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We consider the behavior of a plasma in electrical and magnetic fields which have random compo- 
nents. We derive kinetic equations for the electron and ion distribution functions averaged over 
the fluctuations. We determine the complete set of kinetic coefficients in the hydrodynamical 
plasma equations, taking fluctuations into account. Using these equations we consider the diffu- 
sion of the plasma and the damping of magnetohydrodynamic waves, and also the kinetic effect of 
the strong deformation of the tail of the distribution function in a fluctuating magnetic field. 
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Magnetohydrodynamics meets with a number of diffi- 
culties when describing the fluxes of a nonequilibrium rar- 
efied plasma; these are the consequences of the peculiarities 
of plasma behavior. Part of these peculiarities are connected 
with the fact that classical dissipative processes are weak. 
Due to this instabilities occur easily in a nonequilibrium rar- 
efied plasma and they lead to the buildup of various kinds of 
waves and to the stochastization of the plasma state. As a 
result the dissipative processes are appreciably intensified- 
the transverse diffusion, the conductivity, the heat conduc- 
tivity, and the viscosity are intensified. There arises a diffu- 
sion of the magnetic field and it is sharply enhanced. 

Other important peculiarities are determined by the 
Coulomb nature of the collisions. Collisional dissipation due 
to Coulomb collisions is negligibly small for fast particles so 
that they easily gain energy in a nonequilibrium plasma- 
they are accelerated. As a result there occurs so to speak a 
special channel to dissipate the energy of the main plasma. If 
the fast particles are sufficiently well contained their number 
may become appreciable and then they contribute impor- 
tantly both to the transfer processes and to the dynamics of 
the plasma as a whole. 

The present paper is devoted to developing methods for 
describing the dynamics of a nonequilibrium rarefied plas- 
ma-so to speak a generalization of magnetohydrodynamics 
to the case when there are present in the plasma, due to its 
instability and turbulization, stochastic components of the 
electric and magnetic fields and there is an arbitrary number 
of fast particles. There has in recent years been an enhanced 
interest in the behavior of a plasma under such conditions in 
connection with problems of the Fermi acceleration of cos- 
mic rays,'-3 the diffusion of magnetic surfaces in toroidal 

anomalous heat conduction in t~kamaks,~.' and the 
flow of the solar wind around the magnetosvheres of the 

In a collisional plasma one can then distinguish two 
components-the main plasma and the gas of the fast parti- 
cles; we formulate a closed set of equations describing both 
components. In $84 and 5 we consider as example solutions 
of these equations describing the diffusion in the plasma and 
the damping of magnetohydrodynamic waves, and also the 
kinetic effects of the deformation of the fast particle distribu- 
tion function caused by the fluctuations in the magnetic 
field. 

91. STATEMENT OF THE PROBLEM. BASIC EQUATIONS 

We consider a plasma in a magnetic field B and an elec- 
tric field E which contain random fluctuating components 
b(r,t ) and e(r,t ) whose the amplitudes are small compared to 
the main components B,(r,t ) and E,(r,t ), viz., 

B=Bo+b, 1 e 1 a 1 Eo 1 ,  (e>=O, 
(1) 

We shall assume that we know the amplitudes of and spectra 
of the fluctuations and we study their effect on the averaged 
motion and the kinetics of the particles in the plasma. 

The main quantities characterizing the fluctuations (the 
correlation length LC and the correlation time 7,) are as- 
sumed to be small compared to the characteristic scales of 
the motions-the spatial dimensions L of the inhomogeneity 
in the plasma and in the main fields and the times A t  over 
which they change, i.e., 

L,<<L, %,<At. (2) 

When we describe the plasma we shall start from the 
kinetic equations for the electron and ion distribution func- 
tions: - 

Earth and the other planets. 81 af e af e a j  
- + v- + -(Eo+e)- + -[v~(B,+b)]-'=S(f). (3) 

In 4 1 of our paper we derive the starting kinetic equa- d t  or m dv mc av - - 
tion which describes the behavior of the electrons and-the Here ~ ( f )  is the collision integral. Using (I) we write the 
ions in the plasma when there are stochastic components of distribution function f i n  the form 
the electric and magnetic fields present. In $2 we consider a 
collisionless plasma and in $3 a plasma with collisions. We !=f+6fl I6fl<lf 1, (4) 
obtain additional terms in the hydrodynamic equations where 7 is the main part averaged over an ensemble of real- 
which describe the effect of the stochastic fields on the trans- izations of the random fields b and e, while Sf are its fluctu- 
port, heating, and acceleration of particles in the plasma. ations. We then have from (3) and (4) 
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1 a 
r ~ t ( e ( r ,  t )  bs (r f ,  t') >= --- ( b ( r ,  t )  b6(r1, t') ). 

c dt 

Here S,, is the collision integral linearized with respect to 3 
We can write the solution of Eq. (6) in the form 

Here G is the Green function of the linearized kinetic equa- 
tion: 

- - 

=S,,(f, G )  +6 (t-t') 6 (r-r') 6 (v-v')  . (8) 

Substituting (6) and (7) into (5) and averaging we get the fol- 
lowing equation for 7 (we shall drop here and henceforth the 
bar over f ): 

The Green function G describes the dynamics of the pertur- 
bation which is localized in the point r', v' at the initial time 
t = t l .  

The set (8), (9) is characterized, apart from by the corre- 
lation scales LC and rc , by the mean free path time and mean 
free path reri and leVi of the electrons and the ions. We shall in 
what follows consider both the case of rare collisions (a colli- 
sionless plasma in the limit) 

~ e .  1/~,'00, z,, i/Lc+-m, (10) 

and the inverse case of a plasma with a large number of colli- 
sions 

i ;  L,Bl,, i. (1 1) 

52. COLLISIONLESS PLASMA 

Under the conditions (10) of rare collisions Eq. (8) de- 
scribes the free motion of particles in electric and magnetic 
fields E, and B,. It is clear from (9) that the solution of Eq. (8) 
is important only for spatial and temporal scales rC and LC 
(we assume that the correlations decrease sufficiently rapid- 
ly when L)Lc and r>r,). Because of the condition (2) the 
fields change little on those scales and we can therefore take 
them to be quasi-uniform and quasi-stationary. Moreover, 
recognizing that quasi-stationary fields in a collisionless 
plasma are orthogonal E,lB, and separating the slow (r,v,t ) 
and the fast (r - r', v - v', t - t ' = 7) variables we find the 
Green function: 

e2 d +- i G (r ,  V ,  t ,  r', v', t') =O ( z )  6 (z-2'-v,z) 6 (x-x' 
Ifl= - - d3r'd3vu. j d t ' ~  (r ,  v ,  t ,  r f ,  v', t') 

m2 dv ,  - 00 -OD 
vr -- v Y sin ~ H T  - -(cos o H z - 1 )  

a f 
OH OH 

(en(r ,  t ) e0 ( r r ,  i') ) - ( rr ,v f ,  t ' )  0, V U  
d v6 + -(COS O H T - 1 )  - -sir] o H ~  

1 
OH OH 

, df +--(en (r ,  t )  be(r', t ')  > E A ~ , , V ~  -(r l ,  v', t') (9) x 6 (v ,  cos O H T - U ~  sin oHz-usf )  6 ( v ,  sin o , , ~ f v ,  cos U ~ T - V , ' ) .  
C vi 

8 +- 
t Thez-axis is here taken along B,(r), 8 (7) is the unit step func- 

e2 
+ - E ~ , V ~ - -  jd3r'd3v' J' d t ' ~  ( r ,  v, t ,  r', v', 1') tion, and w, is the cyclotron frequency of the particle con- 
m 2~ va - rn - ca sidered. Using the actual form (12) of the Green function we 

df 1 
can, by integrating by parts, transform the right-hand side of 

x {( bh (r ,  t )  err ( r f ,  t r )  )-, + -( bh (r ,  t )  b,, (r', t l )  ) Eq. (9) for the collisionless case into 
~ Z J ,  c 

e2 d 
- 

af ( e a ( r , t ) e h ( r ' , t l ) )  ~ e ~ ~ , , v B '  -,(rl, v', t') 
8 vv 

Here is the antisymmetric unit tensor. Summation oc- urn 
curs over repeated indexes. + -(errbn)Ekrnn G (r, V, t ,  r', v', t ' )  f (r' ,  v', t ' )  

C 

The set of Eqs. (8) and (9) describes the averaged distri- 
1 (13) 

bution function when there are collisions in the plasma and 
e2 

the relatively weak electromagnetic field fluctuations (1). 
d - +- + - e,vp --I drfrk J' d3r1d3vr { ( b v e k )  

Averaging was carried out over the fluctuations and their rn'c dua ,, -m 

effect was taken into account by the correlators ( eae5 ) ,  
(cab,), (bab5)  which are assumed to be known. We note 1 

+ - < b v b p ) ~ k l u ~ l '  f (r', v', t ' )  G(r ,  V, t ,  r', v', t') 7 

that these correlation functions are not independent but are c 
connected through relations which follow from the Maxwell 

1 
equations, for instance, where the i, are differential operators 

52 Sov. Phys. JETP 57 (I), January 1983 Gurevich etal. 52 



a 
Zx= cos o a r - -  [ a, sin O H T  - a I avu 

Using the form of the function G we now integrate over 
d 3r'd 3v'. There remains only a single integral over dr .  The 
integrand in (13) then retains its form and, in agreement with 
(12), only the velocities v:, and the arguments of the function 
f (vl,r',t ')are changed; one makes the following substitution: 

~,I+v ,cos  O H ' C - V ~  sin o ~ z ,  

V,,'+V, sin w e ~ + v ~  cos O H T  etc. 

We consider further the particular case of strongly 
magnetized fluctuations: 

O H . , ~ I .  (14) 

Retaining terms of zeroth and first order in (w,.r,)-' and 
using (12) and (14) we get a simple expression for I ,  in this 
limit: 

Here u, is the velocity of the plasma motion across the mag- 
netic field B, equal to 

uo=c [E,X B,] /BO2. 

The quantity 77, takes on the values e, and 6 , .  In the coeffi- 
cients R $ and Q 2; there occur integrals of the correlation 

functions (e,es),  (b,b, ) in which the argument x = r - r' 
depends on the time according to (12): 

x-z'= ( v , / o I I )  sin wHt+ ( v ~ / o H )  ( C O S  O H T - ~ ) ,  

y-y'= ( v , / o , )  sin @Hz--  (v,/oH) (cos o ~ r - 1 ) ~  

2-zf=v. t .  

Hence it is clear [see (1 5) ]  that the interaction with the fluctu- 
ations leads not only to diffusion in energy space (the terms 
R $) but also to a drift in coordinate space (the terms Q 2:). 
This distinguishes I,  '/' from the usual collision integral. 

We now consider the hydrodynamic macroscopic plas- 
ma motion. We recognize that even rare electron-electron 
and ion-ion collisions succeed in Maxwellizing the distribu- 
tion function provided the average particle energy E in the 
plasma increases not too rapidly, i.e., 

where re and ri are the mean free path times of the electrons 
and the ions. Assuming that conditions (16) are satisfied, i.e., 
assuming the electron and ion distribution functions to be 
Maxwellian, we change from the kinetic Eq. (15) to the hy- 
drodynamic equations 

dN/dt+div (Nu)  +div jD=O, 

As usual we have assumed that the non-uniformity 
scales are much larger than the Debye radius so that the 
plasma is quasi-neutral, Ne = Ni = N. The hydrodynamic 
velocity is then u = (m,ue + m,ui)/(me + mi). We assume 
also for the sake of simplicity that the electron and ion tem- 
peratures are equal: Te = Ti = T. The quantity 
p = Ne Te + Ni Ti is the total plasma pressure, pe = Ne Te 
the electron pressure; j, is the diffusion flux and R the fric- 
tional force: 
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As before, q, has here two values, en and b,; 
qa = (e/meBo)NTC & is the heat flux caused by the fluctu- 
ations to which only the correlation function (e,b, ) contrib- 
utes. Furthermore, J(e2/me)R LN is the work done by the 
stochastic electric field on the plasma and causes its heating. 
Ohm's law for the longitudinal current takes the form 

dj, e2N e  - + j, div u = -EO,+ - V Z P ~  
dt me m. 

1 1 - %L{D,~N + - C ~ ~ N  
Bpm. ark c 

(20) 

X D ~ ~ ~  ( u p - & )  N ) .  

The transverse current is defined as follows: 

c e'c 1 a 
~ ~ = - - [ v ~ x B o ] ~ + - { ~ R ~ , " N +  Bo2 me& dz - 

The hydrodynamic equations are closed by the Maxwell 
equations for the main fields E, and B,, i.e., 

div Bo=O, rot Ho=4njlc, 
(22) 

The longitudinal electric field (the polarization field) is de- 
termined by the quasi-neutrality equation: 

div j=0. 

The set of Eqs. (17) to (22) describes the magnetohydro- 
dynamics of a Maxwell plasma with rare collisions in sto- 
chastic fields. It is clear that in that case the fluctuations 
determine both the forces acting upon the plasma and the 
transport processes leading to diffusion, heating, and parti- 
cle acceleration. For instance, the magnitude of the trans- 
verse transport coefficient Dl, determined by (19), is 

where v, is the ion or electron thermal velocity. 
We give below in §§4 and 5 particular examples of ap- 

plications of the hydrodynamic equations obtained here. 

83. PLASMA WITH COLLISIONS 

We now consider the dynamics of a plasma under con- 
ditions (1 1) when not only the fluctuations of the electromag- 
netic field but also the electron and ion collisions are impor- 
tant. We shall assume the plasma to be magnetized 

where T,,~ are the mean free path times of the thermal parti- 
cles. By virtue of (1 1) the conditions pH/L, (  1 and w,~,) 1 
are then satisfied, where pH is the Larmor radius of a parti- 
cle in the field-B,. We can then average Eqs. (8) and (9) over 
the gyrorotation angle which is equivalent to changing to 
drift variables. We get 

xG(r, V, t, r', v', t') +S(f) 

Here v, is the velocity along and u, the velocity across 
the magnetic field B, + b. We denote the left-hand side of 
Eq. (24) by DJ the equation for the Green function G then 
takes the form 

DG=S,i,(J, G) + 6 (t-t') 6 (v,-v,') 6 (v,-v,') 6 (r-r') . (25) 

In deriving Eqs. (24) and (25) we have used conditions (1) and 
(23), and also the additional condition 

Because the number (1 1) of collisions is large, the electron 
and ion distribution functions are nearly Maxwellian so that 
we can linearize Sii and See relative to the Maxwell distribu- 
tion function. The integrals for Sei and S,  have the forms 
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where u , ,  are the ion and electron macroscopic velocities, 
and A, is the Coulomb logarithm. We have written the elec- 
tron distribution function in the coordinate system moving 
with the ion velocity. 

It is important that both the electron and the ion colli- 
sion frequency decreases when their energy increases: 
vae-" ' .  Condition (1 1) is therefore satisfied only, if 

Since 7, > T , ~ ( T )  and E, > T, for particles with energies E > E, 

the condition which is the opposite of condition (1 1) is satis- 
fied. The plasma is for them collisionless. This distinguishes 
the energetic particles; they form, so to speak, a gas in the 
plasma. In what follows we get the equations which describe 
separately the main, thermal plasma and the energetic com- 
ponent. 

A. Main plasma 

We consider the main plasma. The particle velocity in it 
is of the order of the thermal velocity o,. We take it that the 
drift velocity u, (v,. The equatlon for the Green function G 
can then be written in the form 

=S(G) +6 (t-t') 6 (r-r') 6 (v,-v,') 6 (v,-v,') . (28) 

We give in the Appendix the detailed solution of Eq. (28). It 
can be written in the form 

G (r, v, t, r', v', t') 
OD 

= (r, r', t. t') fu (v) Xa (I) Xa (vl)+ GI. (29) 
ax1 6-5 

Here f, (v) is the Maxwell distribution function normalized 
to unity and 

el= ( 4 R q l ~ ) - " ( 4 n q z ~ )  -' exp {- ( R , - U , T ) ~ / ~ ~ ~ T -  ( R , - - U ~ T ) ~ / ~ ~ ~ T ) ,  

e= ( ' / , R X , T ) - ' " ( ~ / , ~ X ~ T ) - '  erp (- ( R , - U ~ T ) ~ / ~ / ~ X ~ T -  (RI-uIr)  2 / 8 / 3 ~ Z ~ ) ,  

C j Z = e r  exp {-ve- IT), 8r=8r (,-l,,, exp (-v', ' r ) ,  8'=8 exp { - 2 v z r ) ,  

, = { "2 - o r  ions, R = (I -- I*, Y - y l ,  z - zt) 

- for electrons T = t - t '  

As usual we have taken the z-axis along B, and q2, x x2  
are the longitudinal and transverse kinematic viscosities and 
thermal conductivities (see $1). In (30) we have selected the 
four main terms of the Green function which describe the 
relaxation of the first moments of the initial perturbation. 
The remaining part of G describes higher moments, it relaxes 
more rapidly. 

Substituting (30) into (24) we get the required kinetic 
equation for the plasma distribution functions. Under condi- 
tions (1 1) the distribution function must be close to Maxwel- 
lian. Indeed, to first approximation in the small parameters 
I,,, /LC and re,, /rC the collision integral S (f ) plays the main 
role in Eq. (24). Hence, a solution of Eq. (24) in this approxi- 
mation is the local Maxwellian distribution. 

We obtain equations for the electron and ion densities 
Ne and N, , their average macroscopice velocities u, and ui , 
and their temperatures T, and T,, as usual, by selecting the 
first moments of Eq. (24). Using the quasi-neutrality of the 
plasma, Ne = N, = N, and introducing the hydrodynamic 
velocity u and current j = eN(u, - u,), and also putting 
Te = T, = T, we obtain hydrodynamic equations which 
have the same form as (17), but the quantities j, , R, , R are 
different. We cite them for the case of not too high velocities 
when u2do$. We have 

Ohm's law for the longitudinal current takes the following 
form: 

- e2N 1 d "' + j ,  dir u = - Eo, + V,p. + -- 
d t  mc me Bo dra 

and the equation of quasi-neutrality can be written in the 
form 
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The current jzIE describes the plasma diffusion, jTeb, is the 
fluctuation drift which exists when there is the correlator 
(e, b, ); further, q",s the heat flux, .R, is the momentum flux 
across the magnetic field caused by the scattering of the lon- 
gitudinal momentum miNu, by the magnetic field fluctu- 
ations. 

The terms jf and q, describe the contributions of the 
fast particles to the diffusion and heat transfer. To determine 
them we must consider also the energetic collisionless com- 
ponent. The next subsection of the paper is devoted to it. 

The transport coefficients evaluated in Eqs. (31) and 
(32) are determined solely by the effect of the electromagnet- 
ic field fluctuations. Electron and ion collisions lead to the 
appearance of additional fluxes which are described by well 
known classical  expression^.^ The total fluxes are given as 
the sum of the collisional and fluctuation fluxes. The longi- 
tudinal transfer coefficients are then determined mainly by 
the collisions. On the other hand, the transverse coefficients 
can, if the level of fluctuations is sufficiently high, when 

be larger than the classical ones. 

6. Kinetlc equation for the fast particles 

For the fast particles we have the following relations 

' where repi (fast), le,(fast) are the mean free flight time and the 
mean free path of the fast particles. Using also the fact that 
the scale of the main fields L>Lc, (2), and retaining in (25) 
the main terms we get the following equation for G: 

aG aG - + v, - =6 (t-t') 6 (v,-v,') 6 (v,-v,' ) 6 (r-r') . (34) 
at  az 

Its solution is obvious. Substituting (34) into (24), using (2), 
we get 

1 e af + qzz 
m dv, 

where the subscripts of the correlators of the fluctuating 
fields indicate their dependence on the time t - t ' = rand on 

the coordinate z - z' = v z r  5 Lllc,  Ll lc  is the longitudinal 
correlation length. Equation (35) is the required equation for 
the fast particles and as v,, >v, 2 Lc/rc the coefficients q 
are independent of v, and are determined solely by the am- 
plitude of the electromagnetic field fluctuations. 

The fast particles make additional contributions to the 
heat flux, the particle flux, and to the pressure, namely, 

The distribution function of the main plasma deter- 
mines the boundary conditions for Eq. (35), being expressed 
in terms of the flux of the run-away  particle^.^ Hence, Eq. 
(35) forms with the currents (36) a closed set of hydrodynam- 
ic equations and at the same time is itself defined by the 
currents through the boundary condition. 

We have thus obtained the complete set of equations 
describing both the main plasma and the fast component. 
Below, in 55 4 and 5 we shall give some examples of a solu- 
tion of problems described by these equations. 

94. DIFFUSION OF THE PLASMA. DAMPING OF 
MAGNETOHYDRODYNAMIC WAVES 

As an example we consider the simplest problem of 
plasma diffusion. We put B, = const, u, = 0, j = 0, 
T = const, and determine the diffusion of the plasma across 
the magnetic field caused by the fluctuations in the field b. In 
a one-dimensional geometry we get from (17) and (3 1) 

where D 2; = 6&De,,B0 (we assume that the fluctuations are 
isotropic) and the D$ are determined by Eqs. (31). 

Using the quasi-neutrality Eq. (33) we get from (37) with 
the given accuracy 

When the correlator (b '/B t) , . , , ,  changes slowly as 
'compared to O ;'(r',t ') the ambipolar diffusion coefficient 
Dam, is 

Here vie is the ion-electron collision frequency and vill the 
longitudinal kinematic viscosity. In the general case, how- 
ever, Dam, depends strongly on the form of the function 
(b2/B:)r,,t,. 

As a second example we consider the damping of Alfvtn 
and magneto-sound waves. To do this we linearize the set of 
hydrodynamic Eqs. (17), (31)-(33) with respect to No, To, B,, 
assuming j, = 0, u, = 0, E, = 0, B, = const. Substituting 

into (17) we get the perturbation in the form a ei'"' - '"' ' 
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3 - o T - T o  ( k u )  =ikL26 
2 

DBi ~ ( N T ~ + N . T ) ,  (38) 
D,mi+Dim. No 

where 

For the sake of simplicity we have in the set of Eqs. (38) 
written down only those terms which give imaginary correc- 
tions to the frequency. 

From ( 3 8 )  we find the dispersion relation for the AlfvCn 
waves 

where c, = B , , / ( ~ T N ~ , ) " ~  is the AlfvCn speed, and also for 
the fast and slow magnetosonic waves 

where cf = T / m i  is the sound speed. 
The behavior of the damping rates y, for the Alfvtn 

10-~.r- 

6 

z 'a 0.5 'f 

FIG. 1. Damping coefficients for the Alfvtn waves, y, , fast magnetosonic 
waves,y+, and slow magnetosonic waves, y- ,  as functions of p = k,/lk I 
for fixed (k I. Because of the symmetry the graphs are given for 0 < p  < 1. 
The parameters were chosen as follows: a) <,(me ck /an-e2No) = 1 ;  b) and c) 
cA = c S ;  (7D,, / c2) (T/mi)k  = 1 .  

wave and y ,  for the fast and slow magentosonic waves for 
fixed I kl is shown in Fig. 1. 

55. THE FAST PARTICLE DISTRIBUTION FUNCTION IN THE 
PRESENCE OF A TRANSVERSE TEMPERATURE GRADIENT 

We now consider the fast particle distribution function 
described by the kinetic Eq. (35). We assume that the main 
magnetic field B, in the plasma is constant and directed 
along the z-axis, while there is along the x-axis, at right an- 
gles to Bo a temperature gradient, T ( x ) .  It is well known,'' 
that when the temperature gradient is directed along B, 
there occurs in the cold plasma regime a strong enrichment 
of the fast particle distribution. This effect is called thermal 
runaway. Such an effect does not occur in a direction at right 
angles to B, if there are no fluctuations. Here we show that 
when there are magnetic field fluctuations present there oc- 
curs also a strong enrichment of the fast distribution func- 
tion in a direction at right angles to Bo. The reason for this 
effect is that at E > E~ T , ( T , / T , ) ~ ' ~  the fast electrons are not 
contained by the main plasma and move independently of 
the thermal ones. They then diffuse the magnetic field appre- 
ciably faster than the slow ones. 

In the case considered here we can in Eq. (35) neglect 
the quantity (e/me)EOl (df /du,) compared with u, (df /drl) ,  
since 

e df ecp T v, 
-Eo,----- f, Vz- af - - vz 
m d ~ ,  T m v f Z L  dr, . L  f, 

We assume here that Eo is the polarization field, i.e., eq, / 
T -  1 ,  where q, is the polarization potential. Under the indi- 
cated conditions Eq. (35) takes the form 

where the quantity q,, is given by (35). We introduce 

where To is the temperature of the thermal electrons, v(TO) 
the frequency of their collisions. Here x( 1 is the small pa- 
rameter of the problem. We consider the fast electrons. We 
make (39) dimensionless, using the form of S (  f )  given for 
that case in Ref. 10. We get 

The distribution function depends here on three variables, 
f  = f(R,u,p), while t is a given function of R [see (40)], 
,Ll = vz/u. 

We change to the variables T = KR and g = x2"u2. In- 
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troducing f = e-'  we get the equation 

By analogy with Ref. 10 we look for the solution of Eq. (41) in 
the form 

In first approximation in the parameter %-'I3 we have 

We now assume that the plasma temperature Tchanges 
from To as x+ - w to TI as x+ + w (we shall assume that 
To > TI). If we consider the solution at distances large com- 
pared to the scale on which To changes to TI, we can take this 
change to be a sudden one, i.e., assume that 

We introduce the variable y = Wpddg. Equation (42) with 
t (7) given by (43) admits the self-similar substitution [ = r/ 
g3I2 after which it takes the form 

We must add to Eq. (44) the boundary conditions following 
from (43) 

The solution of Eq. (44) satisfying the conditions (45) is 

We show in Figs. 2,3 the functions y(g/?213) and In f (g) in the 
cold plasma regime. It is clear (see Fig. 2) that the effective 
electron temperature T,, = Tdy for low energies equals TI 
and for high energies is everywhere close to the temperature 

FIG. 2. The electron effective temperature y as function of g/?I3 
( t ,  = 0.1). 

FIG. 3. The change of the distribution function from cold to hot ( t ,  = 0.1; 
T = 30). Along the horizontal axis we plot - In f (g). 

To of the hot plasma. The graph of Fig. 3 shows how the 
distribution function changes from cold to hot. The asymp- 
totics on Fig. 3 satisfy the following analytic expressions: 

The authors are grateful to L. P. Pitaevskii for useful 
discussions. 

APPENDIX 

We consider the equation 

aG aG - + v. - = S(G)  +6 ( t- t ' )  6 (r-r') S (vz-v.') 6 ( v I - v I f ) .  
at az 

We write G in the form 

where f,(v) is the Maxwell distribution function normal- 
ized to unity. We introduce 

+- 
xk= 1 c - i k r ~  h r ;  

- m 

and we get 

where the operators and S are connected through the rela- 
tion: 

while the operator S (  f )  is defined in (27). The term 
ik, v, a /LC in Eq. (A. 1) is by virtue of ( 1 1) a small correc- 
tion so that we shall consider it to be a perturbation. As the 
form of the operator is different for ions and for electrons 
we introduce GeSi = f $,yGi. When determining xi and X ,  
we shall assume that 
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We consider, to begin with, Eq. (A. 1) for ions. In zeroth 
approximation in the parameters (A.2) and in l i /Lc we have 
the following eigenfunctions and eigenvalues: 

We then can find corrections to the2, caused by the inhomo- 
geneity. The first order correction caused by the inhomoge- 
neity gives 

hil:!z,3,c)=-iku. 

In second-order perturbation theory we find 

where 

( ~ I A I ~ ) = ~ ~ ~ ( ~ ) ~ , ( ~ ) A ~ ~ ( ~ ) S ~ .  
-* 

The corresponding values2 '2' are connected with the classi- 
cal transfer coefficients found in Refs. 8, 1 1, and are equal to 

where vI1 is the longitudinal viscosity, xl, the longitudinal 
heat conductivity. When we take in Eq. (A. 1) into account 
the terms caused by drift we find corrections proportional to 
k : ;  we find 

hri=-ik~-Z~z-~/3 ( ~ , k ~ ' +  xzk12) .  

Here 

We now consider the equation for the electrons. We 
take the first four ort+ogonal functions as for the ions and 
expand the operator L ,  + Lei in terms of them. Such an 
approach is here analogous to the hydrodynamic approxi- 
mation. We obtain the modes corresponding to the hydrody- 
namic relaxation: 

The calculation of the corrections to the A, caused by 
the inhomogeneity is similar to the procedure of calculating 
them for the ions. We can thus write for the ions and the 
electrons the eigenvalues Ai and 2, in the form 

0 j A:'' =-ikue,i-q:'ikl"-~l/ kL2, 

hj' i=-iku,, i-~"~i-2/S (rl:'ik,"+qz." kLZ) , 
&".'( E- ikue , i -Ye . i -q~fk~_q$ i  k12, 

We can thus write the solution of Eq. (A. 1) in the following 
form [see (29)l: 

G(r, rl, v, v', t, tl) 

where the functions 0, are given by Eqs. (30). 
The first four terms in (A.4) correspond to the relaxa- 

tion of the main moments: of the density, momentum, and 
energy. As we consider hereafter the solution of (A.l) for 
times T , > T , , ~ ,  (1 I ) ,  the largest effect on the fluctuations is 
due just to the first, hydrodynamic terms. 
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