) =O.  

(54) 
We set 

6x+i6y=pe1', Y=Ye". (55) 

From Eq. (54), with account of Eq. (55), we find the value of 
Y at the point of the discontinuity Y,,  and in the final state 

The jump in the free energy is determined by Eq. (5)  and is 
equal to 

Substituting the value of Y in the initial and final states in 
(57), we obtain 

From (56), we find the region of the supercriticality pa- 
rameter S z in which the Eqs. (54),  (56) and (58) are valid: 

On the edge of the region of applicability, the term propor- 
tional top in Eq. (56) becomes of the same order as the princi- 
pal term. 

At low density of the defects, we can neglect their mutu- 
al influence. In this approximation, the density of the critical 
current j, is proportional to the defect density n .  The pres- 
ence of a transport curent leads to the appearance of a mean 
force acting on the vortex latice. The condition of the vanish- 
ing of the total force acting on the vortex lattice allows us to 
express the critical current density j, in terms of the jump of 
the free energy: 

jCB=n69/d,  (60) 

where n is the density of the defects, S F  is the jump of the 
free energy at a single defect, ii is the mean distance between 
jumps at a single defect. For small values ofp,,, , 

where a is the period of the vortex lattice. 
From Eqs. (60) and (61) we find the expression for the 

critical current density of the pinning: 

j,B=2n69pdis(eH) "'!n. (62) 

Equations (40), (58) and (62) completely determine the criti- 
cal current density of the pinning near the threshold. How- 
ever, as follows from Eqs. (41), (59) saturation is very quickly 

reached in the parameter of interaction of the vortex lattice 
with the defect. The character of the solution at large values 
of the interaction parameters z and 2, has not been studied. 
If we assume that saturation of the pinning forces does occur 
when the values of 6 2  and 6 ~ ,  determined by Eqs. (41) and 
(59) are reached, in this case 

j,B-.t (I-Zf/H,,)'". (63) 

5. CONCLUSION 

Small-size defects, whose interaction with the vortex 
lattice prevents the entry of the core of the vortex into the 
defect, destroy the metastable state of the vortex lattice Io- 
calized near the defect. The transverse size of such a state is 
of the order of the correlation length g ( T ) .  However, for nu- 
merical reasons, the radius of the state in the transverse di- 
rection turns out to be comparatively large: -66 (T). In the 
longitudinal direction, because of the numerically small val- 
ue of the first eigenvalue of the matrix s, a very slow falloff 
takes place in the deviation of the vortex 

-exp (-0.09 1 z 1 (1-Ho!EZL2) ' " / E  (T) ) . 
By the same token, the state that is formed has the shape of a 
strongly elongated cigar. The effective volume of the metas- 
table state turns out to be anomalously large: -2500g 3 ( T ) /  
( 1  - H a ,  ) ' I2 .  This circumstance can have a decisive val- 
ue, since even at low density of the defects an overlap of 
states arises and it is necessary to take into account the mutu- 
al influence of the impurities. This means that in the pure 
form, single-particle pinning can be realized only at very low 
defect'density. The presence of several defects in the volume 
necessary for the formation of the metastable state cannot 
only sharply lower the threshold condition (29) and (5 I),  but 
also significantly change the dependence of the critical cur- 
rent density (63) on the temperature and on the value of the 
external magnetic field. Evidently, the anomalously large 
volume necessary for the creation of the metastable state can 
explain the strongly nonlinear dependence of the critical 
current density of the pinning on the density of the defects." 
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