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We investigate the following: a) nonlinear relaxation of spin waves (SW) in direct resonant transi- 
tions in a paramagnetic impurity, b) SW relaxation via two- and three-magnon processes with 
transitions in the impurity, c) nonlinear "slow" SW relaxation assuming the SW frequency to be 
small compared with the level spacing. In the study of the "slow" relaxation due to modulation of 
the spacing of the paramagnetic-impurity levels by the spin waves, it was observed that this 
modulation can cool the impurity subsystem. The calculation results are used to interpret the 
experimental data on parametric excitation of SW in antiferromagnetic crystals. 

PACS numbers: 75.30.Ds, 75.30.H~ 

91. INTRODUCTION 

The strong splitting of the levels of impurity paramag- 
netic ions in antiferromagnets, due to the lattice crystal field, 
to exchange interaction with the spins of the neighboring 
atoms, and to spin-orbit interaction, causes the spacing of 
the lower levels of paramagnetic ions to become comparable 
with the spin-wave (SW) frequencies. Because of this, besides 
the elastic scattering of the SW by the impurities, an impor- 
tant role is assumed in the SW relaxation by processes ac- 
companied by energy transfer from the SW into the impurity 
subsystem. It is known that such processes make a substan- 
tial contribution to SW relaxation in ferromagnetic yttrium 
iron garnet (YIG) when the latter contains paramagnetic im- 
purities (see Ref. 1). Crystals of the antiferromagnets used in 
experiments on parametric excitation of SW likewise con- 
tain usually a definite fraction of paramagnetic imp~ri t ies ,~ 
and therefore a calculation of the linear and nonlinear relax- 
ation of SW on paramagnetic impurites in antiferromagnets 
is of considerable interest. 

One can single out several SW-relaxation mechanisms 
connected with energy transfer to the impurity subsystem. If 
the SW frequency coincides with the distance between two 
lower levels of the impurity, direct resonant transitions with 
absorption of one SW are allowed. There exist, however, also 
processes that do not require this equality. These include the 
two-magnon inelastic scattering of SW by an impurity, with 
a transition within the impurity ion, and also the three-mag- 
non processes of coalescence and decay of SW, accompanied 
by a transition within the impurity. Finally, there exists also 
a mechanism of "slow" SW relaxation,' connected with mo- 
dulation of the distance between the lower levels in the impu- 
rity paramagnetic ion by the spin wave. 

The present paper is devoted to a systematic study of the 
contribution of such mechanisms to a linear and nonlinear 
SW relaxation. We emphasize that some of the problems 
that arises here were already discussed in the literature. The 
contribution made to linear SW relaxation by direct reso- 
nant transitions between impurity levels was calculated in 
Refs. 3-6. In Refs. 6 and 7 was constructed a phenomenolo- 
gical theory of linear "slow" relaxation on paramagnetic 
ions; this theory is valid when the distance between the lower 

levels in the impurity ion greatly exceeds the frequency of 
the modulating spin wave. In Ref. 8 is proposed a quantum 
theory of linear and nonlinear "slow" relaxations, which re- 
quires no definite relaxations between the SW frequency and 
the spacing of the lower level of the impurity, but which 
presupposes that the frequency of the relaxation of the popu- 
lation of the impurity levels y,, is much less than the spin- 
wave frequency; this theory is therefore valid only at suffi- 
ciently low (helium) temperatures. 

Taking the foregoing into account, we discuss in the 
present paper the following topics: a) linear relaxation of 
spin waves in direct resonant transitions in an impurity; b) 
relaxation of spin waves on account of two- and three-mag- 
non processes at higher temperatures, assuming a low SW 
frequency compared with the interlevel distance. We note 
that the problem of calculating the nonlinear relaxation of 
spin waves is itself connected at the present time principally 
with the need for a theoretical interpretation of the numer- 
ous results obtained in experiments on parametric excitation 
of spin waves. 

The energy spectrum of the parametric impurity ions in 
antiferromagnets is formed by the actions of the Coulomb 
interaction between the electrons within the atom, of the 
effective electric crystal field due to the particles surround- 
ing the ion, of the external magnetic field, and of the ex- 
change interaction with the spins of the neighboring atoms 
of the host lattice. 

The action of the crystal field is always weaker than the 
Coulomb interaction of the ion with its electrons. The crys- 
tal field is regarded as "weakw9 if it is incapable of breaking 
the bond between the orbital and spin moments of the entire 
unfilled electron shell. This case is realized, in particular, in 
rare-earth ions, since they have a deeply lying unfilled elec- 
tron shell that determines the magnetic properties of the 4f 
ions and is screened by the outer 5s and 5p electrons. The 
crystal field is called "a~erage"~ if its action is stronger than 
the spin-orbit coupling but is much weaker than the interac- 
tion between the electrons inside the ion. A similar situation 
arises, e.g., in paramagnetic ions of the iron-group elements, 
since their unfilled electron shell is the outer one. 

The character of the splitting of the energy levels of 
paramagnetic impurity ions by the crystal field is deter- 
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mined to a considerable degree by the symmetry of the field. 
For impurity ions with an even number of electrons, the 
crystal field can lift completely the degeneracy of the level at 
a sufficiently low (e.g., rhombic) symmetry of this field. In 
the case of a half-integer spin the energy levels of the impuri- 
ty paramagnetic ion remain at least doubly degenerate in the 
crystal field. This effect is the consequence of the general 
Kramers theory9: the electric forces are incapable of lifting 
completely the degeneracy of an energy level of a system 
containing an odd number of electrons. A magnetic field 
(including the exchange field), by lifting the degeneracy of 
the ground level of the field, can cause a splitting that lies in 
the microwave region. 

Also possible are close non-Kramers doublets. If the 
symmetry of the crystal field is higher than rhombic, some of 
the levels produced under its influence remain doubly degen- 
erate. Further small splitting of these levels is due to local 
distortions of the crystal field, caused by dislocations and 
other crystal-lattice defects. The resultant splittings have a 
random spread. 

Another type of non-Kramers doublet consists of two 
singlet levels that turn out accidentally close to each other. 
Accidental approach of the levels is observed, e.g., in the 
energy spectrum of a Pr3+ ion in YIG.' 

Calculation of the spectrum of the impurity paramag- 
netic ions is not the purpose of this paper, and we assume this 
spectrum to be given. The spectrum of the impurity ions 
Yb3+ in dodecahedra1 sites of the crystal lattice of the YIG 
were considered in Ref. 10, and for impurity terbium ions in 
YIG such a calculation was carried out in Ref. 1 1. The spec- 
trum of the Fe2+ ion in an antiferromagnet of the "easy 
plane" type of rhombohedral symmetry, MnCO,, was inves- 
tigated in Ref. 12, and that of Mn2+ ions in the two-dimen- 
sional antiferromagnet K2CoF, was investigated in Ref. 13. 

In an experiment14 on a sample of antiferromagnetic 
MnCO,, containing according to Ref. 2 paramagnetic im- 
purities with concentrations 0.35% Fe, 0.04% Ni and 0.01- 
0.45% Co, a sharp peak was observed in the spin-wave relax- 
ation and can be attributed to direct resonant transitions 
between the levels in the impurity ions of one of the available 
types. It can be assumed that such impurity paramagnetic 
ions are the C02+ ions, whose lowest level is separated from 
the remaining ones by several hundred reciprocal centi- 
meters, turns out to be a Kramers d ~ u b l e t . ~  The Ni2+ and 
Fe2+ impurity ions have an even number of electrons in the 
unfilled ;hell ind their energy levels are therefore fully split 
by the crystal field of the lattice of low rhombohedral sym- 
metry; in this connection, excluding an unlikely random ap- 
proach of the lower levels, one should expect the distance 
between the lower levels in such ions to exceed substantially 
the spin-wave frequency. Therefore direct transitions with 
absorption of spin waves by these ions are impossible, al- 
though they can take part in other processes of interaction 
with spin waves. 

ion with absorption or emission of a spin wave is of the form 

where 6 ,  is the complex amplitude'' of a spin wave with 
wave vector, k, and the operator a,+ effects the transition 
from the ground to the first excited state in an impurity lo- 
cated at the site RJ of the crystal lattice; X i s  the total num- 
ber of sites in the crystal, and expressions for the amplitudes 
YJk are given in Ref. 8. We note that the operators a,+ and a,, 
which pertain to the same site, have Fermi permutation rela- 
tions, while the operators pertaining to different sites com- 
mute with one another. 

The interaction of impurities with the thermostat (ther- 
mal phonons and magnons) will be taken into account phe- 
nomenologically, introducing the transverse y, an the longi- 
tudinal yll relaxation frequencies in the corresponding 
kinetic equations for the population of the upper level of the 
impurity nJ = (aJ+aJ). 

Starting from (I), we can obtain the following equations 
for the average spin-wave intensity N, = (b ,  *b, ), for popu- 
lation n, , and for the quantity (a, ) : 

Here I. = [exp(m,J@ ) + 11- ' is the average equilibrium 
population of the upper level in a two-level atom with dis- 
tance a, between the levels at a temperature O; o, is the 
spinwave frequency. In Eq. (2) for N, we did not write out 
explicitly the terms that describe the damping of the spin 
wave on account of other relaxation mechanisms, and the 
possible interaction with the electromagnetic parametric 
pumping. In Eq. (4) we have changed over to the "slow" 
quantities iij and 8, defined as 

dr=bk exp (iokt) , iij=aj exp ( i u k t )  

In the experiment, the characteristic spin-wave relaxa- 
tion times are always larger by several orders of magnitude 
than the impurity relaxation time. It can therefore be as- 
sumed that the quantities nj and (3)  attune themselves at 
each instant of time of the instantaneous value of the slow 
spin-wave amplitude 8,. By solving the obtained stationary 
equations for (q ) and n,, assuming a low impurity density, 
we determine the steady-state population difference in the 
impurity ion aj = 1 - 2nj, 

§2. SINGLE-MAGNON RELAXATION ON PARAMAGNETIC 
IMPURITIES ~ = ~ o E e l  (Eo+Ee) ( 5 )  

The expression for the contribution to the Hamiltonian where a, = 1 - 21, is the equilibrium population density, 
that describes direct resonant transitions inside an impurity and 6, is given by 
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We assume that spin waves of frequency o, = w,/2  have 
been parametrically excited in the crystal. The total number 
of the parametrically excited spin waves per lattice site is 
5, = N, , /N .  We note that owing to the fluctuations there 
exists a definite scatter Sw in the frequencies of the parame- 
tric spin waves; the size of this scatter, however, is always 
less than y, and can be neglected. 

According to (5 ) ,  an increase in the number of parame- 
tric spin waves leads to a decrease in the population differ- 
ence a, i.e., to heating of the impurities. 

The contribution to the spin-wave relaxation on ac- 
count of direct resonant transitions is of the form 

IYI " 
P . = C ( ~ )  00 YL E. 

71' + (Qo-o,/2)2 E O + E ,  ' 
(7) 

where c is the dimensionless impurity density. 
As seen from (7), with increasing number of parametric 

spin waves the relaxation frequency r, decreases, i.e., the 
nonlinear damping obtained by us turns out to be negative in 
a differential sense, with r k 4  at gO)gc. 

When the spin-wave frequency w,  = w p / 2  exactly co- 
incides with the distance R, between the lower levels of the 
impurity, the spin-wave density reaches its maximum value. 
If the distance R, between the impurity levels depends on the 
external magnetic field we can, by varying this field, make 
f2, equal to wp/2 ,  and the plot of r, against the magnetic 
field should show a sharp peak with a characteristic frequen- 
cy width of the order of y,. 

In experiments on parametric excitation of spin waves 
in antiferromagnets,14 there is actually observed a clearly 
pronounced maximum on the dependence of the turned-off 
part of the spin-wave relaxation on the external magnetic 
field, but its width greatly exceeds the frequency the trans- 
verse relaxation for the impurities. We assume that this is the 
consequence of the inhomogeneous broadening of the reso- 
nant absorption line, due to the random scatter of the dis- 
tance between the lower levels in the impurity ions. The im- 
purity ion that interacts strongly with the lattice and with 
the magnetic moments of the neighboring atoms is always 
sensitive to small surrounding distortions that can be pro- 
duced by dislocations, vacancies, and other defects. As a 
result, the resonant frequency of each ion shifts slightly rela- 
tive to its value for the ideal lattice. 

To take into account the differences in the frequency of 
the transitions between the levels of the impurity ions, we 
shall assume that the frequencies of the impurities have a 
scatter about the fundamental frequency R,, and that the 
distance between the lower levels of the impurity at the site 
Rj can be represented in the form R, = On, + E,, where E, is a 
random quantity with a certain distribution P = P(E). We 
assume for the sake of argument that this distribution is Lor- 
entzian 

P (E) = € /  (E'+E') . PI 
Repeating the reasoning used to derive (7), we obtain 

after additional averaging over the frequency scatter the fol- 

lowing general expression for the nonlinear relaxation of 
spin waves in the case of inhomogeneous broadening: 

where it is assumed that the excited spin waves have a fre- 
quency w,  = w p / 2 ,  and we have introduced the frequency 
detuning 6 = 0, - w,/2.  

In the limiting case when the frequency scatter is ex- 
tremely small (Zdy,), Eq. (9) goes over into expression (7) 
above. In the opposite limiting case &By,, expression (9) can 
be represented in the simpler form 

Consequently the spin-wave damping rk duplicates in this 
limiting case the Lorentzian frequency distribution (8), and 
the width of the resonant peak is equal to the average impuri- 
ty-frequency scatter. 

We note that in (9) and (10) we expanded in terms of the 
parameter go/gc. These equations are therefore valid for rel- 
atively small numbers of parametrically excited spin waves 
(PESW) go. In the opposite limiting case when go)gc, the 
relaxation is completely turned off on account of direct tran- 
sitions [cf. Eq. (7)]. 

03. "SLOW"RELAXATI0N OF SPIN WAVES 

In this section we discuss the contribution made to spin- 
wave relaxation by their modulation of the distance between 
the levels in the impurity ions. In contrast to Ref. 8, we do 
not assume here that the longitudinal relaxation of the im- 
purities y,, is small compared with the spin-wave frequency 
o, , and therefore the results of the calculations are applica- 
ble also to the case of higher temperatures. At the same time, 
we assume that the modulation is smooth, i.e., ok (0,; this 
assumption was not significant in Ref. 8. 

The Hamiltonian that describes the modulation, by the 
spin waves, of the distance between the levels in the impurity 
ions, is of the form 

where 

Expressions for the amplitude of the interaction @,, are giv- 
en in Ref. 8. 

The system of impurity ions interacts also with the ther- 
mostat (the thermal phonons and magnons). This interaction 
ensures relaxation of the population of the upper levels of the 
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impurity ions to the equilibrium thermal value 

I= [exp (AQ/8)  + I ]  -' (13) 

at a distance R between the levels in the ions. The population 
relaxation is described by the kinetic equation 

where yll is the longitudinal-relaxation frequency. Expres- 
sions for yll were obtained by us in Ref. 8. We note that yll 
= yl, (0 ), i.e., it is a certain function of the distance between 
the impurity levels. 

Modulation of the distance between the levels by spin 
waves means that the quantity R = R, + SR (t ) oscillates 
with time. If, as we assume, the characteristic modulation 
frequencies w, are low compared with RO, such a smooth 
change o f 0  can be taken into account within the framework 
of the kinetic equation (14), namely, it can be assumed that at 
each instant of time the population n relaxes to the equilibri- 
um value I [R, + 6.0 (t )], corresponding to the distance 
between the levels at the given instant of time, and this takes 
place at a rate yll [R, + SO (t )I. 

We shall assume that the intensity of excitation of the 
spin waves is not too high, so that the following condition is 
satisfied2' 

Then the quantities I(f2, + SR ) and yll (R, + SR ) can be ex- 
panded in powers of 60 ,  i.e., actually in powers of the ampli- 
tudes b, and b : of the spin waves: ' 

Substituting these expansions in (14) we can seek the solution 
of the obtained equation also in the form of a series in the 
short-wave amplitudes. Equating the terms in the left and 
right sides of this equation, which are of the same order in 
the spin-wave amplitude and which oscillate in time in ac- 
cordance with the same law, we find the system of equations 
that connects these corrections. 

The equation for finding the first-order correction 
Sn ,(t ) to the equilibrium value of the population I, = I (a,) is 
of the form 

d8ni/dt=-y,, (Qo) 6n1+ylI ( Q O )  116Q ( t )  . 

The solution of this equation is given by 

The average spin-wave intensity N, = (b, *b, ) varies with 
time as a result of the interaction (1 1) like 

If we substitute in (18) n, = I, + Sn, and recognize that (b, ) 
= (b,*) = 0, we obtain 

where the linear relaxation of the spin waves on account of 
the modulation of the interlevel distance is of the form 

Here c is the dimensionless impurity density (the ratio of the 
number of impurity ions to the total number of sites in the 
crystal): 

The expression obtained for the linear relaxation agrees 
with the result of the phenomenological "slow"-relaxation 
theory6 constructed for ferromagnets. 

The temperature dependence of the linear relaxation 
is determined by the temperature dependence of the fac- 

tor I' and by the longitudinal impurity relaxation frequency 
yll. The last factor in (20) goes through a maximum at a 
temperature @satisfying thecondition yl, (ao,  O ) = w, . Tak- 
ing into account, however, the temperature dependence of 
the other factors, we cannot state that the relaxation r: will 
reach a maximum precisely at this temperature. Bearing this 
in mind, we have used Eq. (20) for a numerical calculation of 
I' at the following parameters corresponding to the antifer- 
romagnet FeBO,; c = 0.01%, w, = wp/2 = 10" sec-I, 
@ = 10-l4 erg, ok2 = wo2 + oE2(ak)2, w, = 1013 sec-I, 
a = cm, wo2 = g2[H (H + H,)] ,  H, = 100 kOe, and 
H = 0.3 kOe. 

We have assumed that the longitudinal relaxation yll is 
determined by the direct transition between the levels, with 
emission of spin waves or phonons, and used the expressions 
given in Ref. 8 for yll. In the calculation of yll (R ) we have 
assumed Y Ph = lo-' erg/cm and Y m  = erg; the crys- 
tal density was p = 5 g/cm3, the phonon velocity v = 10' 
cm/sec, and the Debye temperature @, = 10-14 erg. The 
calculated temperature dependence of Tz at various dis- 
tances between the levels Ro are shown in Fig. 1. 

The nonlinear effects are determined by corrections of 

FIG. 1 .  Dependence of the linear frequency of the "slow" spin- 
wave relaxation r: on the temperature for antiferromagnetic 
FeBO,. Calculation by formula (20): 1 - 0, = 16-10" sec-', 
2 -ao = 1 4 ~  10" sec-l, 3 - 0, = 12.1011, 4 - 0, = 10.10" 
sec-l. 
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An, I-' 
4 

FIG. 2. Dependence of the deviation An of the population of the 
upper impurity level on the temperature. Calculation by formula 
(22): 1 -0, = 16.10'1 see-', 2 -no = 8.10" 
sec-',3 - 32, = 6-10" sec-', 4 - 32, = 4-10" sec-l. 

higher order to the equilibrium population of the upper lev- 
el. In particular, the change of the population averaged over 
the spin-wave period is given by the time-independent sec- 
ond-order correction 

An= C b k a b k .  
k 

A consistent calculation leads to the following expression for 
An: 

At low temperatures, when yll < a , ,  this expression goes 
over into the corresponding formula of Ref. 8 if it is assumed 
in the latter that Ro%wk. Plots ofdn against the temperature 
Oat different frequencies of the transition between the levels 
are shown in Fig. 2. It can be seen that the action of the 
intense spin waves can lead both to heating (An > 0) and to 
cooling (An < 0) of the impurity subsystem. We emphasize 
that effects of cooling of different two-level systems in inter- 
actions with intense waves were discussed also in Refs. 8,15, 
and 16. 

To calculate the nonlinear damping it is necessary to 
calculate the third-order correction 

to the equilibrium population of the impurity level. Calcula- 
tion shows that for a nonlinear damping coefficient 17, de- 
fined by the relation Tk = Tk O + vgo, the following expres- 
sion holds 

In the derivation of (24) we have assumed that all the excited 

FIG. 3. Dependence of the coefficient of nonlinear damping 7 on 
the temperature. Calculation by formula (24) 1 - 0, = 10.lOLL 
sec-I, 2 -Do = 8.10" sec-l, 3 - Do = 6.10" sec-I, 
4 - Do = 4-10" sec-I. 

spin waves have a frequency w, ; their number per lattice site 
is go = N,,/M. 

The dependence of the coefficient of nonlinear damping 
on the temperature at different values of the distance 
between the levels in impurity ions is shown in Fig. 3. At 
sufficiently high temperatures the coefficient q is always 
negative and tends to zero with increasing temperature. At 
low temperatures, the nonlinear damping reverses sign and 
becomes positive. 

We recall that Eq. (24) was obtained under the assump- 
tion that the modulation frequency is much lower than the 
distance between impurity levels, i.e., w, (0,. For compari- 
son we present also an expression for the nonlinear damping 
coefficient at relatively low temperatures (when yll (a,), 
which is valid at all relations between3' a, and n o :  

1 = c ( ~ ) 4 { r 1 - ' ( ~ 0 )  fioP [yiI (Q. +%) -7, ( I  Q. -$ I ) ]  

It is easy to verify that at o, (a0 it goes over into (24). 

94. TWO- AND THREE-MAGNON RELAXATION OF SPIN 
WAVES ON PARAMAGNETIC IMPURITIES 

The Hamiltonian that describes two-magnon Raman 
scattering of spin waves by paramagnetic impurities, at 
which a transition takes place also between levels in the im- 
purity ion, is of the form 

The interaction amplitude BJklkZ for an easy-plane antiferro- 
magnet is given by the expression 
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1 0 s  =-- (sin el sin cpl~;:' -sin € I ~  sin T~A~:' +i sin €I, cos ipi~;i'  
8 o r  

-i sin 0, cos cp,~::' ) exp {i (k,-k2) Rj), (27) 

where (O,, p,) and (O,, p2) are the Euler angles of the magneti- 
zation of the two sublattices of the antiferromagnet in a coor- 
dinate system whose z axis is difected along the magnetic 
moment of the impurities, and A (1, 2) are the exchange- 
interaction tensors (see the Appendix in Ref. 8). 

The Hamiltonian (26) corresponds to the following kin- 
etic equations for the population n, of the upper level of the 
impurity and for the intensity Nk of the spin waves with spin 
vector k: 

a ) I o ) ,  f l k = 8 r  {n,, Nk) - r k  (Nk-Wk) , 

(28) 
where the collision integrals 9, and 9, are of the form 

We note that a wave with a given wave vector k can partici- 
pate in two types of processes. It  can vanish with production 
of another spin excited state (the secondary spin waves have 
in this case a frequency wkl = (ok - a,). Also possible is 
vanishing of the given wave with production of a secondary 
wave and transition of the impurity from the excited state 
into the ground state (then okl = w, + a,). 

We have also taken into account in the kinetic equations 
(28) the linear relaxation of the spin wave and of the impuri- 
ties, due to the interaction with the thermostat. 

The parametrically excited spin waves fill a narrow res- 
onant layer of width x near a sphere of radius k,(w,, = op/2) 
in k-space. The intense spin waves should alter in this case 
the spin-wave density in two regions: 1) in a narrow layer of 
k-space near the sphere corresponding to the frequency w, 
= wp/2 - a,, and 2) in a similar layer near a sphere on 

which w, = wp/2 + a,. We denote the total number of the 
spin waves in the first and second regions by N, and N2 and 
introduce the quantities l,, = N,,2/N.  If we take into ac- 
count in (28) only processes in which PESW takes part, we 
obtain the following equations for the average population n 
of the upper level of the impurities and for the values of {, 
and 6,: 

Here a = 1 - 2n is the difference between the populations of 
the lower and upper levels of the impurities, and the coeffi- 
cients R andp take the form 

where k , ,  is the wave vector of a spin wave with frequency 
o,,, = wp/2 TO,, and v , ,  is the velocity of this spin wave. 

We are interested in stationary solutions of Eqs. (31), 
which are established at a given number {, of parameterical- 
ly excited waves. The behavior of the quantities close to 
o, = wP/2 - no and w2 = wp/2 + a,, as functions of the 
change of lo ,  turns out to be quite different. To demonstrate 
this, it is convenient to solve the last two equations of (3 1) for 
<, and g,, assuming that the population difference a is 
known: 

I +  (pi/25t0) (cRt/ra) ( I fo)  Eo 
EI=EI" I- (cRilr8) oEo 

I (33) 

Numerical estimates show readily that the coefficients off, 
in the denominators of (33) an (34) greatly exceed the coeffi- 
cients of lo in the numerators of these expressions. Thus, the 
behavior of the quantities <, and {, with increasing 5, is 
determined mainly by the changes in the denominators of 
(33) and (34). Consequently, with increasing number{, of the 
PESW, the number of spin waves with frequencies w, = o,/ 
2 + 0, decreases in comparison with the thermal equilibri- 
um level, whereas the number of secondary spin waves with 
frequencies ok = wp/2 - 0, increases, and at values of a 
close to ( r , / cR  ,lo), the quantity {, exceeds considerably the 
thermal level { y .  

The contribution made to the relaxation frequency of 
the PESW by the direct and inverse processes of the two 
types is given by the expression 

Taking into account the remarks made in the calculation of 
the nonlinear phenomena at large numbers of PESW, we 
neglect in (35) the terms containing <,. 

If we neglect the terms containing f 2  in (3 I) ,  the station- 
ary population difference a of the impurity levels is deter- 
mined by the quadratic equation 

( a a -  c R a - l l  = i / 2p  ( I -  R .  (36) 

The quantity p ,  in the right-hand side of this equation is 
extremely small, p, - (x/k,)k12a2; it is important to take it 
into account only for a correct choice of one of the two roots 
of Eq. (36) on passing through the value go = f,, 

when a crossing of the roots of Eq. (36) with a zero right hand 
side would take place. Choosing that root of Eq. (36) which 
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IB I = 10-"erg, anda = lo-' cm yield the following result: vanishes at a, in the absence of PESW (i.e., at lo = 0), we 
obtain4' 

The total number of secondary spin waves concentrated 
near the resonance surface w, = wp/2 - no in k-space is 
given in this same approximation by the expression 

According to (38), at high pump levels, when the num- 
berlo of the PESW exceeds the critical value gc, the impurity 
system is heated and saturates (a = 0) in the limit go>{c. 
Simultaneously, the number of secondary spin waves near 
the resonance surface w, = wp/2 - 0, increases. It tends as 
c0+ oo to the limit 

We recall also that the spin-wave density near the surface w, 
= wp/2 + 0, decreases as go-, oo from the thermal level to 
zero [see (34)l. Substituting in (35) the expressions obtained 
for the difference of the populations (38) and for the number 
of secondary SW (39), we arrive at the following expressions 
for the correction to the PESW damping5': 

The contribution A T ,  reaches a maximum value 

a t g o = 2 g C .  
Thus, if the crystal contains parametric rapidly relaxing 

impurities, they can play the role of an intermediate channel 
through which the PESW dissipate their energy in the ther- 
mostat. We note that effective inclusion of the relaxation 
A T ,  due to two-magnon processes as well as heating of the 
impurity subsystem are subject to a threshold number of 
PESW. The point is that the decay of a PESW into a secon- 
dary spin wave with simultaneous excitation of the impurity 
begins to "operate" effectively when the rate of transitions of 
the impurities from the ground state to the excited one, due 
to such a proceses, begins to exceed the excited-to-ground- 
state transition rate that ensures energy dissipation of the 
impurities in the thermostat. After the PESW reach a num- 
ber lo corresponding to the critical value J,, the impurity 
system begins to become strongly heated. The heating con- 
tinues until a temperature of the impurity subsystem is es- 
tablished such that the critical value lc becomes comparable 
with the specified value 6,. 

Numerical estimates for the threshold number of 
PESW in a two-magnon process at typical values of the pa- 
rameters c = 0.01 %, Ts = lo5 sec-', w, = 10" sec-l, 

which corresponds to a perfectly feasible, in experiments on 
parallel pumping, excess above the threshold of parametric 
excitation. 

As already noted in $2, one should expect in a real crys- 
tal a certain scatter of the distances between the levels in 
different impurities. We have estimated the role of this scat- 
ter for the considered two-magnon process. 

Assume that the distance between the lower levels of the 
impurity ion located at the site Rj is nj = no + E ~ ,  where E~ 

is a random quantity with a distribution 

Calculating the contribution of E,  to the PESW relaxation 
we find, after an additional averaging over the frequency 
scatter, that the expression for A r k  is given as before by 
formula (40) in this case, provided, however, that the quanti- 
ty a. in (40) and (47) is replaced by the equilibrium impurity- 
population difference averaged over the frequency scatter: 

This does not influence substantially the result of the esti- 
mate for the threshold number of PESW. 

95. CALCULATION OF THE CONTRIBUTION OF THREE- 
MAGNON PROCESSES 

Three-magnon processes with transitions in the impuri- 
ty are described by Hamiltonian terms of the form 

(45) 
The amplitudes Fji,22k, in these terms are given by 

(2) 
-cos 8, cos rp,h~~'+ ~:;'cos O2 cos rp2-ih::' cos 9,-ih,, cos 9, 

-i cos 8, sin rp,&:' -i cos 8, sin r p Z d J )  exp {i (k,+kz-k,) Rj), 
(46) 

+cos 0, cos cp,~,?-cos 0, cos cp?~::) i cos rp,~::; -i cos rp,~?; 

(1)  
+i cos 8, sin cp112, +i cos 0, sin cp,.~~:')exp{i(k,-k,-k3)Rj). 

(47) 
Relaxation of PESW is the result of two processes: co- 

alescence of two PESW into a single secondary spin wave 
with transition of the impurity from the ground to the excit- 
ed state, or with transition of the impurity from the excited 
to the ground state. Because of these processes (and their 
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inverses), a change takes place in the spin-wave density in the 
k-space regions near the resonance sphere w, = o, f 0,. A 
consistent analysis, similar to that in $4, shows that in the 
region w, = o, + 0, the spin-wave density decreases in 
comparison with the thermal equilibrium level, whereas the 
number of secondary spin waves having o, = o, - 0, in- 
creases sharply. Therefore, when studying nonlinear damp- 
ing of PESW we can confine ourselves to the first of the 
foregoing processes. 

Solving in the steady state the system of kinetic equa- 
tions for the population differences of the impurities and for 
the spin-wave density, we obtain in full analogy with $4 the 
following results. 

The average population difference of the ferromagnetic 
impurity ion levels changes with changing number 6, of the 
PESW like 

The number of secondary spin waves concentrated near the 
sphere a, = o, - 0, in k-space is 

Thus, the three-magnon process leads to heating of the 
impurity subsystem whed the number of the PESW exceeds 
a threshold value 

where 

and v, is the velocity of spin wave of frequency w, = w, 
- 0,. Because of this process, an additional contribution 

appears in the PESW damping: 

The maximum of A r ;  is reached at lo = 31'2{: and 
amounts to 

(Ar,l)max=~ylluo/~35hfc. (54) 

An estimate of the threshold number of the PESW for 
the three-magnon process shows that it exceeds the thresh- 
old value for the two-magnon process and is, under the same 
conditions, of the order of lc - 10-6-10-7. It must be noted, 
however, as can be seen from (46), that to realize a two-mag- 
non inelastic process it is necessary that the equilibrium di- 
rections of the effective impurity spin and of the spins of the 
host-lattice atoms be unequal (or that an anisotropic ex- 

change interaction be present). In the case of a three-magnon 
process there are no Huch restrictions. We emphasize also 
that for the two-magnon process to take place it is necessary 
that the distance betwe& the lower levels of the impurity 
ions satisfy the condition 0 , (oP /2  - wo, where wo is the 
minimum possible spin-wave frequency corresponding to 
k = 0. For a three-magnon process the corresponding condi- 
tion takes the form Ro(w, - wo. 

Thus, allowance for the different spin-wave relaxation 
on paramagnetic impurities is most important both for the 
determination of the threshold of the parametric excitation 
of the spin waves in experiments on parallel pumping in anti- 
ferromagnets, and also in the investigation of the above- 
threshold nonlinear behavior of the spin system in this situa- 
tion. 

In conclusion it must be noted that the principal effects 
discussed in the present article, particularly the pheno- 
menon of "slow" relaxation, should be observed also in the 
study of the relaxation of phonons in antiferromagnetic crys- 
tals containing paramagnetic impurities. 

The authors take pleasure in thanking A. G. Gurevich, 
M. I. Kaganov, and L. A. Prozorov for a discussion of the 
results. 
"We describe here spin waves in classical fashion. In the calculation of 
linear relaxation on account of a one-magnon process the quantum and 
classical descriptions yield identical results, and the effects of nonlinear 
relaxation become substantial at high spin-wave intensities, when the 
classical description is known to applicable. 

2'To satisfy this condition it is necessary to have go<@//@ 1. 
3'Expression (25) was obtained by the method described in a preceding 

article.' The corresponding expression given earlier in Ref. 8 did not 
include the last two terms in the curly brackets. Equation (25) is more 
accurate; under typical experimental conditions, the correction, how- 
ever, does not exceed 10%. 

4'This choice is perfectly natural-we are interested in that solution which 
corresponds in the absence of parametric spin waves to an equilibrium 
thermal distribution. 

5 ' J~s t  as above, we leave out of (40) small terms proportional top,.  
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