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We investigate the structure of homogeneous (along the wave-propagation direction) TM chan- 
nels in a plasma with interaction of the striction and ionization type. In the case of striction 
nonlinearity, a new class of solutions is obtained and describes, in a plasma that is supercritical in 
the linear approximation, channels whose production calls for maximum energy expenditure. For 
a plasma with ionization type of nonlinearity, localized self-consistent distributions are obtained 
for the concentration and for the field, and make up in the simplest case a dense plasma layer 
along which a slowed-down TM surface wave propagates. 

PACS numbers: 52.40.Fd, 52.35.M~ 

INTRODUCTION 

Waveguide propagation of waves of finite amplitude in 
an infinite homogeneous medium is one of the most interest- 
ing nonlinear phenomena. The possibility of such propaga- 
tion of electromagnetic waves in an isotropic plasma was 
considered in a rather large number of papers. The question 
of the structure of the waveguides for the simplest case of a 
TE wave can by now be regarded as completely answered. l4 

At the same time the problem of the TM-waveguide 
structure, wherein the specific features of a plasma medium 
are most pronounced in view of the possible strong growth of 
the field in the plasma-resonance region, is much more com- 
plicated and calls for additional investigations. An approach 
to the solution of this problem was formulated in Refs. 3 and 
4, and a particular class of solutions was obtained for the 
case of a plasma with striction-type nonlinearity. 

In this paper we investigate the structure of homogene- 
ous (in the wave-propagation direction) TM channels in a 
plasma with both striction and ionization nonlinearity. The 
solutions obtained can be used also in the analysis of the 
propagation of a strong electromagnetic wave in a smoothly 
inhomogeneous medium and to solve the problem of inci- 
dence of such a wave on a plasma layer having an abrupt 
boundary. 

We seek the solution of Maxwell's equations in the form 
of a monochromatic wave traveling along the x axis and 
standing in the z direction: 

E= [xOEx(z )  -izOEz ( z )  ] exp ( iw t - ihx) ,  

H = i y O H ( z )  exp ( i o t - i h x ) .  
(1) 

The system of equations for the field components is 

In Eq. (2) k, = w/c and Ex and E, are real quantities 
[the constant phase shift between the components, which 

ensures the absence of an energy flux in the z direction, is 
taken into account in (I)]. 

The dielectric constant E in (2) is assumed to be a local 
function of the,modulus of the electric field, E = &((El2). We 
confine ourselves for simplicity to the case of cubic nonlin- 
earity 

E=EO+G I E 12/Ec2. (3) 

It can be shown that the obtained solutions remain 
qualitatively the same for any monotonic behavior of&(IEI2). 
In (3), E, = 1 - op2/w2 is the unperturbed dielectric con- 
stant of the plasma, the parameter S takes on values + 1 
depending on the type of nonlinearity, and E, is the field 
amplitude characteristic of the given nonlinearity. 

The order of the system of Eq. (2) can be lowered. The 
system of second-order equations equivalent to (2), written 
in the dimensionless variables f=k$l~ ,1"~ ,  
e = E / E c  IE,~"~, y = h /k,l~,l"~ takes the form4 

The system (4), (5) has a first integral4 

This means that in principle the order of the system can be 
lowered once more, and its solutions can therefore be ex- 
pressed in quadratures. This investigation procedure, how- 
ever, is exceedingly cumbersome and offers few advantages. 

A complete qualitative analysis of the system of differ- 
ential equations (4) and (5) can be carried out on the phase 
plane of the variables e, and e,. 

52. WAVEGUIDE CHANNELS IN A PLASMA WITH STRICTION 
NONLINEARITY 

We consider first a plasma whose nonlinear properties 
are determined by striction (8 = + 1). In this case the specif- 
ic features of TM waves are realized only in a plasma that is 
opaque in the linear approximation (E, <O), in which the 
striction nonlinearity leads to "bleaching" of the medium in 
a certain region. 
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FIG. 1.  Phase plane of the alternating components ex and e, of the electric 
field of a nonlinear TM wave. In the absence of the wave the plasma is 
supercritical (E, <0) and the nonlinearity is of the striction type (6 = + 1). 
The thick (solid and dashed) lines single out a solution in the form of a 
waveguide channel of the simplest type. 

The (ex, e,) plane for the case S = + 1 and E, < 0 is 
shown in Fig. 1. 

We make a few preliminary remarks concerning some 
typical phase trajectories. 

We note first the circle 

e$+e,2=1. (7) 

It describes the solution of the system (4), (5) in the form of a 
potential wave" propagating in a medium with a constant 
dielectric constant E = 0. This integral curve is the bound- 
ary, on the phase plane, between the region corresponding to 
a supercritical plasma& < 0 (the interior of the circle) and the 
region corresponding to a less dense plasma with E > 0 (out- 
side the circle E = 0). 

At the origin (E = E, < 0) there is an equilibrium state of 
the "saddle" type, a small vicinity of which describes linear 
(as ex, e , 4 )  solutions of Eqs. (4) and (5) in the form of in- 
creasing and decreasing exponentials. Two other equilibri- 
um states (at the points ex = 0, e, = + (f + 1)"' are equi- 
librium states of the "center" type and correspond to a 
homogeneous (in the z direction) purely transverse wave 
propagating in a homogeneous plasma whose dielectric con- 
stant is E = y2. 

Two points on the abscissa axis, 

e,=O, e,=*f (8) 

not being equilibrium points, are singular points of Eqs. (4) 
and (5). At these points two phase trajectories corresponding 
to the value A? = 0 [see Eq. (6)] are tangent to each other. 
One of them is the curve E = 0 described above, and the 
equation for the other is obtained from (6) and is 

The main singularity that characterizes the TM polar- 
ization is the existence of singular line 

located inside the circle E = 0. 
The plot of (10) (the dash-dot ellipse in Fig. 1) is not 

integral. It is the vertical-tangent isocline, on which the deri- 
vative de,/de, becomes infinite, but in contrast to ordinary 
isoclines of vertical tangents, what changes sign on it is not 
the derivative de, /dl, but the derivative de,/dl. As a result, 
when the phase trajectories cross the curve ( I )  the direction 
of motion along them is reversed." It  is therefore impossible 
to construct for Eqs. (4) and (5) continuous solutions that 
include a region where E < 0. Only discontinuous solutions of 
this type exist. The phase trajectory that corresponds to 
them should contain a "jump" of the representative point 
from one integral curve to another. 

2. We are interested in this paper in solutions that are 
localized in 6 and satisfy the conditions 

It follows, first, that the integral curve corresponding to 
such a solution should include part of the separatrix 

eZe,Z--2yZee,2+y' (ez-1) /2=0, (1 1) 

which starts out from an equilibrium state of the saddle type. 
Second, from the discussion in the preceding subsection it 
follows that the localized solution must of necessity be dis- 
continuous. 

It must be emphasized here that the location of the 
"jump" in the stationary problem depends on the prior his- 
tory of the stationary state.6 It can be shown that in the 
situation considered by us, when the field amplitude varies 
smoothly with time, the jump occurs in a place where the 
height of the "step" on the density profile is a minimum. On 
the phase plane of the variables (ex, e,) this corresponds to a 
jump of the representative point from the spinode curve (10). 
We confine ourselves in the present paper to an analysis of 
just such stationary l i ~ t r i h u t i ~ m ,  ~ h i c h  set in when the field 
is "turned on" slowly. 

3. We now have all the necessary information for the 
construction of the solution of Eqs. (4) and (5 ) ,  which de- 
scribes a waveguide channel of the TM type. 

Corresponding to it on the phase plane (Fig. 1) is, first, 
the section of the separatrix from the origin to the curve (10). 
When the representative point moves from the saddle at the 
origin to the jump point, namely the intersection of the se- 
paratrix and curve (lo), the electric-field components e, and 
e, increase monotonically and the dielectric constant E ap- 
proaches zero in absolute value. The values E,, e,, , and e,, of 
these quantities ahead of the jump are solutions of the system 
of equations (10) and (1 I), and consequently satisfy the rela- 
tions4 

To find the changes of E, ex, and e, on the jump it is 
necessary to use boundary conditions. If plasma wave gener- 
ation is neglected, these conditions are continuity of the tan- 
gential components of the electric and magnetic fields and 
are written in the form 
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e.i=e,z, E ~ ~ Z I = E Z ~ ~ ~ .  (14) 

The subscript 2 labels values after the jump. 
From this we obtain the following relation on the jump 

(naturally, they coincide with those determined in the quasi- 
static problem6): 

E ~ = - E , / ~ ,  ez2=-2ez1=f(21e1 0%. (15) 

The + and - signs in the expression for ez2 correspond to 
two possible solutions of Eqs. (4) and (5), in which the distri- 
butions of ex (r ) coincide, while the distributions of e,(r ) 
[and of the magnetic field b (g ) = Ee, /y] are shifted in phase 
by r. In the analysis that follows we use as an example a 
solution with e,, < 0 and e, > 0, which includes a piece of 
the separatrix (1 1) in the fourth quadrant of the phase plane. 

It follows from the conditions (15) that the dielectric 
constant reverses sign on the jump. The distributions of the 
quantities ex(,$) and e,(g) directly in the channel in which 
the dielectric constant has become positive under the influ- 
ence of the pressure of the RF  field depend on the parameter 
y that determines the degree of slowing down of the nonlin- 
ear TM wave relative to the homogeneous TEM wave propa- 
gating in a linear medium with a dielectric constant E = I E , ~ .  
It can be shown that at j? < 1 / m z 0 . 2 2  the jump is into a 
transparent plasma, i.e., E, > g. If, however j? < 8f i /  
135 ~ 0 . 1  the phase trajectory that describes the solution in 
the region E > 0 lies even farther from the circle E = 0, out- 
side the curve (9). 

The solutions that are realized at j? < 0.1 were deter- 
mined with a computer in Ref. 4. Since, however, the (ex, e,) 
phase plane was not fully investigated in Ref. 4, a number of 
solutions that are of interest at > 1 / m  were left out. The 
entire analysis that follows will deal precisely with that case. 

For waves with j? > 1 / m  the plasma can remain opa- 
que even in a channel where E > 0. The phase trajectory that 
describes the solution in this region is singled out in Fig. 1. 
The representative point lands on this trajectory following a 
jump from point 1 to point 2 (with coordinates ex,, ez2 ), after 
which it can rotate around an equilibrium point of the "cen- 
ter" type for an arbitrarily "long" time, inasmuch as in the 
region E > 0 the system of equations (4) and (5) has no singu- 
larities such as spinode curve (10). At the same time, to con- 
struct a solution in the form of a waveguide channel it is 
necessary to "throw" the representative point into the region 
E < 0 on the separatrix (1 1). The phase plane of Eqs. (4) and (5) 
admits of an infinite manifold of such "throws." We shall 
stop to investigate the simplest symmetrical mode, which 
can be produced at a minimum energy. It corresponds to a 
return jump to the phase plane from the point 3 (in the region 
E > 0) to the point of intersection of the separatrix (1 1) and 
the spinode curve in the third quadrant, and to motion along 
the separatrix into the equilibrium state at the origin. 

Our solution can be called the first symmetrical soliton 
mode3' of Eqs. (4) and (5). We obtain the higher modes if we 
"allow" the representative point first to execute the corre- 
sponding number of revolutions around the center and only 
then to jump over from the point 3 to the point 4. 

It is precisely the second soliton mode that was calculat- 
ed in Ref. 4. For comparison, Fig. 2 shows the structure of 

FIG. 2. Distributions of the field and of the dielectric constant in a self- 
sustaining waveguidechannel for the first (a, b) and second (c, d) symmet- 
ric TM modes at y = 3. 

the field and of the dielectric constant in the first and second 
symmetrical soliton modes at y = 3. 

It can be seen that even at this relatively small y the 
amplitude of the second mode is noticeably (about - 4 times) 
larger than that of the first. 

With increasing slowdown, the ratio of the field ampli- 
tudes in the second and first modes will increase. To verify 
this we obtain analytic expressions for the amplitudes of the 
first and second modes on the channel axis. This can be done 
in the limiting case y> 1, when the wave becomes quasipo- 
tential. The field amplitude of such a wave is given in the first 
mode by 

and in the second by 

Here Ep = ( 1 6 n N ~ ) " ~  is the characteristic field of the stric- 
tion nonlinearity. It can be seen that in the case of greatly 
slowed-down waves the amplitude of the second and all 
higher modes is y times larger than the amplitude of the first 
mode. We note that the region of validity of Eq. (17) is limit- 
ed, since the cubic-nonlinearity approximation (3) used by us 
is valid only at /El < Ep ', i.e., at not too large h, 

At large amplitudes of the fields in the channel, account 
must be taken of the nonlinearity saturation. As noted in Sec. 
2, the results above remain qualitatively in force for any 
E(IE 1 2 )  dependence (although the quantitative relations can 
become quite unwieldy). 

We emphasize that expression (16) for the amplitude of 
the first mode remains valid for all h /k0>(l~,I)'l2. 

It is also of interest to compare the power channeled in 
the first and second modes and their characteristic scales. 
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We define the channeled power, as usual, as 
rn 

and the effective width of the channel as 

The dependence of P and a on y can be obtained analytically 
in the case of sufficiently strong slowdown y( 1. 

For the first mode we obtain from (20) and (19)4' 
, 

Here the dimensionless integration variable is 5 = hz, 
e2 = ex + e, 2,  and the integrals p, and a, along the phase 
trajectories that describe the first mode were obtained nu- 
merically. It is seen therefore that P , 4  as E~-+O. Indeed, it 
can be shown that the first soliton mode exists only in an 
initially supercritical plasma, at E, < 0. 

Numerical computer calculations show that the asymp- 
totic expressions (21) and (22) are valid already at y 2 1 for 
the function a,(y) and at y > 10 for P,(y). It follows from (22) 
that the characteristic scales of the field variation in the first 
mode are of the same order along and across the channel. 

In the second mode at y )  1 the channeled power ceases 
to depend on E, and its dependence on the slowdown of y 
reduces to a dependence on the longitudinal wave number h. 
The expressions obtained for P2 and a, in Ref. 4 are of the 
form5' 

Thep, and a, in (23) and (24) are taken along the phase 
trajectories that correspond to the second mode, 

GEEkJEph, G2 ( C )  =GS2(5)  +GIZ ( 5 ) .  
Comparing expressions (21) and (23) we find that at (h / 
k0),> I E , ~  (i.e., y 2 )  1) the ratio 

pzlp,- (hlk,) "0-' 

increases with increasing h /ko. The ratio of the characteris- 
tic scales is here independent of h and is equal to 

53. PLASMA WAVEGUIDES IN A MEDIUM WITH IONIZATION 
TYPE NONLINEARITY 

1. We consider waveguide TM channels in a plasma 
with nonlinearity of the ionization type. We have in mind a 
situation wherein the plasma density is higher in the region 

where the electron-field amplitude is larger. 
The propagation of surface wave along the interface 

between a dielectric and a plasma with ionization nonlinear- 
ity was investigated in Refs. 7 and 8. It was furthermore 
indicated in Ref. 7 that in such a plasma there can exist field 
and density distributions in the form of wave channels, but 
the appropriate solutions were not obtained. 

In the case of ionization nonlinearity, the change of the 
plasma density under the influence of the field is the result of 
"creation" of charged particles upon ionization of the neu- 
tral molecules and atoms, and their loss by sticking, recom- 
bination, or diffusion. We analyze here the case when the 
diffusion is negligible and the connection between the plas- 
ma density and the field amplitude can be regarded as local. 

It is known that electric breakdown of a neutral gas is 
characterized by a threshold value of the field amplitude. In 
weak fields, the plasma density does not depend on the field, 
Ea increases rapidly with increasing field and when the field 
amplitude exceeds the threshold value. The simplest approx- 
imation of such a dependence of the plasma density N on the 
field amplitude is 

Here No is the "priming" plasma density in the absence of a 
field, N,  = 02m/4?re2 is the critical density for a wave of 
frequency o ,  the field is measured in threshold units g = E / 
Ea,  and the parameter 0 characterizes the "rate" of growth 
of the plasma density when the field exceeds the threshold 
value E,. It is convenient to normalize the dielectric con- 
stant as before against the quantity E, = (1 - N&)> 0. 
The expressions for E corresponding to (25) take the form 

where p = O/c0. In the limiting case of a weak threshold 
field6' we obtain for E from (26) and (17), following the field 
transformationpg2 = e2, expression (3) with S = - 1. 

It can be shown that self-focusing of TE waves and for- 
mation of TE waveguides are impossible for an ionization 
nonlinearity, and the TM waveguides of interest to us exist 
only at y2 > 1 and E, > 0. 

A complete qualitative analysis of all the solutions of 
the system (4), (26), and (27) can be carried out as before on 
the phase plane. 

In this case the phase plane ($,, g,) must consist of 
two regions separated by the circle: 

Inside this circle the behavior of the system is described 
by linear equations obtained from (4) at S = 0 and E = 1. At 
y2 > 1 the "linear" part of the phase plane has at the origin an 
equilibrium state of the saddle type, with a separatrix de- 
scribed by the relation 

The region outside the circle (28) corresponds to a plasma 
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waveguide "broached" through the gas. The structure of the 
field and the density in it are determined by the solution of 
Eqs. (4), in which the function &(g2) is given by (16), and the 
substitutions e+g and 6- - f l  were made. As before, the 
regions corresponding to supercritical and subcritical plas- 
ma are separated by an integral curve E = 0 whose radius 
depends on the parameter 8 :  

&="+a,"=l+p-'. (30) 

The behavior of the phase trajectories in the ring between the 
circles (28) and (30), where E > 0, is determined by the param- 
eter = ?/(I + 8). In particular, this region contains (in 
its entirety or in part, depending on p) a singular spinode 
curve 

3&=,2+8,2=1+p-'. (31) 

It can be shown, however, that the behavior of the trajector- 
ies in this ring does not influence the soliton solution that 
describes the localized mode. 

We shall be interested as before in symmetric stationary 
distributions that result from a smooth increase of the wave 
field. An analysis of the phase plane makes it possible to 
construct such solutions in analogy with the procedure used 
in Sec. 3 of the preceding paragraph for the case of striction 
nonlinearity. 

The phase trajectories that describe plasma waveguide 
in a medium with ionization nonlinearity are shown in Fig. 
3. The distribution of the field and of the density in the wave- 
guides depends significantly on the parameter 8 .  At not too 
large 8 ,  

p q * =  ( 2 f - I )  /2y2, (32) 

the plasma density increases smoothly from the interface 
between the neutral gas and the plasma towards the wave- 
guide axis, and the discontinuities in the distribution of the z 
component of the field and of the density is produced in a 
rather dense plasma. The corresponding trajectory of the 
representative point on the phase plane is shown in Fig. 3a. 
For a strongly slowed-down wave with f )  1 it becomes pos- 
sible to obtain the dependence of the field amplitude g, in 
the waveguide on the value of the parameter 8: 

In the limiting case 8 4 ,  as expected, we obtain from (33) 
for the field amplitude in the channel the expression (16) 
previously obtained for the zero-threshold striction mecha- 
nism of the nonlinearity. 

If condition (31) is violated, the jump of the dielectric 
constant takes place already at the waveguide boundary, so 
that the plasma density exceeds the critical value everywhere 
inside the waveguide. The trajectory of the representative 
point on the phase plane is shown for this case in Fig. 3b. 

For a strongly slowed-down wave propagating in a plas- 
ma with large 8 ,  

the coordinate dependences of the field and of the dielectric 
constant can be obtained analytically and are of the form 
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FIG. 3. Phase plane of the variables (P,, P,) for a plasma with ionization 
nonlinearity in the case of a nonzero threshold field En2 > 0 for different 
values of the parameter 8: a ) p < B  *, b ) p > P  *. In the shaded reg!on the 
behavior of the integral curves, which depends on the parameter 9, does 
not influence the plasma-waveguide solution outlined in the figure by a 
thick (solid and dashed) line. 

,2-cosZ hz+8 cos4 hz 
OZ- 1 E. cos hz ( I  + 

, 
) ,I hz l <n/4-5/6p 

128 cos' hz  

- 
(sign hz/1/2) E, exp ( -hz+n/4-5 /6~) ,  - I hzl >n/4-5/6P - -  

-Ea sin h z [ l+( l+  8 cos2hz)/12/3 cos2 hz],lhzl Gn/4-5/68' 

The functions (34)-(36)'' are shown in Fig. 4. They can 
be used to determine the power Pg channeled by this wave- 
guide, as well as its effective width as. In the limiting case 
fl- co they are expressed by the formulas 

Numerical computer calculations show that for a quasipo- 
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94. ESTIMATE OF WAVE DAMPING 

FIG. 4. Distribution of the electric-field components Ex (curve 1 )  and E, 
(curve 2), and of the dielectric constant E (curve 3) in a self-sustaining 
plasma waveguide in a medium with ionization nonlinearity at J>B> 1. 

tential wave with j?% 1 the functions Pg( p ) and as( p ) reach 
the asymptotic values (37) and (38) already at 02 1. 

Let us dwell on the singularities connected with the ion- 
ization character of the nonlinearity. 

First, the phase trajectories located outside the circle 
E = 0 are not closed. There are therefore no higher soliton 
modes. The first mode constructed above is always slowed 
down: y2 > 1. 

Second, the power channeled by this mode is negative, 
Po < 0. Consequently in the case of ionization nonlinearity 
the TM waveguide is produced by a backward wave. 

Finally, a "priming" plasma is mandatory for the pro- 
duction of a channel in the case of ionization nonlinearity: A 
self-consistent structure in the form of a layer of supercriti- 
cal plasma with a TM wave traveling along it can arise also in 
an initially neutral gas. 

2. We conclude this section with a few words on the 
parameters of a plasma waveguide in a medium with a zero 
threshold field: E, = 0. This situation is described by Eqs. 
(4) and (5) with S = - 1 and E, > 0, and is naturally a parti- 
cular case of the more general problem considered in the 
preceding subsection of this section. The distinctive feature 
of the model with E, = 0 is that it describes not only a medi- 
um with an ionization nonlinearity, but also a plasma whose 
nonlinear properties are determined by striction and moves 
(in contrast to the case considered in Sec. 2) with supersonic 
velocity. The last circumstance is typical of a plasma corona 
produced when laser radiation acts on a solid target. 

A qualitative analysis of the solutions of the system (4) 
and (5) at S = - 1 and E ~ >  0 is similar to that in Sec. 2. 
Naturally, the characteristic features of the solution that de- 
scribes the localized mode are the same in this case as the 
aforementioned general properties of plasma TM wave- 
guides in media with ionization instability. The quantitative 
characteristics of this mode, viz., the field amplitude Em in 
the channel, the channeled power P, and the effective width 
a can be obtained analytically in the case of strong slowing 
down Y2) 1. The values of Em and are determined, just as in 
the case of striction nonlinearity, by expressions (16) and 
(22), and the channeled power is negative: P = - PI ,  where 
PI is determined by Eq. (21). 

We estimate now the dissipation of the electromagnetic 
energy in the TM waveguides considered above. We do this 
using as an example a plasma with striction nonlinearity. It 
is clear that the losses will primarily affect the structure of 
the first soliton mode. We confine ourselves to the case of a 
collisionless plasma, in which the dissipation is determined 
by two effects. First is the conversion of the electromagnetic 
wave into a Langmuir wave at the dielectric-constant jump. 
In addition, the electromagnetic wave can become attenuat- 
ed by resonant interaction with the plasma electrons. 

Since generation of the longitudinal (Langmuir) wave is 
due to a small vicinity of the jump, the absorption can be 
calculated using the results of a quasistatic analysis of the 
effects in the region of the plasma resonance.1° Comparing 
the energy flux into the plasma wave 

obtained in Ref. 10, with the power (21) transmitted along 
the channel, and determining with the aid of (12) and (1 3) the 
induction D, = E ~ E , ~  of the electric field at the jump, we 
obtain in the limiting case 9% 1 the condition under which 
the losses influence little the field structure in the channel 

h/k,<clvT,. (39) 

Here v ,  is the electron thermal velocity. The condition (39) 
is very "soft" and is always compatible with the condition h / 
k,, \&,I ' I 2  for a strong slowdown of the wave. In addition, 
(39) is simultaneously the condition for small resonant 
damping by the electrons. Indeed, after substituting c = o/ 
k,  in (39) this condition takes the form 

Here v,, = w / h  is the phase velocity of the wave along the 
layer as well, by virtue of (22), the minimum phase velocity of 
the greater part of the spatial spectrum of the field wave 
across the channel. For a collisionless plasma the inequality 
(39) is therefore a universal condition for low-energy losses 
in the channel. 

We note in conclusion that to determine the realizabi- 
lity of stationary structures it is necessary to investigate their 
stability. Up to now the instability had been discussed only 
for TE waves.4s" 

A rigorous investigation of the stability of the station- 
ary solutions for TM waves is a most complicated problem. 
We formulate briefly only the results of a qualitative analysis 
of the stability of the localized distributions obtained above. 

This analysis is similar to the qualitative treatment of 
the stability of localized distributions in the theories of self- 
focusingI2 and of Langmuir collapse,13 and is based on an 
investigation of the character of the dependence of the inte- 
grals of motion of the nonstationary problem on the effective 
width of the distribution. The results of the investigation 
allow us to expect the following: 1) The waveguide channel 
in a supercritical plasma with striction nonlinearity is stable 
to spreading in the transverse direction, but unstable to col- 
lapse. 2) A plasma waveguide in a medium with ionization 
nonlinearity is stable both to spreading and to collapse. 
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'This wave is a superposition of two longitudinal waves propagating in 
mutually perpendicular directions at an angle a = lr/4 to the x axis. 

"The first to encounter a similar behavior of phase trajectories were An- 
dronov and Vitt in an analysis of differential equations that simulates a 
system with lumped parameters5 

"Here andbelow we have in mind those symmetric modes whose structure ' 

contains the smallest number ofjumps-two. There exist, in addition, 
multijump modes that are apparently less stable. 

4'The channeled power can also be expressed in terms of the field strength 
on the channel axis. From (16) and (21) we obtain PI = O.lcE,,,, p,/ 
rkoy. 

5'Expressions (23) and (24) for P, and a, are valid only if the condition (1 8) 
is satisfied. Therefore, if the cubic nonlinearity is neglected, the maxi- 
mum ratio P2/Pl is limited to P2/Pl 5 23.71~~1 -2. At larger amplitudes of 
the second mode it is necessary to take the nonlinearity saturation into 
account. 

@To go to the limit E , 4  we must l e t 6 0  and leave/3PZ constant at the 
same time. 

"We note that expressions (34) and (35) for the field (without allowance for 
the small corrections - 1//3 ) in expression (36) for the dielectric constant 
can be obtained also on the basis of a method proposed in Ref. 9 for the 
case/3+m, where stationary structures of a high-frequency discharge are 
deduced directly from the condition (El = E, = const. 
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