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The relaxation rate T; ' of the energy of nonequilibrium electrons scattered by holes in ap-type 
semiconductor placed in a strong magnetic field is calculated. It is assumed that the electrons are 
excited to the lower Landau level, and the masses of the electrons and holes are substantially 
different (me <mh ). The character of the relaxation depends on the ratio of the width AE of the 
energy distribution of the electrons to the distance fioh between the Landau levels for the holes. 
At A E < h h  the energy losses by the electrons become discrete. This leads to the appearance of 
oscillations of T; in the electron energy region E Z  fro, and to a conversion of the initial narrow 
energy distribution of the electrons into a sequence of peaks with distances ?hh between them 
along the energy axis. The energy relaxation of the broad distribution (AE)?hh ) is not substan- 
tially influenced by a quantizing magnetic field. This distinguishes the mechanisms considered 
here from ordinary electron-electron scattering. The possibilities of experimentally studying elec- 
tron-hole scattering in a magnetic field are discussed. 

PACS numbers: 72.20.Dp, 72.20.M~ 

INTRODUCTION 

A strong magnetic field H acting on a semiconductor 
alters the wave functions and the energy spectrum of the 
carriers. This influences the characteristic frequencies of the 
relaxation processes in the carrier system. It is well known, 
e.g., that pair collisions of electrons do not lead in the ultra- 
quantum limit to relaxation of the energy disequilibrium and 
to establishment of an effective electron temperature T, 
(Ref. 1). Energy exchange between the electrons becomes 
possible only in collisions that occur in the field of an impuri- 
ty or of a third electron.' The magnetic field modifies also 
the elastic and inelastic scattering of electrons by phononsls3 
and imp~ri t ies .~ The changes of the dynamics of the carriers 
and of the relaxation frequencies in a magnetic field are re- 
flected in the kinetic properties of semiconductors.'"-* 
When the majority carriers in a semiconductor are excited, 
the nonequilibrium distribution function is formed with par- 
ticipation of the relaxation mechanisms described above. 

When minority carriers are excited, or in the case of 
intense bipolar excitation: it is necessary to take into ac- 
count also one more relaxation mechanism, electron-hole 
scattering. We calculate in this paper the rate T; of relaxa- 
tion of the energy of electrons excited to the lower Landau 
band when they collide with holes. In semiconductors with 
substantially different effective camer masses (me <mh ), the 
cyclotron frequencies of the electrons and holes also differ 
greatly: we )oh. If the characteristic scale AE of the change 
of the electron distribution function is less than wh (we as- 
sume here and elsewhere fisl),  quantization of the hole 
spectrum by the magnetic field manifests itself in T; '. If, 
however, A E , a w h  (Tis the hole temperature), the hole mo- 
tion can be regarded as classical. In the latter case the three- 
dimensional character of the hole motion causes the magnet- 
ic field to influence the frequency T, ' weakly; the T& '(E) 
dependence in the region of energies E of electron motion 
along the field H and of temperatures T, 

differs from T-  (E ) at H = 0 only in that the Coulomb loga- 
rithm is changed. 

Electron-hole collisions can be the basic channel for en- 
ergy relaxation of hot electrons even at moderate densities n 
of the equilibrium holes. An estimate shows that, e.g., in p- 
InSb with n - loL6 ~ m - ~  the value of T; '(E) in the entire 
region (1) is larger by two orders of magnitude than the fre- 
quency of the electron energy relaxation on phonons.1° 

At AE<oh the variation of the electron energy in the 
course of electron-hole collisions becomes discrete. This 
transforms the initially narrow energy distribution of the 
electrons into a sequence of peaks separated along the energy 
axis by wh ; in the energy region E k oh the quantity T; '(E ) 
becomes oscillatory. The simplest form of these oscillations 
occur in a semiconductor with a nondegenerate valence 
band: the maxima of rG1(E) are located at the points 
E = Iw, ,I = 1,2 ...; at E < o h  the relaxation rate T; '(E ) is 
exponentially small. 

We calculate the relaxation frequency assuming the 
density of the excited electrons to be low enough for the 
collective effects in the electron system1' not to manifest 
themselves. 

DIFFUSION APPROXIMATION IN THE KINETIC EQUATION 
FOR ELECTRONS 

The condition ( I )  makes it possible to neglect the subdi- 
vision of the hole spectrum into Landau bands. For elec- 
trons, on the contrary, only the lower Landau band can be 
regarded as filled. The electron-hole collision integral can be 
obtained by suitable simplification of the general expression 
given in Ref. 12 for a magnetized plasma. Another calcula- 
tion method is to construct a collision integral on the basis of 
a simplified expression for the matrix element of the Cou- 
lomb interaction: under the assumptions made, the states of 
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the holes can be described by plane waves. Both methods 
lead to the same result: 

(4ne2) 
Z { f )  = (2n)  -' J dp, dkzl dkzS (p+kz-pi-kzi)7 

(2) 

Here AH = ( c / e ~ ) " ~  is the magnetic length, the field H is 
directed along thez axis,p is the electron momentum (direct- 
ed along thez axis), k is the hole momentum, k : = k : + k :, 
the subscript I corresponds to the state of the particles after 
the scattering, f and Fare the electron and hole distribution 
functions, and E~ is the dielectric constant. The distributions 
f and Fare assumed to be spatially homogeneous. 

In the case of a smoothly varying function f (E)  (at 
(T/mh)'/2AH-'df/aE.< f )  we can use in (2) a diffusion ap- 
proximation that yields 

(3) 
The coefficients J, and J,, are respectively equal to 

v =p/m, and u = k/mh are the velocities of the electrons 
and holes. Calculating (4), we eliminate the logarithmic di- 
vergence of the integral with respect to q,  in the usual man- 
ner,' introducing the Debye screening radius r,: 

e4LH I U-uZl3uL2 2rD2 
J,, = - LH=ln - 

2iT2~02 [ ( u - u ~ ) ~ + ~ L ~ ~ ] ~  ' y h ~ ~  
(6) 

(y is the Euler constant). It can be seen from (4)-(6) that the 
magnetic field leads to anisotropy of J,  and J,,, but the 
absolute values of these coefficients are practically indepen- 
dent ofH. Substituting in (3) the Maxwellian distribution for 
the holes and using (5) and (6), we obtain for the electrons an 
equation of the Fokker-planck type: 

The diffusion coefficient G (v) is equal to 

Here p = mh v2/2T, li ( x )  is the integral logarithm. In the 
velocity region v)ii = (2T/m,)'12 of practical interest we 
havep) 1 andg(p) zp -  3/2; the relaxation rate 7-6 '(E ) of an 
electron with energy E = p2/2m, is 

T*~-' ( E )  = L H ~ O - l  ( E ) ,  T ~ - '  ( E )  =23/2ne4mk' n / ~ ~ ~ m ~ E ~ ~ ~ .  

(9) 
Equation (9) differs from the corresponding expression for 
the case H = 0 only in the form of the Coulomb logarithm 
L,. Thus, the magnetic field does not suppress the energy 
transfer from the electrons to the holes. 

If multiparticle collisions2 establish in the electron sys- 
tem an effective temperature T, , the interaction of the elec- 
tron with the holes causes Te to approach the value T. The 
corresponding relaxation frequency $, which enters in the 
equation 

I"@=-vTH (T.-T) , 

can be obtained with the aid of (7) and (8). Calculations car- 
ried out with allowance for the inequality m, /me > 1, yield 

vTH=8n-'" ln (0.18mh/m,) L,T,-' (T) . ( lo) 
Comparing $ with the corresponding quantity v, at H = 0, 
we find 

Here L is the "usual" Coulomb logarithm. It follows from 
(1 1) that at a sufficiently high ratio mh/me the value of yf/ 
can exceed v,. The physical reason for this result is that the 
electrons interacting most effectively with the holes are 
those with velocity v z i i ( C  = ( 2 ~ / m , ) " ~ .  At a fixed effec- 
tive temperature Te in a strong magnetic field there are more 
such electrons than at H = 0, owing to the square-root sin- 
gularity in the state density. 

ExperimentsI3 on GaAs offer evidence that in the case 
H = 0, under intensive photoexcitation of the semiconduc- 
tor, the effective electron temperature is close to the effective 
hole temperature. This makes it posible, when describing the 
evolution of the electron-hole plasma, to assume the effec- 
tive temperature to be the same for both carrier  group^.^ 
Equation (1 1) shows that a similar approximation holds also 
at H #O. 

RELAXATION OF A NARROW ENERGY DISTRIBUTION OF 
THE ELECTRONS 

Electron-hole collisions with a magnetic field lead to a 
discrete change of the electron energy by an amount propor- 
tional to oh. The discrete character of the energy transfer 
should manifest itself only in the case of relaxation of a nar- 
row (in energy space) electron distribution. Such a distribu- 
tion can be produced, e.g., by transferring the electrons into 
the conduction band by monochromatic light. To obtain re- 
laxation of such a distribution or to determine the form of 
the stationary nonequilibrium distribution it is necessary to 
calculate the time of departure of the electron from the ini- 
tial state, with allowance for the splitting of the hole spec- 
trum into Landau bands. Inasmuch as in one collision act, 
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under condition (I), the electron energy changes by an 
amount 

we can confine ourselves to quasiclassical allowance for the 
quantization of the hole motion by the magnetic field. Corre- 
sponding to this approximation is a change from integration 
with respect to the continuous variables k, and k,, in (2) by 
summation over the levels 

1=k~'/2mh01, li=kl?/2mh0h; 

I, 1i,1, 1 All  = 1 li-11 al, 1%. 

Carrying out the calculations on the basis of (2) with the 
indicated substitutions, we find that the reciprocal time of 
electron transition with a change oh A1 in its energy is 

Here 

@ ( y) is the error integral; K (z) is a monotonic function, 
K (0) = 1, and the asymptotic expression K (z) -exp( - z2) is 
valid asz- UJ . When deriving (12) we took into account that 
u>E; this inequality ensures exponential smallness of the 
probability of the transition with A1 = 0. Comparison of (12) 
with (9) shows that 7 A l ( ~ H a t E - o e ,  
lAl I 5RH(2mh T)'I2<i. Thus, the narrow electron distribu- 
tion breaks up within the short time rA1 into approximately 
RH(2mh T ) " ~  peaks that are symmetric about the initial en- 
ergy E,. Next, after times -rH(E ), this distribution relaxes 
in energy. In contrast to rH,  the characteristic time rAl given 
by Eq. (12) describes a process in which the average electron 
energy remains unchanged, since rAl = r - ,, . 

At low electron energies (E 2 oh) and low temperatures 
( T c o , )  one scattering act can transfer an electron to the 
bottom of the Landau band. The discrete character of the 
energy transfer in this case leads to a nonmonotonic depen- 
dence of the reciprocal relaxation time T; '(E ). (The distri- 
bution is assumed narrow, as before.) Investigating T; '(E ), 
we confine ourselves to the simplest case of a nondegenerate 
valence band, when the spectrum of the holes in the magnet- 
ic field is equidistant and the dependence of the hole energy 
on k, is characterized only by the mass mh . Using the colli- 
sion integral from Ref. 12, we represent T; '(E ) in the form 

OD 

- 
l n i  

1 
Ti-' (E) = - p2-piZ kz2-kzi2 

(2n) '11 
dp, dk,6 (-- + - - 

2me 2mh lah) F(kz) 

In (15) we took into account the fact that the holes fill only 
the lower Landau band. The rate of relaxation (14) at T<we 
has sharp maxima due to the vanishing of the final-state elec- 
tron momentump,. At me (m, these maxima occur at the 
points E = Io,,l = 1,2, ... . The form of the maxima can be 
established by retaining in (14) only one term 7,- '(E ), which 
is "resonant" at IE - lo, I (oh: 

E 
rl-' (E) = , E=1ah, 2 (16b) 

( I )  - Ih ,  x-IBTlo,, 
R ( = 2 - (  ( l a / ) ,  x=l. 

~/2(~-~i)-'~~~p{-(zae/~)(~-~~)}, I-X>T/GL. 

(164 
Here rO(E ) is defined by Eq. (9) and e in (1 6a) is the base of the 
natural logarithm. Equations (16) show that the approach to 
the next maximum from the higher-energy side follows a 
square-root law, and the decrease from the lower energy side 
is exponential. The amplitudes of the T; '(E ) spikes are pro- 
portional to 2-1(we/~)"4  and decrease rapidly with the 
number I .  At E>wh the monotonic part in r; '(E ) predomi- 
nates: 

E 2e2Emh (E) = - zo-' (E) In - 
40, YWhme 

The general form of the r; '(E ) dependence is shown sche- 
matically in the figure. Formulas (16) can be easily general- 
ized to the case when the strong inequality me (mh is not 
realized, but nevertheless me < mh : the r; '(E ) dependence 
does not change qualitatively at E < we ; r; ' has maxima at 
the points 

E= (l+m.lrnh) 1% 

Our assumption that the valence band is not degenerate 
at the point p = 0 is realized in semiconductors with wurt- 
zite crystal s t r~c tu re , ' ~  e.g., in CdSe and in CdHgS alloys.I5 
The degeneracy of the valence band is lifted by uniaxial de- 
formation.I6 The obtained equations (16) and (17) are there- 
fore valid for deformed crystals of III-V semiconductor 
compounds. The absolute value of T; '(oh ) for InSb (in the 
absence of degeneracy) at H z 2 0  kOe, Tzwh,n-0.5.10'" 
cm-3 amounts to - 10" sec-'. This exceeds the frequency 
of electron relaxation on acoustic phonons 

Electron-electron collisions at nonequilibrium-electron den- 
sities n, < 0.06 n likewise do not mask the nonmonotonic 
character of T; '(E ). In the case of a degenerate band the 
Landau levels are not equidistant," and the dependence of 
the hole energy on k, becomes nonquadratic; the shape of 
the Landau band depends on the direction of the field H 
relative to the crystallographic axes. I 8 7 l 9  This leads to a more 
complicated 7,- '(E ) dependence than that considered above. 
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FIG. 1. Schematic form of the dependence of the rate of relaxation of the 
narrow distribution on the energy, see Eqs. (16). 

The foregoing calculations were made under the as- 
sumption of a Maxwellian distribution of the holes. Fermi 
degeneracy under the condition we $ph  bh is the Fermi ener- 
gy of the holes) has practically no influence on the times 
r; ' ( E )  determined by Eqs. (9)  and (17). The dependence of 
T,, on A1 at E$w, [see (12)] becomes asymmetrical: T,, = 0 
at A1 < 0 and T = 0. The positions of the maxima of T; ' (E ) 
remain the same as before; with decreasing temperature the 
maxima become sharper and at T = 0 kinks appear at the 
extremum points of T; ' ( E  ). 

Electron relaxation in a magnetic field can be studied by 
investigating the luminescence spectrum of the photoexcited 
 electron^.^ In this case, by varying the spectral composition 
of the excited light, it is possible to produce either a broad or 
a narrow distribution of the electrons. The time of the energy 
relaxation of the broad distribution yields information on 
the relaxation rate (9).  In the case of a monochromatic exci- 
tation, on the other hand, the photoluminescence spectrum 
should contain lines corresponding to discrete changes of the 
electron energy in collisions with holes. The intensity of 
these lines relative to the background due to the electron- 
electron and electron-phonon scattering is proportional to 
r4; I .  

Electron-hole scattering should manifest itself also in 
the photoconductivity produced by the excited electrons. 
The nonmonotonicity should, e.g., lead to oscillations of the 

photocurrent.6 However, to observe these oscillations the 
degree of doping of the sample and the excitation intensity 
must apparently satisfy stringent conditions: on the one 
hand, the electron component of the current should be suffi- 
ciently large to be experimentally observable against the 
background of the hole component, while on the other hand 
at high electron densities the oscillations will be masked by 
the electron-electron scattering. 

The author thanks V. F. Gantmakher and I. B. Levin- 
son for helpful discussions and useful remarks. 
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