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We describe soliton excitation of one-dimensional and two-dimensional ferromagnets with easy- 
plane anisotropy, placed in a magnetic field perpendicular to the easy plane. The excited states of 
such a ferromagnet were found to be similar to the excitations of a weakly nonideal Bose gas with 
repulsion between the particles. Thus, 1) soliton excitations analogous to Lieb states in a one- 
dimensional Bose gas exist in a one-dimensional ferromagnet, 2) vortical states similar to vortices 
in a nonideal Bose gas exist in a two-dimensional ferromagnet. A magnetic vortex is considered in 
a bounded ferromagnetic cylinder whose axis is perpendicular to the easy plane. It is shown that 
the state of uniform magnetization is unstable to formation of a magnetic vortex. The role of 
anisotropy in the basal plane is considered. 

PACS numbers: 75.30.Gw, 75.10. - b 
-- . - 

INTRODUCTION 

A theoretical study of the excited states of low-dimen- 
sionality ferromagnets with easy-plane magnetization an- 
isotropy has shown that the excitations of such magnets are 
similar in a certain sense to excitations of a weakly nonideal 
Bose gas with repulsion between the particles. The similarity 
manifests itself in the following: 1) The spectrum of the ele- 
mentary excitations coincides with the Bogolyubov spec- 
trum for a nonideal Bose gas. 2) In a ferromagnet there can 
exist vortical states similar to the nonideal Bose-gas vortices 
described by Pitaevskii.' 3) A one-dimensional easy-plane 
ferromagnet contains, besides excitations of the Bogolyubov 
type, also the soliton excitations obtained in Ref. 2, which ' turn out to be equivalent to Lieb states in a one-dimensional 
Bose " 

In this paper we analyze in detail all the foregoing 
points of similarity between excitations of two different 

M (M2 = M i ;  Mo = 2p,9/a3, po is the Bohr magneton, s is 
the spin of the atom, and a3 is the atomic volume. Since the 
vector M has only two independent components, it is con- 
venient to introduce the angle variables B and q, defined by 

M,=M, sin 0 cos cp, Mv=Mo sin 0 sin cp, M,=Mo cos 0.  

(1) 
Let the ferromagnet have a preferred anistropy axis and 

an easy-magnetization plane perpendicular to it. We choose 
the z axis along the preferred axis and direct along it the 
vector H of the constant and uniform external magnetic 
field. The crystal magnetic energy, neglecting the magnetic 
dipole interaction, then takes the form 

- -- 
pMo2 + - cos2 0-MoH cos 0 ,  

2 - 
physical systems and diruss the consequences of their dif- where a is the exchange constant andB the anisotropy con- 
ference. The main difference is that the nonuniform magne- stant. The latter is assumed positive ( B, 0), thereby specify- 
tization of a ferromagnet is due, as a rule, to the appearance ing the easy plane = ?r/2. 
of a magnetic field in its volume (if div M #O, where M is the If the magnetic field H is weak enough (H <PMo), the 
magnetization vector). Only a nonuniform state of 'pecial homogeneous-ferromagnet ground state that minimizes the 
type (divM = 0) can exist in an unbounded ferromagnet quantity (2) corresponds to 
without a magnetic field. If, however, a ferromagnetic sam- 
ple has finite dimensions, a magnetic field appears in the cp=qo=const, 0=0,=const, cos 0,=H/pM0. (3) 
space outside the sample even if the magnetization is uni- 
form. We shall show that the presence of this field makes the 
state of a uniformly magnetized ferromagnetic cylinder un- 
stable to formation of a magnetic vortex if the cylinder axis is 
perpendicular to the easy plane. To some degree, this insta- 
bility is similar to the instability of rotating superfluid heli- 
um to formation of hydrodynamic vortices in it. 

81. MODEL OF FERROMAGNETIC AND SPECTRUM OF ITS 
ELEMENTARY EXCITATIONS 

We are interested in a magnet subjected to macroscopic 
long-wave excitations such that the state of the ferromagnet 
is described by the field of the magnetization vector 

We see that the ground state of a uniaxial magnet in a 
uniform field perpendicular to the easy plane is degenerate, 
since po can be arbitrary. 

The dynamic equations for the excited states of the 
magnetization field (the Landau-Lifshitz equations), neg- 
lecting magnetodipole interaction, are of the form 

1 acp LoZA0+[l-L,2(Vrp)Z]sin 0 cos 0 + - o. [at  - - 2poH sin 0=0, I 

where A =V2 is the Laplace operator, lo is the magnetic 
length 1: = a/B ), and fro, = Wp0 Mo. 
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Equations (4) have a number of integrals of motion4*' : 
total energy 

total number of spin deviations (number of real magnons) 
M 

N = - (cos 0.-cos 0 )  d3x, 
2vo (6) 

total momentum 

and total angular momentum6 

The weakly excited states of a magnet with energy den- 
sity (2) are described by a gas of elementary excitations (mag- 
nons or spin waves) that are the eigensolution of the linear 
equations obtained from (4) linearized near the ground state 
(3). It turns out that the frequency of a magnon with wave 
vector k is equal to 

o ( k )  ~ ~ o k l o [ l - - ( H / f i M o ) z +  ( lok)2]'h,  H<fiMo. (9) 

The dispersion law (9), apart from the notation, gives 
the Bogolyubov spectrum of elementary excitations in a 
weakly nonideal Bose gas. At I, k41  - cos200 we obtain the 
acoustic dispersion law with sound velocity S = a, 1, [ 1 
- (H/p Mo)2]1/2, which is the minimum phase velocity of 

the excitations. 

2. DYNAMICS OF ONE-DIMENSIONAL SOLITON STATES 

In a one-dimensional easy-plane ferromagnet, besides 
elementary exitations such as spin waves or magnons with 
spectrum (9), there can exist also specific nonlinear soliton 
excitations. 

In Ref. 2 were obtained two types of single-soliton one- 
dimensional solutions of Eqs. (4), which can be regarded as 
elementary excitations of an unusual type. These solutions 
describe waves of rotation of the magnetization vector M, in 
which the deviation of the angle 0 from its equilibrium value 
6, depends on the coordinate f and on the time t only via the 
difference 6 - Vt: 

cos 0-cos 00 = 
h 

( l -vZ-h2)'" (g -Vt )  * ch  
10 I 

(10) 
where we put u = V/V,, V, = w, I,, h = H /B M,. The solu- 
tion (10) with a + ( - ) sign in the square brackets will be 
called a soliton of the first (second) type. Since we must have 
1 - v2 - h > 0 or h < (1 - v ~ ) ~ / ' ,  we get for the soliton of the 
first type O < 8, and at the center of the soliton (6 = Vt ) we 
have cosO(0) = + (1 - u2)'/', while for the second soliton 
6 - 6, and cosO (0) = - (1 - v ~ ) " ~  at the center. 

The gradient of the angle of rotation of the magnetiza- 
tion vector is given by the relation 

The total angle of rotation of the magnetic moment in 
the soliton around the anisotropy axis is 

and depends on the wave propagation velocity. For the soli- 
ton of the first type it is equal to A p ,  = @ (v) - T, and for the 
soliton of the second type to Ap, = @ (u) + T, where 

hv  
UJ ( v )  =2 arctg (1 -vLh2)  'h ' 

The considered soliton solutions exist at 0 < v2 < 1 - h '. 
Thus, the maximum possible soliton velocity coincides with 
the minimum spinwave velocity S. 

The solitons of the first and second type behave differ- 
ently as V + S. The amplitude of the soliton of the first type 
tends to zero, and the soliton becomes fully delocalized. The 
amplitude of the soliton of the second type remains constant 
at the limit V = S, and the excitation is transformed into an 
algebraic (power-law) soliton.' 

Using the explicit form of the solution (lo), we can easi- 
ly find the dynamic integrals of motion E, P, and N for the 
solitons of both types and determine their dependence on the 
velocity V. The ranges of variation of E, P, and N are gov- 
erned by the condition 0 < v < 1 - h '. 

The energy (5) of the soliton of the first type is found to 
be 

(l-v2-h2) '1: 

(l-v2-h2)'"-h arctg* h 

where E, = 2uZ(ap)"' M i ,  and a is the interatomic dis- 
tance [the factor a was introduced to preserve the dimen- 
sionalities of the physical quantities on going from integra- 
tion over the volume in (5)-(7) to integration with respect to 
one coordinate 61. 

The energy E2(v) of the soliton of the second type differs 
from (13) by the velocity-independent quantity 

E 2 ( v )  = E , ( v )  +nhEo. (14) 

The momenta (7) of solitons of the two types also differ 
by a certain constant quantity 

Po (1-vZ-h2) 'h ('-v2-hz) P ,  ( v )  = -{ arctg - h arctg 
n v hv 

P2 (v) = P ,  ( v )  +hPo sign v, 

where sign (u) is the sign function (by definition signx = + 1, 
x > 0; sign x = - 1, x < O), and Po = n-fi~~M,/~, is the limit- 
ing momentum of the magnetization field, and arises also in 
the description of solitons in an easy-axis ferr~magnet.~ We 
note that TE, = w, I, Po. 

The energy and momentum of a soliton are respectively 
even and odd functions of the velocity V. A characteristic 
feature is that the energy of a soliton of the second type can- 
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not be less than rhEo and its momentum cannot be less than 
hPo in value. 

The numbers of the spin deviations (6), which corre- 
spond to the magnetization distributions in solitons of the 
first and second type, are 

(l-vz-hz)'/~ 
N, (v) =-No arctg 

h , (17) 

where N o ( a 2 M ~ p o ) ( a / ~  )'I2. We note again that a character- 
istic number of magnons on the order of No appears also in 
nonlinear dynamics of the magnetization of an easy-axis fer- 
ro~nagnet.~ We note that Eo = fiw, No and it is assumed that 
No) 1. It can be seen from (19) that upon deviation from the 
equilibrium state the angle 0 is smaller than 80 in the rotation 
wave of the first type and larger than 0, in the rotation wave 
of the second type. In accordance with the definition (6), the 
number of spin deviations is N, < 0 in a wave of the first type 
and N, > 0 in a wave of the second type. A negative number 
of spin deviations N, means that the projection of the vector 
M on the z axis is larger in the rotation wave of the first type 
than the value of this projection in the equilibrium state. 

Comparing (13), (14) and (17), (18) we can note that for 
the solitons of both types 

E=Eo ( 1-vZ- hZ) 'h+2poNH, (19) 

where the first term can be taken to mean the kinetic energy 
of the soliton and the second its energy in an external mag- 
netic field. 

It  must be borne in mind, however, that a solution of the 
type (10) and (1 1) is a single-parameter solution, so that N 
and v are uniquely related, as follows directly from (17) and 
(18). Therefore, in contrast to the situation with two-param- 
eter  soliton^,^ the kinetic energy of a soliton cannot vary 
independently of its potential energy in an external field, and 
the division of the energy into two terms (19) is in a certain 
sense formal. 

On the basis of the obtained dependences of the dynam- 
ic integrals of motion of the solitons on the velocity V it is 
easy to analyze the Hamiltonians of the solitons, i.e., the 
dependences of their energies on the momenta. Since we 
have verified that at a fixed velocity V the energies and mo- 
menta of the solitons of the two types differ by constant 
quantities, it suffices to study the E = E (P) dependence for 
one of them, say for the soliton of the first type. 

We note first that the momentum of the soliton of the 
first type cannot exceed P y  = 4 Po(l - h ). At any rate, in- 
dependent excited states are classified in accord with the 
momentum values in the interval - P,,, < P <  P,,, . Fol- 
lowing the reasoning of Ref. 4, we can formally introduce 
values of P outside this interval, assuming the energy to be a 
periodic function of P. In our case, however, this formal gen- 
eralization does not lead to any physical conclusions. The 
appearance of a soliton momentum limit in the long-wave 
approximation is the consequence of the Galilean invariance 
of the initial field equations. 

A plot of El = E,(P,) is shown in Fig. 1 (curve 1). Since 
the relation V = dE /dP holds for the soliton, curve 1 of Fig. 

FIG. 1. Soliton dispersion law: 1-for a soliton of the first type, 2-for a 
soliton of the second type, 3--dispersion law of free magnons. 

1 is monotonic in the interval 0 < P < 4 Po (1 - h ) with a con- 
stant derivative 

Since it turns out that V -+ S as P -, 0, the entire curve 
1 lies below the straight line E = SP, i.e., below the plot of 
the magnon dispersion slaw (curve 3). This means that soli- 
tons of the first type can be regarded as ferromagnet collec- 
tive excitations having a momentum P and an energy lower 
than that of a magnon with the same momentum. In other 
words, they are excitations similar to the Lieb excitations in 
a nonideal Bose gas with repulsion described in detail in 
Refs. 3 and 7. 

Recall, however, that there are also solitons of the sec- 
ond type. In a nonideal Bose gas, whose dynamics is de- 
scribed in the self-consistent-field approximation by a non- 
linear Schrodinger equation, there are no such solitons. 
They are restricted only to an easy-plane ferromagnet. 

A plot of the dispersion laws for solitons of the second 
type is obtained by a parallel shift of curve 1 by an amount 
hPo along the Paxis and by an amount rhE0 along the E axis, 
i.e., by a shift along a straight line having a slope 

nE,IPo=o,lo=Vo>S=V, (I-hz)'". 

This plot corresponds to curve 2 of Fig. 1. It also lies below 
the dispersion curve of an individual magnon (curve 3). The 
energy of a soliton of the second type is consequently also 
lower than the energy of a single magnon having the same 
momentum. 

It is useful to ascertain what determines the position of 
the point (hPo,rhEo), i.e., of the left edge of the E (P ) plot for 
solitons of the second type. We note that N2 = rNo magnons 
correspond to an algebraic soliton with momentum hPo (and 
velocity V = s). Following Refs. 4 and 5, we regard the soli- 
ton of the second type as a bound state of magnons. It is 
found then that at P = hPo the energy per bound magnon is 

Comparing (21) with the magnon dispersion law (21) we 
conclude that E coincides with the energy of a free magnon 
having a momentum 
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i.e., to the total soliton momentum divided by the number of 
bound magnons. We see that the point ( j i k , ~ )  is found to lie 
on the dispersion curve of the free magnon (this is point C in 
Fig. 1). We can thus conclude that when the velocity limit 
V = S is reached the interaction between the magnons that 
make up the soliton of the second type vanishes completely, 
and the soliton "crumbles" into free spin waves. 

3. MAGNETIZATION VORTEX (MAGNETIC DISCLINATION) 

We proceed now to analyze the localized two-dimen- 
sional solutions of Eqs. (4). We introduce in a plane perpen- 
dicular to the vector H the polar coordinates r and X: 
x = r cosx, y = r sinx and seek a localized static solution of 
Eqs. (4) in the form 

0=0 (r) , cp=cp,+v~, cpo=const, (22) 

where v = 0, + 1, + 2, ... . We substitute (22) in (4) and 
obtain the following equation for the function B (r) in dimen- 
sionless variables: 

sin 0 cos 0-Q sin 0=0, (23) 

where f2 = H /BM, and p = r/lW 
We stipulate that the magnetization at infinity corre- 

spond to the equilibrium state 

0=0,, cos Oo=Q for p=rn, (24) 

and that on the axis p = 0 all the physical quantities are 
bounded, in particular 

8=0 for p=O. (25) 

Satisfying the boundary conditions (24) and (25) is a solution 
having the following limiting properties at infinity ( p = a): 

Near the axis ( p  -+ 0) we have 

€I= (pip,) ''I, po=const. (28) 

The constant coefficients c in (17) andp, in (28) cannot 
be obtained from the asymptotic equations and must be 
found from the condition that one and the same solution of 
Eq. (4) satisfy (28) near the axis and fall off like (26) or (27) at 
large distances. We note that at f2= 1 we have 8, = 0 and 
there are no localized solutions of the type considered. 

A solution of the type (22), which vanishes at infinity in 
accord with (26) or (27), has a nonzero z-component of the 
total angular momentum (8): 

K,=- -J' "a (cos 0.-cos 0) [ r  Vlp], dV=-hvN, (29) 
21.~0 

where N is the number of spin states (6). The relation (29) 
between K, and N was obtained earlier in Refs. 6 and 8. The 
fact that the solution has the property K, # O  at v#O makes 
it possible to call such a state of the magnetization field a 
magnetic vortex characterized by a topological parameter v. 

According to another classification of topologically singular 
solutions in two-dimensional systems, such a solution 
should be called a magnetic disclination. 

It is curious to note that the number Nof the spin devia- 
tions linked with the magnetic vortex is different at f2 = 0 
and f2 #O. In the absence of a magnetic field (0 = 0) the 
behavior (27) of the function 8 ( p) at infinity ensures conver- 
gence of the integral (29) and N is therefore finite. If, how- 
ever, f2 #O, it follows from (26) that the integral (29) diverges 
logarithmically and we can state that with logarithmic accu- 
racy. 

13/10 nMol,2vS1 
A' (R) = 2% loz J' (cos 0.-cos 0) p dp=- 

0 Po 

where R is the transverse dimension of the magnet. The 
number of spin deviations N is given per unit length of the 
vortex. 

The magnetic-vortex energy behaves differently: it is 
logarithmically large at f2 # 1. The energy density (2) con- 
tains a term of the type 

v' 
( Vrp) %inZ 0 = - sin2 8, (31) 

pZ 
which leads to a logarithmic divergence of the integral (5) at 
any law governing the approach of 8 ( p )  to the equilibrium 
value Bo# 0 (0 # 1). 

We assume that f2 #Oandf2 # 1 and writedownexpres- 
sions for the integrals of motion E and N in the form (RBI,) 

E=Eo'+naMo2v2(1-Q2)ln (RIZ,), (32) 

where E A and No are constants that depend little on R (they 
have at any rate no singularities as R -, a). 

We eliminate from (32) the Zeeman energy of the vortex 
in the external field. We then obtain the internal magnetic 
energy of the vortex 

Em=E-2poNH=E-hooQN. (34) 

From (32) and (33) follows 

Em=Em0+naMo2v2 (1+5/2)1n(R/lo), (35) 

where 

We proceed now to discuss the solutions of Eq. (23) that 
satisfies the conditions (24) and (25). We obtained these solu- 
tions for v = 1 with a computer. The method of finding 
such solutions is described in Ref. 9. It is a certain realization 
of the "random shot" method1' and reduces to the following. 
A value of the parameter f2 is specified and the value ofp, in 
(28) is chosen such that the solution approaches monotoni- 
cally the limiting value (24). An idea of the character of the 
solution is given by the plots in Fig. 2. At f2 close to unity the 
vortical perturbation is weakly localized, and the function 
8 ( p)  approaches slowly, with increasingp, the limiting value 
8, = [2(1 - R )]"'. When R is changed the slope of the plots 
increases and in the limit as R -+ 0 a function is obtained 
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(curve 6 of Fig. 2) that differs a tp  = 3 by only 2.5% from its 
limiting value 80 = r/2. 

AT f2 - 1 the plots in Fig. 2 do not differ qualitatively 
from the Bose-gas density distribution in the vortex de- 
scribed by Pitaevskii.' This is not at all surprising, since Eq. 
(23) at 8 < 7~/2 is similar to the Gross-Pitaevskii equation. 
Indeed, putting Y = 1, we expand in (23) the trigonometric 
functions accurate to terms of third order in 0 and leave out 
the term 8 3 / ~ 2 :  

where x = (1 - f2 )1'2p. At f2 = 0.4 Eq. (36) coincides with 
the equation considered in Ref. 1. A plot of the solution 
discussed in Ref. 1 is curve 3 of Fig. 2. It is curious to note 
that this solution differs by about 15% from the solution of 
Eq. (23) at f2 = 0.4. This means that the term 0 3/x2 plays no 
significant role: it is small as x -+ 0 (when 0-x) and as 
X +  w.  

Having the explicit form of the solutions of (23) at Y = 1 
and at various values of f2, we can determine how well the 
vortex energy is represented by the sum (32). We write down 
the energy of the excited state of the magnet in the form 

E=naMo2(1-Q2)ln(RA (Q)/Z,), (37) 

where the functionA (f2 )can be easily obtained by numerical 
methods. 

We use the limiting (25) of the function 0 at large dis- 
tances and assume that atp)  p, Eq. (26) describes correctly 
the sought solution 8 ( p). We choose the pointp = p, to sa- 
tisfy the condition that the numerically constructed func- 
tions 8 ( p) and their derivatives dB /dp agree at the specified 
accuracy with the function (26) and its derivative. After find- 
ing such a point we calculate the magnetic vortex energy as a 
sum of two integrals (on the intervals O< p < p, and 
p, < p < R /lo), using Eq. (26) on the second interval. We rep- 
resent the resultant expression in the form (27) and plot A (f2 ). 
This plot is shown in Fig. 3. As f2 -+ 1 the plot describes the 
linear function L?, extrapolation of which to f2 = 1 yields 
A ~ 0 . 2 .  As f2 -t 0 the plot approaches the pointA (0) ~ 4 . 7 8 .  

The analysis of the vortical solutions of Eq. (23) leads to 
an important conclusion. In a cylindrical easy-plane ferro- 

FIG. 2. Dependence of Oonp of amagnetization vortex in 
a two-dimensional ferromagnetic: 1 - 0 = 0.95, 
2 - 0 = 0.7, 3-result of Ref. 1, 
4 - n = 0.4.5 -a = 0.1.6 - n = 0.001. 

magnet of radius R there can exist in the absence fo an exter- 
nal magnetic field a static vortex (disclination) with energy 
E = r a M ;  xln(4,78R /Io). 

4. MAGNETIC VORTEX IN A CYLINDRICAL SAMPLE OF 
FINITE RADIUS 

We have shown that in a cylindrical sample of an easy- 
plane ferromagnet there can arise a static magnetic disclina- 
tion for which Y = 1 1. But it must be borne in mind that 
Eq. (23) was written without allowance for the magnetic field 
produced by the inhomogeneous magnetization distribution 
itself. Therefore the question of the existence of a static mag- 
netic vortex in a real magnet and its energy should have been 
analyzed by taking the last circumstance into consideration. 
However, if we restrict ourselves to the case Y = 1, there is 
no need for additional investigations. Indeed, using (22) at 
Y = 1 and choosing p0 = r / 2  we obtain in cylindrical co- 
ordinates the following expression for the components of the 
magnetization produced by the magnetic vortex: 

M,=M, sin 0 cos (cp-X) =O, 

M,=Mo sin 0 sin ((P-X) =Mo sin 0 (r), (38) 
M,=Mo cos 0 (r) . 

0 0.2 0.1 0.6 0.8 1 
n 

FIG. 3. Functional dependence of the parameter A ( n  ). The points mark 
the results of a numerical calculation. 
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It follows from (38) that divM = 0, i.e., the inhomoge- 
neity of the magnetization does not contain volume sources 
of magnetic-field intensity. On the other hand, on the outer 
surface of the cylinder, r = R, there is no normal component 
of the vector M, therefore an infinitely long magnetized cyl- 
inder produces no magnetic field in the surrounding space. 
Thus, the onset of a magnetic vortex in a cylindrical easy- 
plane ferromagnet is equivalent in a certain sense to break- 
down of the easy-plane ferromagnetic sample into domains. 

A state competing in energy may be one of an easy- 
plane magnet with the so-called helical magnetization. We 
study this state in the case when the energy of the magnetos- 
tatic field is low compared with the anisotropy energy, i.e., at 
0>4?r. We can then start as before from the solutions of Eqs. 
(4), assuming a ground state corresponding to 8 = 8, = 12/2. 

The equilibrium equation (4) admits of the solution 

8=0,=n/2, cp=kz, (39) 

which describes the "curling" of the magnetization around 
the axis along a helix with pitch 212/k. We assume that kR ) 1 

!. and that the helix pitch is much less than the cylinder radius. 
Choosing the solution (39) as the zeroth approximation, 

we obtain the magnetic field produced by such a magnetiza- 
tion distribution. We introduce, in accordance with the usu- 
al rules (H = - V@ ) the magnetostatic potential @, which is 
by virtue of the condition div M = 0 a harmonic function in 
all of space. It is easy to verify that 

@=@, (r) cos ( k z - x ) ,  

@ ( r )  A ( k )  O<r<R, 

( r )  K ( k )  r>R, 

where I , (z)  and K,(z) are Bessel functions of imaginary argu- 
ment z of the first and second kind, respectively. 

If kR) 1, the constants A and B are equal to 

The maximum magnetic-field intensity in the cylinder 
is reached on its outer surface (r = R ) where, in order of 
magnitude, 

H,-4nMo, £I,-4nMo/kR, Hz-4nMo. (43) 

We see that at0>4?r the magnetostatic field (43) is small 
compared with the "anisotropy field." This justifies our 
successive-approximation method. 

With the aid of (40) and (41) it is easy to calculate the 
magnetostatic-field energy per unit cylinder length: 

The corresponding inhomogeneous-exchange energy is 

The equilibrium value of the pitch of the helix should 
ensure a minimum of the energy E = E, + E,, . From the 
condition dE /dk = 0 we obtain k - (?r/aR )'I3. We note that 

the condition kR> 1 means that the radius of the cylinder 
should greatly exceed the "exchange length": ~ > a " ~ .  Only 
in this case are all our calculations self-consistent. 

We return now to the total equilibrium energy of a cyl- 
inder with helical magnetization: 

E=S/2ns/sa'hMo2R41~. (46) 

Comparing (46) with the energy of the static vortex we 
conclude that for a cylinder having a radius 

the energy of the state with helical magnetization exceeds 
the energy of a cylinder with a magnetic vortex along its axis. 

The last conclusion was undoubtedy obtained under the 
assumptionfl>4?r (precisely because the parameter 0 is con- 
tained in the inequality (47) as the argument of a logarithm). 
This assumption has enabled us to start from the solution 
(39), although it follows from (43) that the presence of the 
component Hz -4- "takes out" the equilibrium magneti- 
zation vector from the plane 8 = r/2. It is easy to verify, 
however, that the resultant correction to the cylinder energy 
is of the order of 

i.e., it is small compared with (46). 
Thus, the equilibrium state of a cylindrical easy-plane 

ferromagnet with a cylinder axis coinciding with the anisot- 
ropy axis is unstable to formation of a magnetic vortex. 

5. INFLUENCE OF ANISOTROPY IN THE BASAL PLANE ON 
THE DISTRIBUTION OF THE MAGNETIZATION AROUND THE 
VORTEX 

In the preceding section we discussed the role of the 
restriction on the size of a cylindrical easy-plane ferromag- 
net, disregarding a very important circumstance connected 
with the anisotropy in the easy plane. In the description of 
inhomogeneous states of a ferromagnet with a vector M in 
the easy plane, the anisotropy in this plane may turn out to 
be important. In the presence of even a weak anisotropy 
there are always distances large enough such that the in- 
homogeneity of the magnetization over them cannot be de- 
scribed without taking this anisotropy into account. 

Assume that the z axis has fourfold symmetry. The fer- 
romagnet anisotropy energy can then be written in the form 

where0 ' is the anisotropy constant in the easy plane (P '(8) 
and q, is the angle between the magnetization vector and 
some direction in the xy plane. 

If the inhomogeneity of the magnetization distribution 
is characterized by a parameter L with dimension of length, 
then at ~((a/f l ' )"~ = Io(B/0')112 the magnetic anisotropy 
in the easy plane can be neglected. In particular, the distribu- 
tion of the magnetization near the magnetic-vortex axis can 
be calculated neglecting the anisotropy in the easy plane, and 
is given by the formulas obtained for the uniaxial model. At a 
distancep)I,(P /P ')1'2)1, from the vortex axis, however, ac- 
count must be taken of the anisotropy in the basal plane. 
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Since the distance from the vortex axis is much larger in this 
case than the vortex characteristic dimensions, it can be as- 
sumed that the vector M lies in the easy plane (8 = r/2). 

The equilibrium state of a ferromagnet with 0 = r / 2  
corresponds to its breakdown into domains in which the ori- 
entation of the vector M ensures a minimum of the energy 
(48). The need for breaking up the sample into domains and 
the requirement that the total phase advance q, be preserved 
on going around the vortex axis can be reconciled only if a 
radial system with a fully defined number of domain walls is 
produced. For a vortex with v = 1 the most symmetric is 
breakdown of the sample into four domains divided by 90- 
degree domain walls. 

We consider now the distribution of the magnetization 
in one of the domain walls far from the vortex axis. If the x 
axis from which the angle q, is measured is directed perpen- 
dicular to the domain-wall plane, the magnetization in the 
wall will depend only on x .  The Landau-Lifshitz equation 
for the variable p(x) takes the form 

where hxis the magnetic-field component produced by the 
magnetization M and determined by the static Maxwell's 
equations. The solution of Maxwell's equations yields the for 
hx 

h,=4n (2-'"-cos cp) . (50) 

Substituting (50) in (49) and integrating (49) we get 

romagnet with a magnetic vortex along its axis, is propor- 
tional to 1nR (R is the cylinder radius). Consequently the 
energy of a cylinder containing a magnetic vortex and an 
associated radial system of domain walls increases in direct 
proportion to the cylinder radius. 

If 8 ' ( 4 ~ ,  a continuous deformation of the magnetiza- 
tion distribution takes place near the cylinder surface and 
causes the vector M to become parallel to the outer surface. 
As a result, the magnetic field outside the cylindrical sample 
is practically zero, and the entire magnetic energy is propor- 
tional to R. 

A competing structure might be one with a sequence of 
uniformly magnetized domains alternating along the cylin- 
der axis and rotated 90 degrees relative to one another. IfL is 
the period of such a structure, the energy of its magnetostatic 
field per unit cylinder length is proportional to MiRL. It is 
easy to verify that L a R 'I2, so that the total magnetic energy 
is proportional to M i R  3'2. 

Thus, even if account is taken of the anisotropy energy 
in the basal plane at a sufficiently large radius R an en- 
ergywise favored state is that of a cylindrical sample contain- 
ing a vortex with its associated radial system of domain 
walls. 
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The domain-wall energy is proportional to its length, 
whereas the magnetic energy of a cylindrical easy-plane fer- Translated by J. G. Adashko 
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