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The mechanism of electron cyclotron resonance in a nonuniform magnetic field is considered. It is 
shown that effects such as the relativistic dependence of the cyclotron frequency on the electron 
velocity, the accelerated electron motion in a nonuniform magnetic field, and the nonlinear 
dependence of the magnetic field on the coordinates decrease the reflection coefficient of a wave 
propagating away from the weaker magnetic-field region. The limits of applicability of the adia- 
batic wave equations are indicated. 

PACS numbers: 52.35.M~ 

INTRODUCTION 1. INTERACTION OF AN ELECTROMAGNETIC WAVE WITH 

Starting with Budden's paper,' the so-called adiabatic AN ELECTRON BEAM 

wave equation has been widely used for the theoretical inves- It is convenient to start the investigation of cyclotron 
tigation of cyclotron resonance in a nonuniform magnetic resonance by considering the interaction of an electromag- 
field. The coordinate dependence of the magnetic field enters netic wave with a beam of electrons all having the same ve- 
in the adiabatic equation parametrically, and resonance ef- locity vll along the magnetic field. The simple form of the 
fects are taken into account in simplified form with the aid of electron distribution function makes it easiest to examine in 
the Landau contour rule for circuiting around the resonance 
point.24 The adiabatic equation can therefore lead in some 
cases to incorrect results. Thus, it is shown in Ref. 5, where 
cyclotron resonance in a transversely nonuniform magnetic 
field was investigated, that the reflection and absorption co- 
efficients of a wave incident from the direction of the weaker 
magnetic field cannot generally speaking be determined 
from the adiabatic equation. 

In addition, interaction-coefficient features that follow 
from the adiabatic equation, such as the absence of reflection 
when the electromagnetic wave is incident from the direc- 
tion of a stronger magnetic field, or the large reflection for 
incidence from the opposite direction, call in our opinion for 
a palpable physical explanation. 

To cope with these problems it is necessary to investi- 
gate in detail the cyclotron resonance interaction in a nonun- 
iform magnetic field with allowance for the effects of the 
thermal motion of the electrons, going outside the frame- 
work of the adiabatic equation. 

We consider in this paper electron cyclotron resonance 
of an extraordinary wave propagating along a magnetic field 
that varies in the propagation direction in accord with a lin- 
ear (or nearly linear) law. We propose for the cyclotron reso- 
nance in an inhomogeneous magnetic field a mechanism that 
explains lucidly both the anisotropy of the reflection and 
absorption coefficients relative to the sign of the wave vec- 
tor, as well as expressions for them. We show that effects 
such as the relativistic dependence of the cyclotron frequen- 
cy on the electron velocity, the change of the electron longi- 
tudinal velocity due to nonuniformity of the magnetic field, 
and the nonlinear coordinate dependence of the magnetic 
field cause the reflection to decrease. The qualitative argu- 
ments are confirmed by direct successive-approximation 
calculations of the transmission, reflection, and absorption 
coefficients with allowance for these effects. The results indi- 
cate the limits of applicability of the adiabatic equation. 

this case the physical processes that occur at resonance. 
If the beam is cold (the electron transverse velocity is 

zero) and the cyclotron frequency depends linearly on the 
longitudinal coordinate, we (z) = w(1 - z/L ), the equation 
for the extraordinary wave, which is integral in this case, can 
be solved exactly. The case of a wave and a beam that move 
away from the region of the stronger magnetic field vll  > 0) 
was investigated in Ref. 6, and expressions were obtained for 
the oscillation transmission (T), reflection @), and absorption 
(7) coefficients on passing through the resonance region. 
Resonant interaction at other signs of k and vl l  (k is the wave 
vector of the incident wave) is considered in detail in Appen- 
dix 1 of the present paper. As a result we obtain for a wave 
propagating away from the stronger magnetic field 

.~=e-zT- P = ~ ,  q=l-e-'T-, (1) 

and for a wave coming from a weaker magnetic field 

where y + = A (1 + vl l  /c),  A = w, 2L /WC, o is the wave fre- 
quency, w, is the electron plasma frequency, and c is the 
speed of light; ull enters with the appropriate sign. 

It can be seen from ( I )  and (2) that the coefficientsp and 
7 depend substantially on the wave propagation direction. A 
wave incident from the left from a strong magnetic field re- 
gion propagates without reflection, while a wave coming 
from the right is partially reflected. 

It must be noted that when the beam moves from the 
stronger magnetic field the reflection coefficient can be larg- 
er than unity-the disequilibrium of the electron distribu- 
tion function leads to generation of a reflected wave having 
an amplitude larger than the incident one. 
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The mechanism of cyclotron resonance in a nonuni- 
form magnetic field has remained unclear to this day. We 
present a lucid picture of the resonant-interaction process 
and indicate the cause of the anisotropy ofp and 7. To this 
end we consider the interaction between a wave and a beam 
of electrons with velocity vll . When account is taken of the 
Doppler effect, the resonance condition takes the form 
w = o, + kvll and is satisfied at the point z, = kvll L /o. The 
nonuniformity of the magnetic field restricts the resonant 
interaction to a region of size Sz, -(Lull /o) ' I2 about the 
pointz, . (We assume validity of the inequality Sz, < kvll L /o, 
which is usually satisfied.) In this region part of the wave- 
field energy is converted into the energy of the electron 
transverse motion. This gives rise to microscopic currents 
that induce in turn secondary electric  field^.^ After passage 
through the resonance zone, the electric field of the oscilla- 
tions is a superposition of large-scale and small scale compo- 
nents. The large-scale part is identified with the field of the 
transmitted wave. The small-scale oscillations, which de- 
scribe the secondary fields, are similar to Van Kampen 
waves. We shall call them hereafter the modulated beam. 
The phase of the small-scale oscillations is of the form (see 
Appendix 1) 

0 
@ (t, z) =-at + -(z2+z.2). 

2VllL 
(3) 

In the quasiclassical approximation, the wave vector of these 
oscillations is 

It  can be easily seen that at the point z = - z, there is satis- 
fied the condition of linear conversion of the oscillations of 
the modulated beam into a reflected wave k ,  = - k. A re- 
flected wave can appear, however, only if the beam passes 
initially through the resonance point z, and then through the 
reflection point - z, . This condition is satisfied for a wave 
that approaches resonance from a weaker magnetic field, 
regardless of the direction of the beam motion. If the wave 
propagates from the stronger magnetic field, this condition 
is not satisfied for any beam direction. 

In the second case the beam passes first through the 
reflection point and then lands at the resonance point. For 
the modulated beam the reflection point turns out to be "in 
the past." 

Note the analogy between reflection in cyclotron reso- 
nance in a nonuniform magnetic field and the phenomena of 
nonlocal reflection7 and transparentization of barriers.'~~ 
These effects are also based on modulation of a particle beam 
by a wave with formation of small-scale oscillations at the 
resonance point, followed by reradiation of the reflected or 
transmitted wave at the transformation point. 

2. EFFECT OF THERMAL SCATTER IN THE DISTRIBUTION 
FUNCTION 

We now show how the simple reasoning of Sec. 1 can be 
used to consider cyclotron resonance in a plasma when the 
electron longitudinal-velocity distribution function has a 
thermal scatter, and obtain expressions for 7, p, and 7. Such 

expressions were first obtained by Budden' by solving the 
adiabatic equation. 

A distribution function having a thermal scatter can be 
regarded as a set of beams with continuous velocity distribu- 
tions, the density of each beam being 

d n ( v , , )  =nof (Vll) dull. (4) 
We assume that the beams interact with the wave indepen- 
dently of one another and that the influence of one beam on 
the others is negligibly small. 

Depending on the velocity, each beam will interact with 
the wave in a small vicinity of the corresonding resonance 
point z, (vll ) = kvll L /w. The total transmission coefficient is 
equal to the product of the transmission coefficients of the 
individual beams 

where the product is taken over all the beam. Taking into 
acount the explicit form of the expresion for ri and substitut- 
ing the density in the form (4), we obtain 

OD 

T ,  I?-no J dullf ( v l l )  y = n ~ ,  (6)  
- rn 

where y = y ,  and A enters in the density no. The distribu- 
tion function f (vll ) is assumed to be symmetric, so that 

From this we find that the fraction of energy transferred 
from the wave to the beam is 

~u=I-e-~. (7) 
If the wave propagates from the stronger magnetic field, this 
entire energy is absorbed. As a result we get 

q=l-e-r 1 P=O, (8) 

where 17 andp are the absorption and reflection coefficients. 
A wave approaching resonance from a weaker magnetic 

field is partially reflected. Since the emission of a reflected 
wave is analogous to absorption of an incident wave, it is 
natural to assume that the energy fraction reradiated by a 
modulated beam in the form of a reflected wave is deter- 
mined by Eq. (7). We then obtain for the reflection coefficient 

p= (I-e-r)2. (9)  

From the energy conservation law we determine the absorp- 
tion coefficient 

q=w-p=e--r (1- e - r ) .  (10) 
We shall show in the next section that these expressions 

are valid for an isotropic Maxwellian distribution function 
with only the Doppler effect taken into account. 

In the derivation of (9) and (10) it was implicitly as- 
sumed that the reflected waves emited by the different mod- 
ulated beams are in phase. Actually, as follows from (3), the 
phase of a modulated beam at the reflection point is 

@(t, - zs) = - ~ ( t  - t,) - mt, + kz,. 

The difference t - t, = - 2kL /w,equal to the time interval 
in which a modulated beam from the resonant point reaches 
the reflection point, is the same for all the beams. The two 
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last terms in this expression, - wt, + kz,, are the phase of 
the wave at the instant of resonance. Thus, at the reflection 
points the phases of the modulated beams differ by one and 
the same amount from the phase of the incident wave at the 
instant t, . The reflected waves corresonding to different 
beams are therefore in phase, i.e., an "echo" effect is pro- 
duced.'' This phenomenon differs from the nonlinear 
"echo" effect in that there is no "time reversal" here. What is 
radiated therefore is the reflected rather than the initial 
wave. 

If the phase of the oscillations of the modulated beam 
has at the reflection point an increment that depends on the 
beam velocity, the reflected waves corresponding to differ- 
ent beams will be partially canceled by interference, so that 
the reflection coefficient is decreased.This dephasing can be 
due, for example, to the relativistic dependence of the cyclo- 
tron frequency on the electron velocity, to the nonuniform 
motion of the particle in the nonuniform magnetic field un- 
der the action of the force - pVH (where p = v, 'rn/2H ), 
and to the nonlinear dependence of the magnetic field on the 
coordinates. Thus, in the case of weak relativism we have 

o,(z, v )  =o (1-zIL-u2/2cZ). (1 1) 

The phase of the modulated beam at the reflection point 
acquires an additional increment A @ = - kLv2/c2. The os- 
cillations of the beams whose velocities are shifted by more 
than 

will become mutually canceled by interference. In this case 
only a fraction of the beam participates and is proportional 
to 

[cf. K in (19)l. 
It is easily seen that the longitudinally accelerated mo- 

tion of the electron and the nonlinear coordinate dependence 
of the magnetic field also lead to dephasing of the modulated 
beams and to a change in the reflection coefficients.' 

This analysis shows that the nonlocality of the reflec- 
tion manifests itself when account is taken of effects that 
cause a phase mismatch of the modulated-beam oscillations, 
and does not appear at all when only the Doppler effect is 
taken into account. The adiabatic equation, in which it is 
assumed that all the electrons interact with the wave at one 
point, yields therefore the same expressions as the kinetic 
approach if only the Doppler effect is taken into considera- 
tion. 

The conclusions drawn here are confirmed in the next 
section by direct calculation of the interaction coefficients. 

3. CALCULATION OF THE INTERACTION COEFFICIENTS 

A consistent allowance for the effects of thermal motion 
of the electrons in a nonuniform magnetic field leads to an 
integrodifferential wave equation 

where E = Ex - iE,, corresponds to the extraordinary 
wave, and 6 = wz/c, and the unperturbed electron energy 
distribution is1 

We shall solve Eq. (12) by successive approximations, 
assuming the plasma density to be small (A < 1) and treating 
the integral part as a correction. We can then write 

n is the order of the expansion of the solution of (12) in A. 
We examine now the effects of the Doppler effect, or 

relativism, and of the electron acceleration on the resonant 
interaction. In the calculation of @ ([ ) it must be taken into 
account that the electron velocity is not constant: 
vll (t ) = ull (0) + at, wherea = v, 2/2L. Ifthe waveprogagates 
from the region of the stronger magnetic field, we have in the 
zeroth approximation Eo = eig. Substituting Eo({ )in (13) and 
using for the cyclotron frequency the expression 
we (EJ)  = (w /E) (~  - z/L ), we find that the term oforderA ' in 
the expansion of the transmitted-wave amplitude is of the 
form 

(14) 
It is convenient to begin the calculation of (14) with integra- 
tion with respect to dg,: 

The integral with respect to d l  is then likewise easily calcu- 
lated: 

2n dc e'y'L' 6 ( b )  = n. j 
- m 
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Finally, recognizing that 

we obtain 
El* =-An12. 

By successive iterations we find that the term of order An  in 
the expansion of the amplitude of the transmitted wave is 
(see Appeidix 2) 

Summing the terms of the infinite series, we obtain 
~ t r  = e - n ~ ~ a  (15) 

For the first term of the A expansion of the reflected-wave 

Calculations of higher order in A were unsuccessful. From 
(18) we obtain the reflection coefficient 

We now take into account the deviation of H (2) from 
linearity, i.e., we assume that 

Since the calculations are quite straightforward but un- 
wieldy, we present only the final result: 

amplitude it follows from (13) that , p = n ' ~ z [ 1 + 4 x z  ( 1  + 
A - PL"! iE,G 

B F ~  = - j a ~ ,  ~j asp 'p-E--jdb exp{- -- + i~ (5)). 
2 a~ E (201 

-m - m 
~, 

(16) A t ~ ( 1 ,  Eq. (20) agrees with (9) accurate to termsoforderr '. 
calculating, just as in (14), the integral with respect to dg,, At K k 1 the reflection coefficient turns out to be less than the 

we obtain value obtained from the adiabatic equation. 

j db exp {+(2s--t) E, = 2 n ~ 8  (28-11. 
-OD 

} 
SinceC(0, the argument of the 6 function does not vanish, so 
that E id= 0. It can be similarly shown (Appendix 2) that 
E = 0 for any n. There is no reflected wave. In this case the 
coefficients r,p, and q are determined by expressions (6) and 
(8). 

For a wave incident on the resonance from the weaker 
magnetic field we have Eo = e-". The amplitude of the 
transmitted wave is calculated just as for the wave from the 
left, and is given by expression (15). In first-order approxi- 
mation in A we obtain from (13) for the amplitude of the 
reflected wave 

ref - A rn PIZ df E, -- J d g , e - " t * J d s p - -  
2 - m 

E dpL 

1 3  

oL v 1  
Y , ( ~ ) = - - ( L - - + ~ )  C C E  t 

The integral with respect to d l ,  in (17) is equal to 
2 7 ~ ~ 6  ( 2 ~  + g 1. Consequently the integral with respect to df is 
equal to exp[iY,( - &)I. In the limit of weak relativism (T/ 
mc2( 1) the integral over the momentum space is then deter- 
mined by the region of values (p/mcI ( 1 irrespectively of the 
value of Lo/2c. In this case E=: 1 + p2/2m2c2 and the re- 
maining integral with respect to d 3p can be easily calculated. 
As a result we obtain 

CONCLUSIONS 

Our analysis shows that cyclotron resonance in a non- 
uniform magnetic field is a nonlocal phenomenon, and to 
describe it completely it is necessary to solve the integral 
wave equation (12). In some cases, however, the interaction 
coefficients can be determined by using the approximate 
adiabatic equation. Thus, the adiabatic equation describes 
correctly a wave incident from the direction of the stronger 
magnetic field. For a wave incident from the weaker magnet- 
ic field it gives the correct transmission coefficient. At the 
same time the reflection coefficient determined from the 
adiabatic equation is correct (at least accurate to terms -A 2 ,  

only ifuLT/mc3( 1. At uLT/mc3 k 1 the true reflection co- 
efficient turns out to be smaller (and the absorption coeffi- 
cient is correspondingly larger) than that obtained from the 
adiabatic equation, and in the limit 02, L /m( 1 it is deter- 
mined by Eq. (20). 

The authors thank A. V.Timofeev for helpful discus- 
sions and for constant interest in the work. 

APPENDIX 

If the distribution function of the electron longitudinal 
velocities is of the form 

f ( ~ 1 , )  = 6(vll - vo), 
The wave equation for the extraordinary wave can be written 
in the form 

where 

2p02 = c2/oL luol, the prime denotes differentiation with re- 
spect to the argument, and 8 (x) is the unit step function 
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We consider the solution of Eq. (A. 1. I), using as an ex- 
ample a beam moving from the right with velocity - uo 
(where v0 > O), and of a wave propagating in the same direc- 
tion. The solution can be represented in the form of a con- 
tour integral 

(A. 1.2) 

Here y ,  = &4 (1 + vo/c) and y, = (1 - v d c ) .  The inte- 
grand should vanish at the ends of the integration contour. 
The choice of the contour is determined by the boundary 
conditions. For the considered case, the boundary condition 
is that a transmitted wave and a modulated beam can exist as 
6- - co . This condition is satisfied by the contour shown in 
Fig. 1, case a. 

At large values of 16 1 the main contribution to the inte- 
gral along the contour is made by the vicinity of the points 
t ,  = - i, and t ,  = - 2ip,25. The point t ,  corresponds to the 
transmitted wave, and the point t ,  to a modulated beam. The 
integral in the vicinity of the point t ,  reduces to a r function. 
We take the contribution of the point t ,  into account by the 
saddle-point method: 

E ( 5 )  -c,+ (1-e-~~~9c,, 
where 

On going to positive values of 6 the integration of con- 
tour C is deformed in accord with Fig. 1, case b. We now 
obtain for (A. 1.2) 

E ( 5 )  =C2+ (1-e-2nT2) C., (A. 1.4) 
where 

C, and C ,  describe respectively the incident and reflected 
waves. From (A. 1.3) and (A. 1.4) we obtain for the coeffi- 
cients r, p, and q 

The other variants of the wave propagation and beam mo- 
tion are considered similarly. 

APPENDIX 2 

It follows from (13) that in integrals of mulitplicity 3n 
are encountered in the calculation of the nth iteration for the 
electric field of the transmitted or reflected wave. We shall 
show how to calculate such integrals. By way of example we 
consider incidence of the wave on the resonance from the 
direction of the stronger magnetic field. The transmitted- 
wave field is determined by integrals of the type 

FIG. 1.  Integration contour C at 4 < 0 (a) and {> 0 (b). 
Thin lines-real- phase lines; wavy line--cut emerging 
from the branch point t,. 
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where 

qn=gn+rn- 
Only one of these integrals differs from zero. It  corresponds 
to a choice of the upper sign in the exponentials and of the 
integration limits without the parentheses. 

The integrals with other combinations of signs in the 
exponentials and with other integration limits can be respre- 
sented in the form 

01 

I - J ~ R R ~ ( R ) F ( R ) ,  (A.2.2) 
0 

with F(R ) finite as R 4 .  Obviously, in this case I = 0. 
The nonzero integral of the type (A.2.1) is calculated in 

the following manner: 

EI En-r En-1 

- . - a  J d E l H ( E l ) j  d & ~ ( E r ) . . .  J d E n - * H ( E n - 1 )  J q n H ( E n ) ,  
- u, - m - w Pn-r 

(A.2.3) 

where 

Starting with the second, all the integrals in (A.2.3) are zero 
[they can be reduced to the form (A.2.2)]. 

The first term in (A.2.3) can be easily calculated (see, 
e.g., Ref. 12) and is equal to 

Using the result of the calculation (14) we obtain 

The reflected-wave field is determined by integrals that dif- 
fer from (A.2.1) in the presence of exp (2ic1) in the inte- 
grand.This makes the integral with respect to dc, equal to 

The argument of the 6 function is larger than zero, so 
that the subsequent integration yields zero for such inte- 
grals. There is no reflected wave. 

A wave incident from the weaker magnetic field is treat- 
ed similarly. In this case we find that the nth iteration for the 
field of the transmitted wave is also given by (A.2.5). 
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