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Scattering of a delocalized vacancy (vacancion) by spin fluctuations in a completely polarized 
system is considered within the framework of the Hubbard model involving an almost half-filled 
band. An exact value of the scattering amplitude is obtained for a simple cubic or plane square 
lattice. For "inelastic" scattering involving a shift of the flipped spin, the cross section in the long- 
wave limit of the three-dimensional problem does not depend on the quasimomentum of the 
vacancion. In the two-dimensional case the "v-' law" is satisfied. It is shown that bound states 
may exist in the case of scattering of a vacancion by an isotopic impurity. The temperature 
dependences of spin diffusion are ascertained for both the case of thermally activated vacancies 
and the case of low temperatures with a specified vacancy density. 

PACS numbers: 75.10.L~ 

The Hubbard model has invariably attracted the atten- 
tion of the theoreticians for two reasons. First, its simplicity 
makes possible a sufficiently complete theoretical investiga- 
tion, including the derivation of a number of exact results. 
Second, there are real physical systems, such as quantum 
Fermi crystals, the solid phases of He3, dense layers of He3 
on various substrates) and some magnetic dielectrics (semi- 
conductors) which are well described by this model, thus 
permitting its experimental verification. 

The Hubbard model comprises a system of fermions 
localized in lattice sites, with repulsion between two parti- 
cles situated in one site. Its Hamiltonian is' 

where c 2  and c, are the creation and annihilation operators 
of a particle with spin o = + 1/2 at site i; n, = c; c, is the 
operator of the activation number in site i, U is the repulsion 
potential, and tV > 0 is the matrix element of the transition 
from site j to site i. 

Interesting results were obtained for this model, in the 
limit of the almost half-filled band, when the number of par- 
ticles N, is somewhat smaller than the number of sites N in 
the lattice so that N - N, ( N. In particular, it was shown2 
that when the repulsion is infinite and the transition of the 
particles (bounded by the nearest neighbors) are possible 
only as a result of vacancy motion, the ground state for a 
primitive cubic (pc), body centered cubic lattice (bcc), and 
planar quadratic and hexagonal lattices is a state with fer- 
magnetic ordering of the spins. The excited states are mag- 
nons-spin fluctuations moving exclusively on account of 
vacancion transitions. The width of their band is proportion- 
al to the density of the vacancies x .  The ground state for a 
planar triangular (pt) and hexagonal close-packed (hcp) lat- 
tice is an unsaturated ferr~magnet.~ 

Because the spin motion is effected only via vacancion 
transitions, there is a close connection between the magnetic 
structure of a system and the character of the vacancy mo- 
tion. By itself, a vacancy that violates the spatial symmetry 

of the lattice becomes delocalized in the form of a Bloch 
wave and moves as a quasiparticle-vacancion-with a 
band width proportional to tV = t. However, in a lattice of 
particles with spin it violates also the magnetic symmetry. 
The rearrangement of the spins, which takes place when a 
vacancion moves, leads to indirect exchange via the vacan- 
cion and to establishment of the aforementioned magnetic 
ground-state structures. In turn, it is found4 that the band- 
width in the case of vacancion motion through a paramagne- 
tic or antiferromagnetic ordered lattice is much narrower 
than in the case of ferromagnetic ordering. It is clear from 
the foregoing that in a magnetically polarized ideal lattice 
the vacancion scattering center can be any magnetic defect, 
such as a magnon or localized spin fluctuation. In Ref. 5 was 
considered the problem of renormalization of the effective 
mass of the vacancion on account of scattering by centers of 
the second type. The obtained narrowing of the vacancion 
band agrees qualitatively with the results of Refs. 4 and 6. 

In the Hubbard model with finite repulsion, the exis- 
tence of magnons is due to two independent causes: the mo- 
tion of the spins over the lattice on account of exchange with 
a vacancy (vacancion magnons) and their tunneling proper. 
As U + co there remain only the vacancion magnons. The 
purpose of the present paper is to obtain several exact rela- 
tions for the transport processes in the Hubband model with 
infinite repulsion. By way of illustration of the results we 
confine ourselves to polarized quantum crystals, without 
specifying in greater detail the polarization method. The 
width of the vacancion band is here A, ) J ,  where J is the 
exchange integral of the He3 atoms in the crystal. This ine- 
quality makes the Hubbard model applicable. The existence 
of the magnetic polarons predicted in this model, which are 
formed by the vacan~ies,'.~ is apparently confirmed by the 
experimental data.9 We note that similar phenomena take 
place in magnetic semiconductors of the type EuTe, EuSe 
(ferrons-see Ref. 10). 

The kinetic coefficients of the considered problem con- 
tain the cross section for scattering of a vacancion by a 
flipped spin (spin diffusion) or by an impurity. It is necessary 
to distinguish, generally speaking, between two cases. In 
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thermal activation of vacancies, the activation potential (the 
bottom of the energy band) is high enough and the vacancion 
gas obeys Boltzmann statistics. Scattering of vacancions by a 
flipped spin (impurity) is rare, and there is no correlation 
between the scattering acts. Under these conditions one can 
consider the initial states to be prepared in the form of a 
plane wave-vacancion and a localized scattering center, 
whose motion as a result of numerious scatering acts is 
Brownian. In the other case, if the vacancy density is regard- 
ed as specified and constant ("frozen-in vacancies"), degen- 
eracy of the Fermi gas of the vacancions takes place when the 
temperature is lowered. Only vacancions with momenta in 
the region of the thermal smearing of the Fermi surface can 
be scattered with change of momentum. On the other hand, 
the influence of the filled Fermi background manifests itself 
in the fact that the localized scattering center (flipped spin or 
impurity) is transformed into a quasistatic excitation with a 
lifetime limited by the successive collisions with vacancions 
with energy E - E ~  + S ( E ~  is the Fermi energy and S - T). In 
particular, at the temperature T = 0 such magnons move 
without damping. Their spectrum is determined in Ref. 2. 
By way of the initial state, it is now natural to choose two 
plane waves corresponding to a magnon (impurity quasipar- 
ticle) and a vacancion, and consider their scattering by each 
other. The problem of the mobility of the magnon (impurity) 
is then reduced to the problem of the mobility of Boltzmann 
particles in a Fermi gas, which was considered earlier by a 
number of workers. ' I - l3  

In Sec. 2 we obtain exact amplitudes of the described 
scattering by a flipped spin (magnon) for primitive cubic and 
planar quadratic lattices. On their basis, the temperature de- 
pendences of the spin-diffusion coefficient are obtained and 
the limits of applicability of the previously obtained re- 
sul t~ ' ' -*~ to our case are discussed. The scattering by an iso- 
topic impurity is considered in the conclusion. 

It must be noted that with increasing temperature, as 
the Fermi degeneracy of the vacancions is lifted, the magnon 
band is destroyed. Therefore at T )  E, the vacancion scat- 
tering center is certainly well localized. The transition from 
the magnon picture to scattering by the localized spin fluctu- 
ations is described by the change of the real part of the mass 
operator of the vacancion magnon, and will be studied in a 
separate article. 

Of physical interest from the point of view of applica- 
tions to quantum crystals is the temperature T ( A,. The 
vacancions are in this case close to the bottom of the band, 
where their spectrum is quadratic. The exposition is carried 
out in a system of units with fi  = 1. 

2. SCATTERING AMPLITUDE 

We consider a Hubbard model with infinite repulsion. 
The Hamiltonian (1.1) reduces to the tunnel Hamiltonian 

j r = - t p z  ei.+ej,,P, 
ijo 

where the prime denotes summation over the nearest neigh- 
bors; P is a projection operator that selects states with not 
more than one particle per site. A state with one vacancy in a 

system is described by the wave function Y (r,, where 
a," denotes the set of spin configurations of the system with 
vacancy at the point r,. For the case when all but one of the 
spins are ferromagnetically polarized, the spin configuration 
is specified by indicating the coordinate of the flip spin ri, 
i.e., 

Y (re, ri) =~v+~i++ci+ I f ) t  

where V )  is a fully ferromagnetic state. 
The operator (2.1) acts on the functions Y (r,, ri) in the 

following manner: 

where p is the lattice translation vector. To eliminate from 
the equations the unphysical situation r, = ri, we must add 
the following condition: 

RY? (r., rc) =0, r,=rt. (2.3) 
The stationary Schrodinger equation 

where E, is the energy of the localized vacancy, is written in 
the following form: 

where A = (E - E,,)/t and Sij  is the Kronecker delta. Equa- 
tion (2.5) does not determine the function Y (r, r) at A = 0. It 
must be additionally defined by the condition 

'4' (r, r) =0, h=O. (2.6) 
We shall consider the stationary problem of scattering 

for the Hamiltonian (2.1). It is convenient to seek the solu- 
tion in the momentum representation. Separating the rela- 
tive motion of the vacancion and of the flip spin, we intro- 
duce the Fourier transform of the function Y (r,, ri) from the 
following relation: 

(rs, r,) = ( $ ) 2 d  11 Y ,, (k) exp Ilk(.,-ri) ] exp (iqr,) ddk ddq. 

(2.7) 
Here a is the lattice constant, d is the dimensionality of the 
problem; the integration is over the first Brillouin zone. Us- 
ing the Fourier expansion of the Kronecker delta and taking 
into account the conditions (2.3) and (2.6), we obtained from 
(2.5) after a number of changes in notation the Schrodinger 
equation in the momentum representation: 

where Yq(p) is the Fourier transform of the function 
Y(r, - ri = R, ri) with respect to the variable ri. A general 
solution of (2.8) with account taken of the continuity of the 
spectrum in the considered problem can be written in the 
form 
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Y . ( k ) = [ h + h ( k )  I - '  z [ l - e x p  i ( k - q ) p l ~ , ( p )  
P 

+Aq6 (k-ko) . 

The second term in (2.9) is the solution of Eq. (2.8) without 
the right-hand side, A, is an arbitrary constant, and k, is the 
root of the equation 

A=-n (k) . (2.10) 
The scattering amplitude is determined from the compari- 
son of the asymptotic form of the coordinate wave function 
Y (R, ri) as R -+ co with the boundary condition as R +CO 

(see the Appendix). 
In the high-temperature case T > E, we choose for scat- 

tering by a localized center the constant A, in the form 

A,= ( 2 r ~ l a ) ~  exp (-iqro) . (2.11) 

Substituting the solution (2.9) of the Schrijdinger equation in 
(2.7) and taking (2.11) into account, we write the coordinate 
wave function for R > p in the following manner: 

Y (r,, r i )  =Y (R, ri-ro=r) =6, ,,eikoR+G (R) Id ( r )  , (2.12) 

where 

I.  (r) = (a /2n)  d j  d d q e i q r z  ( i - ~ - ~ q P )  [ c p ,  ( p )  ] d .  (2.13) 
0 

c p ,  ( r )  =ei&oyq ( r )  , (2.14) 

G (R) is the Green's function that describes, in the asymptotic 
limit R -+ CO,  the scattered wave with a wave vector 
k', = k, n' (the circuiting around the poles k = f k, is 
specified by the asymptotic behavior, see the Appendix). The 
direction n of the wave vector of the incident wave k, = k, n 
is specified as a boundary condition. On the other hand, the 
scattering direction n' is determined by the form of the 
equal-energy surface (2.10).15-17 The explicit asymptotic 
form of the function G (R) is written out in the Appendix. 
When writing the asymptotic form (2.12) we have neglected 
k;, . p in comparison with k;, . R. The index d denotes the 
dimensionality for which it is necessary to write out the func- 
tions that enter in the integrand. 

Comparing (2.12) with the boundary conditions (Al)  
and taking Eqs. (A3)-(A8) into account, we obtain the ampli- 
tude for the scattering of a vacancion by a localized flipped 
spin. We write down this amplitude in the long-wave limit 
k, a + 0. As already indicated, it is precisely this limit 
which corresponds to the real physical situation. The expres- 
sions for the scattering amplitude in the general case are 
written in the Appendix. From Eqs. (A5) and (A8) it can be 
seen that near the bottom of the vacancion band the scatter- 
ing is isotropic. As k, a -+ 0 we have: 

in the case d = 3 

in the case d = 2 

The scattering amplitudes (2.16), (2.17), (A9), and (A10) 
contain under the integral sign of (2.13) the unknown func- 
tions q,(p). Determination of these functions completes the 
calculation of the exact scattering amplitude. Substituting in 
the expression 

the solution (2.9) with the constant (2.11) and recalling the 
connection (2.14), we obtain the system of equations for 
%(PI: 

cpq ( p )  =eibp+ Zqq (p') [ G  ( p )  - G ( p + p J )  e-iqpr]. (2.19) 
P'  

The solutions of the system (2.19) for a primitive cubic and 
for a planar quadratic lattice are given in the Appendix. Sub- 
stitution of these solutions in the wave function (2.12) makes 
this asymptotic solution of the Schrodinger equation (2.5) 
self-consistent. 

Of physical interest is the long-wave limit. Taking its 
importance into account, we write down with the aid of 
(A17) the integral I,(r) as k, a -+ 0 in explicit form: 

The function Fi and Gi are determined in the Appendix. We 
need the values of this integral for the case of scattering with- 
out a shift of the flipped spin. Numerical integration of (2.20) 
with r = 0 yields 

1, ( 0 )  1 m,0=-0.843, Z2 ( 0 )  1w,o=-0:547+0.193i. (2.21) 

From the expressions (2.16), (2.17), (A9), and (A10) ob- 
tained for the scattering amplitude it is clear that we can 
classify the scattering channels in accord with the shift of the 
flipped spin. Taking the properties of Im Gi into account (see 
the Appendix), as well as the fact that the integrand in (2.20) 
has no pole with respect to k, we find that in the limit of small 
k, the scattering amplitude, depending on the dimensiona- 
lity of the problem, takes the form: 

f ( r )  =[b,'+ikb,"] (,,, d=3, (2.22) 

f ( r )  = (i/k)'h[fL'+ip."] t 2 , ,  d=2, (2.23) 

where b :, b :', 0 :, and0 :' are constants that depend on the 
parameter r and are analogous in their physical meaning to 
the scattering length. It can be seen from (2.20) that the am- 
plitude of scattering with a shift is isotropic along the direc- 
tion r and decrease exponentially with increasing r. For cross 
sections in the input channel, corresponding to "elastic" 
scattering without a shift of the flipped spin, we obtain 

os= (n lk2)  I 1-SO0 I 2 - ~ i a 2 ,  d=3, (2.24) 

o,= (n'"1k) I 1-Soo I 2 = ~ 2 / k ,  d=2, (2.25) 

where 

So,=l+ (2ik)  (d - ' ) lZ f  ( r )  (2.26) 

is the scattering-matrix element corresponding to zero angu- 
lar momentum (isotropic s-scattering), with a shift of the 
flipped spin by an amount r. 
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The total cross section of all the processes with a shift is 
given by the equations 

oi= (nlkz) (I- 1 Soo 1 ') =cSaZ, d=3, (2.27) 

where ci are constants whose numerical values can be easily 
obtained with the aid of Eqs. (2.21) and (2.26). We have, in 
particular, c, = 0.057, c, = 0.047, and c, = 0.143. In the 
two-dimensional case we used Eqs. (A23)-(A26). We point 
out that in the three-dimensional case, for "inelastic" scat- 
tering of slow particles with a shift of the flipped spin, the 
"u-' law" for cross sections is not satisfied. The behavior of 
the cross sections as functions of k does not depend on the 
scattering channel. 

We note that our definition of the Hamiltonian in the 
wave function in terms of the operators ci and c+ ,  which 
specifies the bottoms of the vacancion band in the limit as 
k, a + 0, was chosen from convenience considerations. The 
definition under which the energy is a minimum on the 
boundaries of the Brillouin zone (the opposite sign of the 
spectrum) multiplies our solution (2.4) by an inessential 
phase factor without changing the results obtained for the 
cross sections. 

We write down also equations for the case when the 
vacancions are scattered by a vacancion magnon. In this 
case, of course, the foregoing distinction between elastic and 
inelastic processes becomes meaningless. Assuming that the 
vacancions are located near the bottom of the band, we neg- 
lect umklapp processes. If we choose the constant A, in (2.9) 
in the form 

and introduce in place of the relation (2.14) the function 
P, (PI defined by 

yq (P) = ( 2 n l ~ ) ~ f j  (q-Q) (pq (PI, (2.30) 

the asymptotic form of the coordinate wave function now 
becomes [cf. (2.12)]: 

Y (R, ri) = exp (iQri) 
P 

(2.31) 

with the function q,(p) solutions of the system (2.19) as be- 
fore. Comparing expressions (2.3 1) and (A2) and again tak- 
ing (A3)-(A8) into account, we find that the amplitude for 
scattering by a magnon takes the following form (for the sake 
of brevity we write it in the limit as k, a -+ 0): 

(2.33) 
The cross sections are determined by Eqs. (2.24)-(2.26) but 
with other constants c, . 
3. SPIN DIFFUSION 

Spin diffusion in the case of a Boltzmann gas of vacan- 
cions will be calculated following Ref. 14. The average veloc- 

ity of the flipped spin as a result of vacancion scattering by it 
is written the following form: 

where W, is the probability of displacing the flipped spin by 
the vector p. Assuming that the flipped spin is acted upon by 
a force F, we obtain 

where n ( ~ )  is the vacancion (Boltzmann) distribution func- 
tion, E, is the bottom of the vacancion energy band, and ds is 
an element of the equal-energy surface. At a temperature 
T ( E, the Boltzmann factors cut off the integration in (3.2) 
near the bottom of the band. Under these conditions, taking 
(2.27) and (2.28) into account, we find that the integral with 
respect to ds is proportional to E - E, for d = 3 and is a con- 
stant for d = 2. Restricting the summation in (3.1) by the 
condition F . p > 0 (the remaining shifts are taken into ac- 
count in (3.2) as inverse processes) we obtain in the limit as 
F . p/T + 0 for the average velocity v = pF, wherep is the 
mobility coefficient. We calculate the spin-mobility coeffi- 
cient D by using the Einstein relation. We obtain 

D=const (Ta) %xp (-&,IT), d=3, (3.3) 

D=const a2 exp (-co/T), d=2. (3.4) 

The discrepancy between the result (3.3), recalculated 
in terms of mobility, and the paper by Andreev and ~ g e r o -  
vich is due to the fact that the assumption made in Ref. 14, 
that the u- ' law holds for the considered inelastic scattering, 
is replaced in our case by the exact result (2.27), namely 
a = const. The u-'  law presupposes that the logarithmic 
derivative of the radial part of the wave function, taken on 
the boundary of the limit of the action of the scattering po- 
tential, is equal to a certain complex constant, and its reci- 
procal modulus determines the characteristic scale over 
which the deformation of the wave function takes place in 
the scattering process (see, e.g., Ref. 18). Although in our 
case such a boundary condition does not have a direct phys- 
ical meaning, from the formal point of view the result (2.27) 
denotes renormalization of the characteristic deformation 
length by the small factor k, a ( 1. Thus, the "reaction 
zone," which has in the quasiclassical fast-vacancy approxi- 
mation a dimension -a, decreases with increasing vacan- 
cion wavelength. Physically this means that a slow vacan- 
cion can displace a flipped spin localized on a lattice site by 
merely passing at an infinitely close distance from it. For fast 
(quasiclassical) vacancions the impact parameter is the lat- 
tice constant. 

We consider now the case of Fermi degeneracy of a va- 
cancion gas. We confine ourselves to the dimensionality 
d = 3. Then E , - x * ' ~ A , .  AS noted in the Introduction (see 
also Ref. 2) a localized spin fluctuation turns into a magnon 
with a bandwidth Ai  -A ,  x-E,  x ' I3 .  In this case, if the po- 
larization is induced by vacancions [Nagaoka ground state 
with exchange intensity J, -A ,  x (vacancion ferromagnet)], 
the energy .I, acquired in the spin flip is offset by the spin 
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delocalization, and the discussed "vacancion magnon" is a 
gapless excitation. In the case of polarization by a magnetic 
field, the fields required for this purpose produce in the mag- 
non spectrum a gap of the order of &,. We shall assume equi- 
librium magnon and vacancion distribution functions. This 
means that the observed effects receive contributions from 
thermal excitations. At temperatures needed to flip in a mag- 
netic field a number of spins that is not exponentially small, 
the vacancion gas is no longer degenerate, and we return to 
the picture of localized spin fluctuation. The magnetic field 
has no influence on the localization of an isotopic impurity 
(see the Conclusion). 

For x < 1 we have a hierarchy of parameters: 
A , < 1, < A,. Assuming the magnon gas to be rarefied, we 
arrive at the problem of the mobility of a Boltzmann particle 
in a Fermi gas, for which the following results can be ob- 
tained. At k > q we obtain from the solution of the kinetic 
eq~ation".'~ 

p- (MT) -'o-', (3.5) 

where M is the effective mass of the Boltzmann particle 
(magnon). In the opposite limit k 4 q, collisions with Fermi 
particles (vacancions) lead to a small change of the magnon 
momentum, and the kinetic equation reduces to a Fokker- 
Planck equation. The results for the mobility is12 

p-pF-&o-i, (3.6) 

wherep, is the Fermi momentum of the vacancion. We note 
that in both cases it is necessary to check on the validity of 
the kinetic equation. The cross sections can be calculated 
from the amplitude (2.32) for scattering by a vacancion mag- 
non. In our case it is necessary to take into account also the 
band character of the motion of the vacancion and of the 
magnon, but at T < A, these restrictions are inessential. 
From the estimates k- (m~,)-'I2 and q- (MT)"~, where m 
is the effective mass of the vacancion, we obtain a new pa- 
rameter To- A, x2I3, so that k > q at T 4 To and vice versa. 
We note that at T 2  A , > Ti a change takes place in the esti- 
mate for q; it takes the form   MA^)'/^. The inequality 
k < q continues to the satisfied in this case. 

Thus, at T < To the result (3.5) is valid. Using again the 
Einstein relation, we obtain for the spin-diffusion coefficient 
the expression 

D- (axil,) 'T-I. (3.7) 

At T < A, the condition for the applicability of the kinetic 
equation is Tr ) 1, where 7 is the magnon mean free path. It 
is easy to verify, substituting in the estimate r-pM the 
expression (3.7), that this condition is satisfied. 

The temperature To < T < E, is the region of applicabi- 
lity of the results (3.6). For the spin diffusion coefficient we 
obtain from Einstein relation 

D- (ax-2/3 2 ) T. (3.8) 
The Fokker-Planck kinetic equation is applicable now under 
the condition A, r > 1. Taking into account the band char- 
acter of the magnon-motion, we obtain the estimate 
r -pT (A,)-2, from which we can easily conclude that the 
kinetic equation is applicable already on the lower limit of 
the region T- To. 

4. CONCLUSION 

We have considered the problem of vacancion diffusion 
for two- and three-dimensional lattices. In the one-dimen- 
sional case there is no scattering (actually, reflection) of the 
vacancion wave by the magnetic defect. In fact, ford = 1 the 
lattice breaks up into the regions r, < r, and r, > r,. Writing 
down the Schrodinger equation in each of them with the 
conditions (2.3) and (2.6) we find that the general solution is 
the function 

y (R,  r )  s e C i k o R  (I-6r9 0 )  7 

in which the sign of the phase is determined by the condition 
at R -+ CXY , and which does not contain a reflected wave. The 
meaning of this result becomes clear if it is recognized that in 
the one-dimensional case, in the considered Hubbard-model 
limit, the width of the vacancion band does not depend on 
the magnetic s t r~c tu re .~  

The quantitative results obtained for the cross sections 
and for the diffusion should remain in force also for bcc, hcp, 
and planar triangular lattices, which are realized in quantum 
crystals. To obtain exact quantitative results it becomes nec- 
essary to solve the system (2.19), which contains a large num- 
ber of equations. However, recognizing that the Green's 
function is numerically small, an exact solution of the system 
(2.19) can be replaced by the approximate solution obtained 
by iterating the difference equation (2.19). The zeroth ap- 
proximation is of the form 

(pq (p) =exp (ikop). 

For the case of an isotopic impurity in a quantum crys- 
tal (He4 in an He3 matrix), the amplitude of the vacancy- 
impurity exchange is generally speaking not equal to the am- 
plitude of vacancy exchange with the matrix atoms. This fact 
is taken into account by replacing the second equation of 
(2.2) in the definition of the operator H with 

where t ' = yt. The case y < 1 corresponds to repulsion (at 
y = 0 the repulsion is infinite), while y > 1 corresponds to 
attraction. The answer now takes the following form (we 
write it in the limit as ko a --+ 0): 

Pi-Po 
[X(q) -Y(q)  ],a-o= 

I+G,P,-GPO' 
where the following notation is introduced (cf. The corre- 
sponding Eq. (A4) of the Appendix): 

Pi (q) =y CF. (p) e - ' . ~ .  R (q) = pq (P), (4.3) 
P P 

I+ (G,-Go) yeiqP 
"(')= 1+2(G,-G,) y eos qp+y2[ (G,G,)'- (G,--Go)2] . 

From expressions (4.2)-(4.4) we can conclude that at suffi- 
ciently large y the vacancion spectrum contains besides the 
considered scattering state also bound states. 

The results can be verified in experiments on spin diffu- 
sion in strongly polarized quantum crystals. This polariza- 
tion is produced in fact by the magnetic field, so that we are 
dealing with a check on the pre-exponential factor in Eqs. 
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(3.3) and (3.4). For the case of observation of a vacancion 
ferromagnet, we can use Eqs. (3.7) and (3.8) to study the spin 
diffusion in it. We note the possibility of obtaining a quasi- 
equilibrium state of "frozen-in vacancies" with controllable 
density in quantum two-dimensional crystals (such a state 
was observedI9 in the bcc phase of He3). Of definite interest is 
also the observation ofbound states of the vacancy and isoto- 
pic impurity, predicted by Eq. (4.4). 

I am deeply grateful to A. F. Andreev for suggesting the 
problem and directing the work, to G. E. Gurgenishvili, A. 
E. ~ge rov ich ,  A. A. Nersesyan, and G. A. Kharadze for 
helpful discussions, to Z. R. Menteshashvili and Ts. T. Tark- 
hashvili for help with the computer calculations. 

APPENDIX 

1. The boundary conditions in the asymptotic form as 
R -+ oo for the coordinate wave function Y (R,ri) takes the 
following form. 

a) Scattering by a localized flipped spin ( T  ( E,): 

Here f :, (r) is the scattering amplitude of a vacancion whose 
initial and final states are characterized by the quasimo- 
menta k and k', while r = r, - r, is the flip-spin shift vector. 

b) Scattering of a vacancion by a magnon ( T  -4 E,): 

Here Q = k + q, q is the magnon quasimomentum. 
2. The asymptotic form of the function (2.15) G (R) for a 

primitive cubic lattice (with a different sign of the spectrum) 
was obtained in Refs. 15 and 16 by the stationary-phase 
method. We write the result in a form that takes into account 
the singularity when the wave vector of the scattered wave 
k I, passes through the parabolic points of the equal-energy 
surface2': 

x(l+i  sign B )  a ( I - i  sign cos kOi1a) 

Here 

B=S (k,') /cos ko.'a cos ko,'a cos ko,'a, 

S ( k O 1 )  - z s i n '  ko.'a cos ko,'a cos ko,'a. (A41 

In the formula for S the summation is over the cyclic permu- 
tation ofx, y, and z. From (A3) and (A4) it can be seen that at 
S(ko) > 0 expression (A3) is real and in the opposite case 
(S (k,,) < 0) it is pure imaginary. The singularity a tS  (k,,) = 0 is 
integrable. At small k, (near the bottom of the vacancion 
band) we obtain 

Similar expressions can be written also in the case of a planar 
square lattice: 

i a '" 
G ( R )  =- - ( - ) e i k o r R  ( l + i  sign B , )  

8 n B  

x n ( I - i  sign cos koia) 
t-x,u 

here 
Bi=Sl (kol) lcos kox' a cos kw'a, 

SI (k,') =sin2 k o i a  cos kovfa+sinZ ko,'a cos ko,'a. (A71 

The real part of the asymptotic expression (A6) reverses sign 
when the denominator of the expression goes through zero. 
A divergence arises when the wave vector of the scattered 
wave is located on the open equal-energy surface. Near the 
bottom of the band we obtain 

3. The exact amplitudes for the scattering of a vacan- 
cion by a localized flipped spin at d = 3 are of the form 

4 a fko .  ( r )  = i - ( l+ i  sign B )  n ( I - i  sign cos kOiTa) 
16n 

i - x , y , z  

'I, 

X I sin' k , 'a /S(kOf)  I l i k e )  ( r ) ,  (A91 

and at d = 2 we have 

LO i '12 

ho, ( r )  = - (L) ( I + ,  sign B , )  ( I - i  signcos kO:a) 
8 n 

X l (sin2kOsfa+ sin'kovla) */S1 ( k O 8 )  l'1a~2(ko' ( r )  . (A10) 

4. A solution of the system (2.19) can be obtained in 
relatively compact form only for a primitive cubic and 
planar quadratic lattice. In these cases the system (2.19) can 
be reduced to a system of two equations for p,( + p): 

qq ( p )  = e i k o p +  (G,-G,) e - ' q p  qq ( p )  . - 
+ ( G L - G ~ )  eiqp c p q  (-0) -G,X(q)  +GY (q ) ,  (A1 1) 

where we have introduced the notation 

with p . p, = 0. The functions (A13) are expressed by means 
of an integral of a product of Bessel functions of integer in- 
dex and of trigonometric  function^^'.^^ and are written out 
below. We note that to calculate the scattering amplitude we 
need the difference of the functions (A12), X (q) - Y(q).  The 
solution of the system (A1 1) is 
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@,'a ( p )  = [ e ' k o ~ +  (G,-G,) e i ( q + k o ) r  + (G,-G,) e i (q -*o)~  ] D-', where J,,, (t ) are Bessel functions of the first kind and of in- 

F,  ( p )  = [ I +  (G2-Go) eiq*' ] D-', teger index. The functions (A18) can be expressed via the 

D z 1 + 2  (GZ-GL) cos qp+ (GL-G2) '+ (GL-Go)'.  functions 
0 

Substituting (A14) in (A12), we obtain a system of equations C ( k ,  m, n )  = 5 l k ( t )  l . ( t ) l .  ( t )  oos ld t /2dt ,  
for X (q) and Y (q): o 

where which are tabulated in Ref. 21. The Green's functions for a 
planar quadratic lattice are likewise written with the aid of 

p0 ( q )  = Fq ( P ) ,  Ft ( q )  = F .  (P) e-lqp. the integrals in (A1 8), except that the integrand is divided by 
P P the function Jo(t ). They can be expressed in terms of the func- 

@ o k ~ ( q )  = @ q k o ( p )  , @,ko(q) = zmq(p)e- iqp .  tions 
0 

Making up the sought difference from the solutions of the 
system (A15), we obtain 

(G,-G) ( ~ J , ~ Q F ~ - F , ~ , " )  
Xk, (4 -Yko ( q )  = - 

' I+G,F1-GFo 
(A 16) 

The result becomes simpler for the case of the bottom of the 
band. As k, a + 0 we have 

X ( q )  -Y ( q )  =(Ft-Fo)/ (I+G,Ft-GFo). ('417) 
5. When calculating the Green's functions (A13), the 

circuiting around the pole is governed by the required 
asymptotic form. Thus, in order that the asymptotic relation 
contain a diverging wave it is necessary, in the case of our 
spectrum, to add to the denominator of the integrand in 
(2.15) an infinitely small positive imaginary part. Using the 
integral representation of Bessel functions, we obtain for a 
primitive cubic lattice (cf. Refs. 21 and 22) 

G - 'j j.xp ( a r 1 2 )  I ,  ct! J.' <r) m. " T -  
i 

Go=- J e r p  ( i h t l t )  1." ( t )  at, 
0 

C (m, n)  = 1 I ,  ( t )  I,, ( t )  cos ht/2dt ,  
0 

0. 

S (m, n) = l,,,(t) L ( t )  sin ht12dt. 

whose vales are listed in the Table. We note that outside the 
band Im G, = 0 in both the three-dimensional and in the 
two-dimensional cases. However, whereas in the three-di- 
mensional case Im G, goes to zero continuously (Im Gi - k ), 
in the two-dimensional case Im G, has a jump, equal to 0.25, 
on the boundary of the band. This result can be easily under- 
stood by recalling that Im G, a Y(E), where Y(E) is the state 
density. 

6. We present two relations between the functions 
(A20). These can be easily obtained by integrating by parts 
and were used by us to check on the Table: 

7. We write down several formulas of the two-dimen- 
sional scattering theory. The scattering amplitude f is de- 
fined as the coefficient of the diverging wave in the asympto- 
tic form of the exact wave function 

Y , = e x p  (ik,z) +r-'"f,, ( 0 )  exp (ik,r) , 
Y t=r-'hfrnt ( 0 )  exp ( i k t r )  , 

(A221 

where m is the index of the input channel and t is the index of 
any inelastic channel. The cross section d6 a If($ )12d$ has 
the dimensionality of length. The unitary scattering matrix S 
is connected with the amplitude f in the following manner: 

TABLEI. Valuesof the functions C (m, n) andS (m, n) for certain valuesof the parameter /l. 

hi2 ( C(i,O) I S( i .0 )  ) C(2,O) I S(2,O) I C(0,O) I S(O.0) ( C ( i , i )  I S ( i , i )  
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wherejm, is an integral operator: 

fmrF (n) =- (4n) -IhSfmt(n, n') F (nf)dO. (A241 
In the case of isotropic scattering the only nonzero element 
in the S matrix is the one corresponding to scattering with 
zero angular momentum. Denoting it by S, we obtain: 

a) the elastic-scattering cross section 

o,=n'"l I-Smm I 2/k; (A251 

b) the total inelastic-scattering cross section 

oi=nl"(l- ISmm I ') lk. (A261 
The optical theorem in the two-dimensional case takes the 
form 

Im fmm(0) -Re fmm(0) = (k/4n)'"(o,+oi). (A27) 
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