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A formalism is developed that makes it possible to treat multispin transitions in magnetic reso- 
nance in a unified manner. Three- and four-spin processes in cross relaxation and dynamic polar- 
ization of nuclei are treated. The results obtained are compared with available experimental data. 

PACS numbers: 76.60.E~ 

Problems of cross relaxation and dynamic polarization 
of nuclei and electron-spin systems form an important part 
of the theory of magnetic resonance in solids. The quantum 
statistical theory of these phenomena is well developed and 
is applicable to the description of a wide range of experimen- 
tal data.ls2 Most of the problems examined up to now, how- 
ever, have usually been treated only in the lowest order of 
perturbation theory, although experimental data on the dy- 
namic polarization of nuclei are available3 that can be ex- 
plained only in terms of multispin processes that appear in 
higher orders of perturbation theory. In principle, multispin 
processes can be taken into account within the framework of 
any quantum statistical forma1ism-e.g. using Zubarev's 
nonequilibrium statistical operator (NSO) method: which is 
widely employed in the theory of magnetic resonance. How- 
ever, it is difficult to calculate kinetic coefficients in higher 
orders of perturbation theory. Moreover, when solving such 
problems it is not always obvious how to choose the subsys- 
tem operators with allowance for higher order corrections. 

In this paper we present a formalism that makes it possi- 
ble to describe a wide range of the problems mentioned 
above in a unified manner. This formalism is based on an 
analogy with the so-called uniform convergence m e t h ~ d , ~  
which is widely used in nonlinear mechanics. 

In order to reach the most general mathematical formu- 
lation of the problem, we consider a simple model: a system 
of spins of two types with dipole-dipole (d-d ) interactions in 
a static magnetic field H,. The Hamiltonian for such a sys- 
tem has the form 

Here w , ,  = y ,  ,H,, where the y , ,  are the gyromagnetic 
ratios of the spins I and S, and the last three terms in (1) are 
the Hamiltonians for the d-d interactions between the spins I 
and I, I and S, and S and S, respectively. 

We shall use the notation2 

and so on. In view of the fact that the Hamiltonian R,$ 
contains the terms \I  + S  - ) and 1 I - S  + 1, simultaneous flips 
of the spins I and S (flip-flops) may take place. These pro- 
cesses are important when w, -a,-more accurately, when 
the difference A = w, - us is equal too, in order of magni- 

tude (w, is the line width due to the interaction), and it is 
sufficient to use only the first order of perturbation theory in 
describing them. However, multispin relaxation processes, 
i.e., processes in which three or more spins flip simulta- 
neously, may take place in the system. The structure of the 
terms in the d-d interaction that give rise to cross relaxation 
becomes clearly evident when Eq. (1) is transformed to a new 
coordinate system by the unitary transformation 

U=exp [it (osSz+otIz)] .  (2) 

In this coordinate system the Hamiltonian takes the form 

where the R,,, are defined as follows: 

%oo= {PI') + {S'l") + {S'S'} + {Z+Z-} + {S+S-) , 
%,,, = {Z+P} + {I+SZ} 

and so on. As is evident from (3), R d ( t  ) is a quasiperiodic 
function of time with the two fundamental frequencies w, 
and w,. In the general case we shall have to deal with a 
system described by the Liouville equation 

idpldt=[%(t), .pl (4) 

with a quasiperiodic Hamiltonian R ( t  ). It is convenient to 
rewrite Eq. (4) in dimensionless form: 

idpfldt'=e [%' ( t ' ) ,  p ' ] ,  (5) 

where t ' = wi is the "dimensionless" time and wi is one of 
the fundamental frequencies [for example, one may take ei- 
ther w, or w, for wi in (3)]. We shall assume that the condi- 
tion wi IIRII < 1 is satisfied, where IIRII is the "magnitude" 
of the spin-spin interaction Hamiltonian in frequency units, 
i.e. 

Further, 

Equations of the form of Eq. (5) occur frequently in non- 
linear mechanics, and there are many ways of solving them. 
The basic purpose of the present work is to find a transfor- 
mation of Eq. (5) such that the transformed density matrix 

80 Sov. Phys. JETP 57 (1). January 1983 0038-5646/83/010080-06W4.00 @ 1983 American Institute of Physics 80 



will satisfy a Liouville equation with an effective Hamilton- 
ian that will describe multispin resonance transitions in any 
order of interest to us. 

In analogy with the accelerated-convergence m e t h ~ d , ~  
we perform a series of canonical transformations on Eq. (5): 

~ ( " ) = e x p  [&"A, ( t r )  ] p ( " - ' )  exp [-&"A, (t') ] ; p(O)= P ' (6) 

(no summation over n!). 
The present method differs from the usual variants of 

the averaging method in that we do not improve the transfor- 
mation ofp' by including further higher-order terms in order 
to obtain an approximate expression for p', but repeatedly 
perform a transformation of the same type. 

Using the formula 

) e*"'), cAA=[A,  A ] ,  

which was proved in Ref. 6, we obtain 

idptn)/dt'= [a'") ( t o ,  ~ ( ~ ' 1 ,  
a ( n ) = i  [ ( e ~ * - l ) / c ~ ] A + e ~ % ( ~ - " e - " ,  

(7) 

where A = &"A, and %'O = P. 
We shall choose the quantities A, so that in the corre- 

sponding order in E the Hamiltonian X ' " )  will not contain 
rapidly oscillating terms with characteristic frequencies 
higher than or of the order of unity. 

In the general case when P ( t  ') is a quasiperiodic func- 
tion of time with two or more basic frequencies, X ' " ) ( t  ') may 
contain not only rapidly oscillating terms, but also slowly 
varying terms with frequencies of the order of E. Such terms 
must be retained in the effective Hamiltonian, since, as will 
be shown below, it is just they that are responsible for the 
multispin cross relaxation processes. 

Let us introduce two operations: an averaging oper- 
ation, 
- 1 r= lim- J d t ~ ( t ) ,  

T (8) 
0 

and an integration operation 

It is understood that in formula (9) the antiderivative is taken 
only at the upper integration limit. 

It is easy to see that the operations (8) and (9) have the 
properties 

- - 
%=o, z=o. 

Now if we expand (7) in powers of A obtain 
&'(n)=iA+1/2i[A, A] +i/6i [A ,  [A ,  A] I + . . . 

+%<n-i)+ [ A ,  %("-')I +,Iz [A ,  [A ,  Z(n- l ) ]  ] + . . . 
=ienAn+' /2 i~2n [A,, A,] + i / Z i ~ 3 n  [A,, [A,, Z ( " - ' )  I ] +  . . .  

[A,,, % ( n - l ) ]  +'/2&zn [A,, [A,,  % ( " - 1 ' ]  ] . . . 

In particular, the first step of transformation (6) yields 

For clarity we shall take a closer look at the case in 
which P is a quasiperiodic function with two fundamental 
frequencies o, and o2 (w,/02 # k /I, where k and I are inte- 
gers) so that P can be expressed in the form 

33' ( t ' )  = z~,,,' enp [ i  (nol+mw,) t ' ]  . (1 1) 

We shall assume that the sum (1 1) contains a term X,.,. (in 
general there may be several such terms) that satisfies the 
condition 

Now we introduce the slowly varying quantity 

and perform the averaging operation (8) only at frequencies 
that satisfy the condition 

so that 

If we now choose A, in the form 
I 

~ , = % = i  J d t ' [ z ( t r )  -%I 

I 
l.. e r p [ i  (nwl+moJ tl . 

= C no,+mo2 
n,mf n',mr , 

(13) 
all the rapidly oscillating terms in (10) will cancel out to the 
first order in E. Actually, it follows from (13) that 

so that SP'' takes the form 

Equation (14) contains no rapidly oscillating terms in the 
first order; such terms appear only in the higher orders. 

If we are interested only in the first approximation, it is 
sufficient to retain only ~ z ( 8 , )  in (14). To obtain the next 
approximation one must perform the transformation (6) 
again-this time on Eq. (14). Each time transformation (6) is 
applied the slowly varying terms must be singled out and the 
averaging operation (8) must be applied only to the rapidly 
oscillating terms--otherwise the expression for A, will con- 
tain small denominators. For example, if we take = %',,,, 
in place of (1 2), A ,  (Eq. (1 3)) will contain a small denominator - 1/&A ,. Thus, a correctly constructed effective Hamilton- 
ian will depend on slowly varying quantities. 

Now we shall give an expression for the effective Hamil- 
tonian accurate up to terms of the  order^^. In doing this we 
shall assume that resonance terms arise each time transfor- 
mation (6) is applied. At the second stage we have 
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Similarly, in the third order we obtain 

Thus, an effective Hamiltonian accurate to c3 has the 
form 

This expression is formally the same as the expression for the 
effective Hamiltonian in the classical7 and quantum6 cases, 
but, unlike the expression in Ref. 6, Eq. (17) has a slow time 
dependence since the averaging in (17) is taken, as in (12), 
only over the rapidly oscillating variables. 

Now let us consider concrete examples. 

1. Let us consider cross relaxation between the Zeeman 
and dipole subsystems in a solid. This problem has been an 
object of discussion in the liaterat~re.'.~ In a rotating coordi- 
nate system, the Hamiltonian of the system takes the form 

where the A?: are the operators for the secular and nonsecu- 
lar parts of the d-d interaction (see Ref. 1 for the explicit 
form) and o, is the Zeeman frequency (wo)wd). Since in this 
case A?(t ) is a periodic function of time, the effective Hamil- 
tonian will be time independent in all orders. Since 

while the general structure of the effective Hamiltonian in 
the a th  order will have the form 

where the cn"""" are certain coefficients, we have 

This means that there are no resonance transitions between 
the Zeeman and dipole subsystems. Cross relaxation pro- 
cesses can take place only as a result of rapidly oscillating 
terms in frequencies no,. 

The transition probability calculated with such terms 
contains the exponentially small factor exp( - n2wi/o:). 

2. Let us consider cross relaxation in a system described 
by Hamiltonian (3) for the case in which w, -2w, (i.e., the 
difference A = 2w, - o, is to be of the order of w,). In this 
case resonance terms appear in the effective Hamiltonian 
(17) in the second order. In fact, on substituting Eq. (3) and 

into formula (15), we obtain 

aeff =A+Be-iAt+B+eiAt, 
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where 

Here A is the secular part of the d-d interaction and B is 
responsible for three-spin cross relaxation processes. Start- 
ing from the general concepts of spin-temperature theory,' it 
is not difficult to derive equations for the dynamics of cross 
relaxation. Since [I,, A ] = 0 and [S,, A ] = 0, it must be 
assumed that a quasiequilibrium state with the density ma- 
trix 

where a,, a,, and 8, are the inverse temperatures of the 
corresponding subsystems, will be established in the system 
in a time of the order of w, '. 

To derive the equations for the changes of the inverse 
temperatures we use the equation for the slowly varying part 
of the density matrix that was obtained earlier1': 

where 
on=2nn/T, n=O, *I, + 2 , .  . . , 

dtV (t) e-"nt, V (t) = exp (Mot)  V exp (--mot). 

In this case V must be taken as the operator 

and Xo must be taken as the operator A, in which it is suffi- 
cient to retain only X m .  

On substituting Eq. (19) into (20), multiplying both sides 
successively by I,, S,, and A, and passing to the limit T --+ w 

and E --+ 0, we obtain the following set of equations (the de- 
tails of the calculations are similar to those presented in Ref. 
10): 

where 

cr=Sp ZZ2/N, c,=Sp S,2/N, 

N=Sp Z,Z+Sp S,2, DZ=Sp (800)2/~r~sN, 

V=B+B+, V (t) =exp (&%oot) V exp ( - ~ o o t ) .  
As was mentioned above, W is the probability for three-spin 
cross relaxation processes. 

Buishvili eta/. 82 



Now let us consider the case in which the condition 
30, - w, -a, is satisfied. In this case the resonance terms 
appear only in the third order. On substituting Eqs. (3) and 
(18) into (16), we obtain 

where 

The equations for the inverse temperatures can now be 
written down in complete analogy with the first case. In this 
case four-spin processes will be the most effective in cross 
relaxation. 

Let us employ the formalism developed above to de- 
scribe experiments on the dynamic polarization of n ~ c l e i . ~  
In this paper we have investigated a system having spins of 
three types: proton and deuteron spins with the Zeeman fre- 
quencies w, and a,, and paramagnetic impurities with the 
frequency w z w, + po, + am,, where p takes the value 
+ 1 and t 2, and d takes the values f 1 and 0. To describe - 

the dynamic polarization of nuclei under these conditions 
one must resort to higher orders of perturbation theory. Our 
formalism substantially simplifies the calculations. Let us 
first consider the case in which p, d = f 1. We shall write 
down the part of the dipole-dipole interaction Hamiltonian 
that can contribute to the effective Hamiltonian in a rotating 
coordinate system; it has the form 

+ ck) ( e . ( w ~ - w ~ ~ ~ + M j - + e - ' ( ~ ~ - * ~ ~ f  z , -Mj+)  

' , I  

+ gnisnZ1;+ z l n j ~ n z ~ j z + l / ~ ~ l  (ei(o~-*)tS++e-i(~s-oltS- 1 
11.' ",J 

(21) 
Here S, I, and M are the electron, proton, and deuteron spin 
operators, respectively. 

In this case the resonance terms appear in the effective 
Hamiltinian in the third order. On substituting (21) into (16) 
we obtain 

+A,,, expl-i(o-os+por+doM) t l ) ,  

There are also time-independent secular terms, but because 
of their complexity we shall not give them here. 

It follows from the general principles of nonequilibrium 
thermodynamics that a quasiequilibrium with the density 
matrix 
g= {I-as (os-a)S,-ccIoI~z-aMo~Mz-fi~d'}/Sp 1. 

will be established in the system in a time of the order of w, '. 
In analogy with the case treated earlier we can easily obtain a 
set of equations for the reciprocal temperatures: 

where a,, a,, and a, are the reciprocal temperatures of the 
electron, and deuteron Zeeman subsystems, respectively; P 
is the reciprocal temperature of the d-d pool; 

T,, TI, T,, and To are the spin-lattice relaxation times of 
the corresponding subsystems; and 

These equations do not include the effect of the alter- 
nating field in the lowest order since experimentally3 the 
frequency mismatch greatly exceeds the electron line width, 
i.e., 10 - W, IsSw. Assuming that the electron width Sw is 
considerably greater than the nuclear width, we can obtain 
the following estimate2 for W,; , : 
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wp,, ( 0 )  -Sp (Vp,d) I ~ O C I C S C M N .  relaxation function falls off more rapidly at high frequencies 
than the usually assumed Lorentz curve. 

For simplicity we shall consider the case in which there Now we shall consider the case in which w zo, + 2w,. 
is no bottleneck effect. Then, since W,; , is small, we can put In this case the part of the d-d interaction Hamiltonian of 
a = a; and p = DL in Eqs. (21). On solving the second and interest to us has the form 
third of Eqs. (21) for the steady-state case under the assump- 
tion that w,; w, )Sw, we obtain al=x b::) e ~ z ~ , t ~ i + ~ k + + ~  b:;) e - i 2 u l t ~ i - ~ k -  

U S  C I C S T M W ~ ; ~  
a M = B L  ZC I+ w ~ ; ~ c ~  ( c ~ T ~ + c ~ T ~ )  ' 

(23) In analogy with the previous case we obtain 

~,$fres=A e x p [ i ( o - o s f 2 o I )  t]+A+ expi - i (o -os*20r)  t ] ,  
Now we shall consider various limiting cases. Assume 

that W,, ,c,c, T,) 1 and W,, ,c,c, TI ) 1. Then where 

0 s  1 0 s  1  
ar=p~- aM=BL--. .4=rilsoIb::' gnr ( O - O S ) - ~ S ~ - I ~ * I ~ * .  

pa1 l+c1TM/cMTI '  OM l+cnaTI/crT~ 
Without writing out the entire set of equations for the in- 

Here two limiting cases are ~ossible: a) CI T M / ~ M  TI) 1, and verse temperatures, we note that, as in the preceding case, 
b) c , T ~ / c ~ T , ( ~ .  the conditions a = a$ and 0, = pL are satisfied. It is there- 

In case a) we have fore sufficient to write down only the equation for a,: 

\ If further, 

C ~ T M / C M T I > , O I / O M ,  

the proton inverse temperature will be smaller than the deu- On solving this equation for the steady state case we obtain 

teron inverse temperature (i.e. a, >a,). 08  c ~ T I W  
In case b) we have ax=* P L  - 

I+csTIW ' 

aI>aM when crTMlc.wTrco~/or.  

We can also treat other limiting cases in a similar way, 
staring with Eqs. (22) and (23). 

The experimental values3 of a, and a, are much 
smaller than their maximum values. This may be attributed 
to the fact that saturation was not achieved in the experi- 
ment, i.e., the conditions 

were satisfied. If we also take account of the fact that the 
experimental conditions were such that the condition 
w, <6w, was satisfied, we obtain 

i a I = B L  ( o s l p o r )  CSCMTI (Wp; +i+Wp; - I )  

a M = p L ( ~ 8 / @ M )  C B C ~ T M  ( W P ;  +%-WP; - I ) .  

It follows from this that 
a1 OMCMTI ( W ~ ; + I + ~ P ; - I )  
-= 
a~ poIcITM(Wp,+t-Wp,-~) ' 

On substituting the experimental values3 of w,, w,, c,, and 
c, into this equation we obtain 

TI/TM-10'.  

Such a large difference between TI and T, may be attri- 
buted to the fact that w, is approximately five times larger 
than Sw, while the Fourier transform of the electron-spin- 

Since the experimental increase in the proton polarization is 
very small,3 it must be assumed that the condition c, TI W( 1 
is satisfied, so that 

ar=f BL(osloI) csTrW. 

In conclusion, we note that nuclear polarization due to 
multispin processes has also been observed in recent experi- 
ments involving P active nuclei." To explain these experi- 
ments, the authors of Ref. 11 used ideas similar to those 
developed on Refs. 6 and 12. 

'B. N. Provotorov, Zh. Eksp. Teor. Fiz. 42,882 (1962) [Sov. Phys. JETP 
15,611 (1962)l. V. A. Atsarkin and M. I. Podak, Usp. Fiz. Nauk 107, 3 
(1972) [Sov. Phys. Usp. 15,251 (1972)l. V. A. Atsarkin, Dinamicheskaya 
polyarizatsiya yader v tverdykh telakh (Dynamic polarization of nuclei 
in solids), Nauka, M., 1980. 

'M. Goldman, Spin temperature and nuclear magnetic resonance in so- 
lids, Clarendon Press, Oxford, 1970. A. Abragam and M. Goldman, 
Rep. Progr. Phys. 41, 395 (1978). 

'M. Borghini, W. de Boer, and K. Morimoto, Phys. Lett. 48A, 244 (1974). 
4D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika (Non- 
equilibrium statistical thermodynamics), Nauka, M., 1971 [Engl. 
Transl., Consultants Bureau, N.Y., 19741. 

5N. N. Bogolyubov, Yu. A. Mitropol'skii, and A. M. Samoilenko, Metod 
uskerennoi skhodimosti v nelineinoi mekhanike (Accelerated conver- 
gence method in nonlinear mechanics), Naukova dumka, Kiev, 1969. 

6L. L. Buishvili, E. B. Volzhan, and M. G. Menabde, Teor. Mat. Fiz. 46, 
251 (1981). 

'Yu. A. Mitropol'skii, Metod usredneniya v nelineinoimekhanike (Meth- 
od of averaging in nonlinear mechanics), Naukova dumka, Kiev, 1971. 

'V. A. Skrebnev, Zh. Eksp. Teor. Fiz. 70,560 (1976) [Sov. Phys. JETP 43, 

84 Sov. Phys. JETP 57 (I), January 1983 Buishvili etal. 84 



291 (1976)l; Physica 95B, 113 (1978). Teor. Fiz. 35, 344 (1982) [JETP Lett. 35, 424 (1982)l. 
9L. L. Buishvili, N. P. Giorgadze, and M. D. Zviadadze, Zh. Eksp. Teor. 12B. N. Provotorov and E. B. Fel'drnan, Zh. Eksp. Teor. Fiz. 79,2206 
Fiz. 72,750 (1977) [Sov. Phys. JETP 45, 392 (1977)l. (1980) [Sov. Phys. JETP 52, 1 1 16 (1980)l. 

1°L. L. Buishvili and M. G. Menabde, Teor. Mat. Fiz. 44,414 (1980). 
"Yu. G. Abov, M. I. Bulgakov, A. D. Gul'ko, et al., Pis'ma v Zh. Eksp. Translated by E. Brunner 

85 Sov. Phys. JETP 57 (1). January 1983 Buishvili eta[ 85 


