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A kinetic theory of the generation of a strong field i'n a semiconductor laser is generalized to the 
case of spatially inhomogeneous fields of the standing wave type. The Winger representation is 
used to obtain rate equations for the density matrix of electrons in a semiconductor, which 
interact with the generated field. It is shown that under conditions of a high Q factor the satura- 
tion of such generation occurs in fields higher than in the homogeneous case. Under low-Q 
conditions the spatial inhomogeneity of the field has practically no effect on the maximum possi- 
ble field. An estimate is obtained of the contribution of the elastic impurity scattering to the 
limiting value of the generation field in the case of a semiconductor laser characterized by band- 
band electron transitions. The dependence of the limiting field on the concentration of an impuri- 
ty in a semiconductor is obtained for a semiconductor laser exhibiting impurity-band transitions. 
The results obtained are in qualitative agreement with the published experimental data. 

PACS numbers: 42.55.Px, 71.38. + i, 71.25.Cx, 72.10. - d 

In the kientic theory of generation of a strong field in 
semiconductor lasers developed by Galitskii and Elesinl it is 
shown that there is a limiting lasing field in the steady-state 
single-mode regime. The effect is related directly to the ap- 
pearance in the electron excitation spectrum of a gap2 of 
width U, where 2 = d-E is the frequency of field-induced 
interband transitions which, under strong field conditions 
defined by Are, % 1, exceeds the frequencies of collisions of 
electrons with phonons, other electrons, etc. The theory of 
the effect is in qualitative agreement with the experimental 
 result^.^-^ 

The case of a traveling wave is considered in Refs. 1 and 
7 and this gives rise to spatially homogeneous solutions of 
the rate equations describing lasing. However, in practice 
one frequently encounters a situation when the field in a 
laser is a standing wave (or, more generally, a superposition 
of standing and traveling waves). 

Since the wavelength of the emitted radiation is usually 
considerably less than the linear dimensions of the active 
zone, k L )  1, the spatial inhomogeneity of the field becomes 
significant. 

As shown in Ref. 8, there is no gap in the spectrum of 
quasiparticle excitations in the field of a standing wave. 
Therefore, it is not a priori evident how the nature of the 
lasing equations then changes. 

We shall generalize the kinetic theory of lasing to the 
case of spatially inhomogeneous fields of the standing wave 
type. We shall consider the main physical aspects. 

The interaction of electrons with the generated field is 
allowed for by going over to quasi particles employing the 
unitary (u,v) transformation. The transformation itself, and 
the dispersion law of quasiparticles 

cause of the smallness of the wave vector of the field com- 
pared with the characteristic electron momenta (k+-p,). 

A strong field saturates direct transitions between the 
bands and the amplification (or absorption) of the field is due 
to indirect transitions involving phonons. According to Ref. 
1, under steady-state conditions (at T = 0) the rate of cre- 
ation of strong-field photons is determined by the rate of 
annihilation of quasiparticles accompanied by phonon cre- 
ation. The kinematics of this process imposes an upper limit 
on the phonon frequency w, (we, = 2p$, where s is the ve- 
locity of sound, and it determines the regions of space 
IR (r)I (aph /2 which make contribution to the annihilation 
process. We can readily see that in a homogeneous field we 
have R = wph /2 (Ref. 1). In a standing wave R. (r) = R cos kr, 
when there is no gap in the spectrum, the amplitude of the 
field may exceed wph/2. However, an incrase in the field 
reduces the spatial volume of the annihilation region and the 
annihilation rate decreases. As soon as this rate becomes 
comparable with the loss rate in the resonator -7.; ', satura- 
tion of lasing takes place. This corresponds to the case of a 
high Q factor (7-rO/rph ) 1). It is shown in $2 that in this 
case the limiting value of the field is A, = we, 7'13. We shall 
discuss here the process of saturation of the generated field, 
which is in the form of a superposition of standing and trav- 
eling waves. 

In the low-Q case ($3) the spatial inhomogeneity of the 
generated field has practically no influence on its limiting 
value. 

The results obtained are generalized to the case when 
the active material of a semiconductor laser is a doped semi- 
conductor. 

E (r, p) = (gp2+ 1 h (r) 1 ') %, Ep= (p2-pO2) /2m, h (r) =dE (r)  §I. RATE EQUATIONS 

In the resonance approximation the Hamiltonian of 
depend On the local of the In the case of a electrons in a semiconductor interacting with a strong elec- 

homogeneous field this results in exact diagonalization of tromagnetic field 
the Hamiltonian2 whereas in the present case it is diagona- 
lized in the quasiclassical approximation which is valid be- E, cos (kr-at) +E2 cos (kr+ot) 
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and with phonons has the form 

He= j d3rY + [Hao3+h ( r )  o++he ( r )  o- ] Y ,  (1) 

where Y (r,t ) is a two-component electron field operator, p(r) 
is the phonon field, 

H,=V2/2m-pa, pa=poZ/2m= (o-EB) 12, 

h ( r )  = (hieikr+ h,e-'k') /2 ,  h,=dE,, 

d is the matrix element of the interband transition, a are the 
Pauli matrices, and Vis the volume. We shall use a model of 
two symmetric energy bands with identical masses and a 
quadratic dispersion law. The frequency w of the strong field 
is close to the band gap E, . 

We shall introduce the density matrixp and the correla- 
tion function y in the Wigner representation: 

and c,+ is the phonon creation operator. 
Standard procedures9~'0 allow us to use the weakness of 

the interaction between electrons and phonons to obtain the 
following equations for p and y: 

a ( -i- - Q~+D,+D,+D,) ~ ( r .  p, b,, t )  -0, 
at (5) 

where 
,I 

D ~ X F  [ G ( ~  +ibj)'-2. ( o ~ ~ ~ - ~ o ~ )  I 

[there is no summation over repeated indices in Eqs. (4) and 
(5 ) ] .  In the system (5) we have neglected the recoil of elec- 
trons in the course of emission or absorption of a strong-field 
photon, because the wave vector k is considerably less than 
the characteristic values of the electron and phonon mo- 
menta ( ( k - ~ ,  q-p,). Moreover, the smallness of k means 

that the spatial inhomogeneity of the field is weak. The dis- 
tance transversed by an electron during the time between 
collisions with phonons v,rPh is less than the wavelength of 
the field: 

~ v ~ ' c ~ ~ <  1. (6) 

Then, the gradient terms in Eq. (5) are small and can be 
neglected. Consequently, in this approximation the relaxa- 
tion processes associated with the electron-phonon colli- 
sions are determined by the local value of the field R (r), and 
the functions p and y depend on r as a parameter. In the 
subsequent analysis it is convenient to adopt the quasiparti- 
cle representation: 

G = u ( ~ ,  p - b j / 2 ) ~ j U - ~ ( r ,  p+bj/2) (7) 

employing the unitary transformation 
( r )  

--u(r, P ) -  \ 

where u2(r,p) and v2(r,p) = [l + tP/.c(r,p)]/2, the latter de- 
pending on the local value of the field and, therefore, varying 
considerably over distances of the order of one wavelength. 
The spatial derivatives of U(r,p) are also neglected on the 
strength of thecondition (6). The dispersion law of quasipar- 
ticles is of the form 

E ( r ,  P )  = ( E p 2 +  I h ( r )  1')'". (9) 
In a homogeneous field [R (r) = const] the transformation of 
Eq. (7) ensures exact diagonalization2 of the Hamiltonian He 
of Eq. (1). In a spatially inhomogeneous field the Hamilton- 
ian He is diagonalized approximately with the quasiclassical 
precision (based on the parameter k /p,). It should be pointed 
out that the density of states calculated using the dispersion 
law of Eq. (9) are in exact agreement with the results of Refs. 
8 and 1 1. In particular, in the case of a standing wave there is 
no gap in the spec t r~m,~  whereas in the more general case of 
two opposite waves with different amplitudes" there should 
be a gap in the density of states and its width should be 
IR, -A2[. We shall confine ourselves to a discussion of the 
kinetic processes in a semiconductor at absolute zero T = 0. 

In the quasisteady-state app rox ima t i~n ,~ .~~  we elimi- 
natej  from a system of the resultant equations, and obtain an 
equation for the density matrixp and seek its solution in the 
form of an expansion in terms of the parameter 

l / & . ~ ~ h <  1. (lo) 
In the zeroth approximation this gives the following equa- 
tion for the distribution function of quasiparticles 
n(r,p) = p, ,@,PI, where 1 -p22(r l~) :  

a - n= ( l - n )  S+-nS--nSA'+ ( l - n )  Jp ,  
at (11) 

where 
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n', u', v', ef=n (r, p') , u(r, p') , v (r, p') , E (r, p') ; 

Jp is a spatially homogeneous source of quasiparticles. 
The nondiagonal elements of the density matrix which 

determine, in particular, the absorption coefficient (gain) of a 
strong field are expressed in terms of the diagonal elements 
in the first approximation with respect to the parameter (10). 
These expressions differ from the corresponding formulas of 
Ref. 1 by a parametric dependence on the coordinate. 

In homogeneous case, Eq. (10) is identical with the 
strong field condition AT,, ) 1. In an inhomogeneous field 
(for example, in a standing wave) the condition (10) may not 
be obeyed in small regions near the wave nodes and atp zp,. 
However, these small regions of the phase space play no sig- 
nificant role in the process of generation of a strong field 
under discussion. 

We shall supplement Eq. (1 1) with the rate equation for 
the number of photons in a resonator: 

where T, is the lifetime of a photon in the resonator, V is the 
volume of the system, and 

In Eq. (14) the quantity Qis the number ofphotons created in 
the semiconductor per unit time. We can show that in the 
steady-state case (for a source localized in a region co)l, A ), 
Eqs. (1 1) and (13) yield equations relating the rate of annihil- 
ation of quasiparticles, on the one hand, to the rate of their 
creation by a source and, on the other, to the rate of loss of 
photons from the resonator: 

Therefore, the steady-state value of the generated field 
is determined by the rate of annihilation of quasiparticles. If 
it is represented in the form 

where 
1 mV -- 21h(r) I < E + E ' < o ~ ~ ,  

goL 
go" ,(q)=-, 

Tph 31 4' 

it can readily be shown that this quantity is a nonmonotonic 
and bounded function of the field amplitude A. It then fol- 
lows from Eq. (15) that there exists a limiting lasing field 
whose magnitude depends in a self-consistent manner on the 
nature of the quasiparticle distribution function. 

We note that the annihilation rate is influenced by sev- 
eral factors: the laws of conservation of the momentum and 
energy of quasiparticles and phonons, the nature of the dis- 
tribution function n, and the coherence of the interaction. 

i 52. HIGH-Q REGIME 

In the high-Q regime (7 - T,,/T~, ) 1) the photon lifetime 
in the resonator is long. We shall consider the specific case of 
a standing waveA (r) = A cos kx. We shall show later that the 
field amplitude may reach high values (Ao)wph ). Then, spa- 
tial restrictions appear and these are imposed by the kinema- 

tics of the annihilation process. It follows from the laws of 
conservation that the contribution to the annihilation is 
made only by those particles which satisfy the condition 
(A ( x) I <wph /2. The width of the corresponding spatial re- 
gions near the standing-wave nodes is of the order of 
kAx -aph /A 4 1, so that an increase in the field reduces the 
annihilation rate. We shall find an approximate solution of 
the steady-state rate equation for quasiparticles (1 1). In these 
regions of space the nature of the distribution function is 
governed by the scattering integrals (1 - n)S + - nS - ~ 0 ,  
since the source is localized when lo)A and the annihilation 
collision integral SA is small. As a result, we obtain a Fermi 
function with a chemical potentialp which is found from the 
second equation of the system (1 5). The chemical potential is 
close to up, : wph - p4wph. Therefore, we shall substitute in 
Eq. (16) the distribution function n( x,p)=: 1. This gives rise 
to an error which is small in respect of the parameter 
(up, - p)/wph < 1. Then, the annihilation rate of Eq. (16) is 
given by the following expression 

In the calculation we shall assume that 2 (q )  =&/q.  
For a different dependence of the matrix element, for exam- 
ple when $(q) a q, only a numerical coeffcient of the order of 
unity changes in Eq. (17). Substituting in Eq. (17) the first of 
the equations of the system (15), we find the limiting value of 
the generated field: 

It is higher than the corresponding limit for a homogeneous 
field A, = wph /2 and, moreover, it depends on the photon 
lifetime in the resonator as T;". This difference is due to the 
different behavior of the annihilation rate in the homogen- 
eous and inhomogeneous cases when the field amplitude is 
large. In the former case it tends to zero as (aph - U )2, 
whereas in the latter case as A -'. The limiting field of Eq. 
(18) corresponds to the critical value of the pump current 
I,, = up, 72'3/4md 2 ~ 0  - T; '/'. 

The steady-state lasing regime breaks down in the range 
I >  I,, . The results obtained can be generalized to the case 
when the lasing field represents a superposition of two oppo- 
site waves: 

[h,eik"+h2e-ik"] 12. 

In the high-Q case the amplitude of these waves are similar. 
To be specific, we shall assume that the reflection coefficient 
of one of the mirrors is equal to unity and that of the other is 
close to unity, i.e., A ,  =A, A, = RA, R 5 1. 

In the presence of a gap in the spectrum 

E (2, p) = (Ep2+A2+AZ cos2 k x )  '", 

A= (hi-h2)/2, A= (LAz) " 
gives rise to an additional reduction in the volume of the 
phase space that determines the annihilation rate. 

The equation for the limiting field can be represented, 
with the aid of Eqs. (1 5) and (16), in the following convenient 
form 
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1f r1113(1 - R )(I, the gapis small (24 (up, )and has no influ- 
ence on the limiting field, so that the result is identical with 
that obtained in the standing wave case: A,zA2zwph ?,7'13. 

In the opposite limit 171/3(1 - R )> 1 the gap is close to 
a,,, i.e., 24 z a p , ,  which determines the maximum value of 
the field: 

We shall conclude by specifying more precisely the con- 
ditions under which the approximations (6) and (10) can be 
used. Since the energies of the quasiparticles participating in 
the annihilation process are of the order of up,, the condi- 
tion (10) assumes the form a,, rph > 1, which is satisfied for 
typical values a,, - 10" sec-' and T,, - lo-'' sec. In the 
inequality (6) the wavelength k -' should be replaced with 
the characteristic spatial size of the annihilation region wph / 
A&. The condition q((kvOrph ) -3  is then obtained. In view of 
the smallness of the wave vector, this inequality imposes in 
practice no upper limit on the Q factor. 

53. SATURATION OF LASING IN THE LOW-Q REGIME 

In the case when the Q factor is low because of the short 
photon lifetime in the resonator (rO(rph ) the saturation of 
lasing occurs in fields corresponding to (Ao(oph ). Therefore, 
the kinematics imposes no significant restrictions on the vol- 
ume of the space that determines the contribution to the 
annihilation process. 

The coherent factor is (uv' - vul)'- 1 in the range of 
strong mixing of electron states by the wave field 
[5-{ ' -A  ( x) ] ,  but this energy interval gives on the whole a 
small contribution to the integral (16) (-A '/a;,). At high 
energies (S-{'-wph) the coherent factor itself is small 
(-A 2/a;h ). Consequently, the main contribution to Eq. (1 6) 
is made by the momentum range 6-A ( x), { ' -wph (or vice 
versa) and the annihilation rate is proportional to A. It can be 
calculated by finding the distribution function of quasiparti- 
cles in a wide range of values of5 (from 6-A to (-aph ). We 
shall use the relevant expressions from Ref. 1 except that the 
quantities, such as the quasiparticle energy, distribution 
functions, etc. will now depend on x as a parameter. How- 
ever, in the low-Q regime [A ( x)(A <wph ] this dependence 
appears usually only in small terms of the order ofR /aph. In 
the general case of superposition of traveling and standing 
waves the distribution function is of the form 

n ( x ,  p)  =u"x, p )  , -w<Ef a ( x )  o p h  

n (x, P) =O, E>a(x>  UP^, (21) 

where 

Using Eqs. (16) and (21), we shall now find the limiting 
value of the lasing field 

where 

and E is complete elliptic integral. 
The traveling wave limit corresponds to R = 0 and we 

thenobtain the result ofRef. 1. The functionx (R )varies little 
within the limits 1 (X (R )g7~/2 when R is reduced from 1 
(standing wave case) to zero. Therefore, in general the limit- 
ing field 

differs from the result given in Ref. 1 by a numerical factor - 1. 
It follows that inhomogeneity does not alter qualitative- 

ly the limiting field in the low-Q regime. 

54. SEMICONDUCTOR LASER UTILIZING DOPED ACTIVE 
MATERIALS 

Real semiconductors used in lasers contain impurities. 
Moreover, depending on the actual experimental and appli- 
cation conditions, deliberate doping of semiconductors is 
used. Therefore, the process of impurity scattering of elec- 
trons should be allowed for in the kinetic theory of genera- 
tion of a strong field in a semiconductor laser. 

The results obtained in $42 and 3 can be generalized to a 
doped semiconductor if the main relaxation process is the 
electron-phonon interaction, i.e., 

where ra is the impurity relaxation time. For example, in the 
case of GaAs, the relaxation times are ra - lo-' '  and 
rph - 10-l2 sec, respectively. 

The process of impurity scattering does not contribute 
to the annihilation rate and the rate equations (15) are unaf- 
fected. It is shown in Ref. 12 that the impurity scattering 
destroys effectively the gap and if Ira - 1 there is no gap in 
the density of states. This means that in the spatially inho- 
mogeneous field of a standing wave in the intervals 

near the wave nodes the density of electron states changes 
and in the remaining spatial intervals the gap is renormal- 
ized and is given by the expression 

A ( r )  =A ( r )  [ I  - (a ( r )  T ~ )  -'I3 ] ?h. (26) 
Moreover, the impurity scattering affects the distribution 
function of quasiparticles. 

In the high-Q regime (r,,, ra >rPh ) the distribution func- 
tion is determined by the phonon relaxation mechanism and 
is still unity in the range of energies of importance to us. 
Therefore, the impurity scattering affects only the density of 
states. We shall estimate the change in the annihilation rate 
(and, consequently, in the upper limit to the generated field) 
because of a change in the density of electron states in spatial 
intervals described by Eq. (25). This change is proportional 
to a small quantity (wph ra ) - I ,  i.e., the impurity scattering 
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has practically no effect on the upper limit of the field gener- 
ated in a semiconductor laser operating in the high-Q re- 
gime. 

In the low-Q regime (7, )rph Bra ) the electron distribu- 
tion function is still in the form of a unit step with a dip of 
depth 1/2 at lp = 0 (this is known as the overpopulation 
burning effect1). However, in the spatial intervals given by, 
Eq. (25) near the wave nodes this dip is liquidated by the 
collapse of the gap due to impurity scattering. In other spa- 
tial intervals the width of the dip is governed by the normal- 
ized gap A (r). We shall now estimate the change in the upper 
limit of the field generated in a semiconductor laser because 
ofa change in the distribution function caused by the impuri- 
ty scattering. This change is proportional to a small quantity 
(up, 777, )-2'3 and it is of the same order of magnitude as the 
terms (proportional to q) omitted in the calculation of the 
upper limit of the field generated in a semiconductor laser 
made of a pure active material and operating in the low-Q 
regime ($3). An allowance for the influence of the impurity 
scattering on the density of states gives rise to additional 
terms in the upper limit for the lasing field but these terms 
are of even higher orders of smallness. Therefore, in the low- 
Q case once again the impurity scattering does not affect the 
upper limit of the field which is created. 

We shall now draw attention to the fact that the concen- 
tration of an impurity in a semiconductor has practically no 
influence (via ra ) on the upper limit of the field generated in a 
semiconductor laser operating on the basis of band-band 
electron transitions. Experimental and theoretical investiga- 
tions have shown that in the case of a semiconductor laser 
utilizing a doped active material we can expect electron tran- 
sitions between the conduction band and a discrete impurity 
(acceptor) level. 

Using the representation of an impurity bandI3 formed 
as a result of delocalization of impurity electrons undergoing 
transitions between this band and another impurity under 
the action of a strong field, we can reformulate the rate equa- 
tions for a semiconductor laser made of a doped material. If 
the inequalities 

po>X>~,-' (27) 

are satisfied, the impurity scattering of electrons is unimpor- 
tant and the rate equations (15) can again be used in the case 
of doped semiconductors provided the following substitu- 
tions are made: 

- - 

where a, is the state of an electron bound to an impurity, N 
is the number of randomly distributed impurities, V is the 
volume of a crystal, and mi is the mass of an electron in the 
conduction (c) and impurity ( v )  bands. 

Following the same procedure as in $52 and 3, we find 
that the limiting field generated in a semiconductor laser 
operating in the high- and low-Q regimes is given respective- 
ly by the following 

h.o=0~h~'~~6-"~, (29) 

where 

It follows that in the case of a semiconductor laser exhi- 
biting impurity-band transitions the upper limit on the field 
depends both on the impurity concentration (N/V) and on 
the impurity used in the active zone (a, ). This can be utilized 
experimentally to identify electron transitions occurring in a 
semiconductor laser. 

It should be noted that impurity scattering may alter 
the results (29) and (30), but only in the case when 

which would have altered the inequality (24), i.e., which 
would have required a different approach to an analysis of 
the kinetic theory of generation of a strong field. 

g5. EXPERIMENTAL RESULTS 

Experimental studies of saturation of the field generat- 
ed in a semiconductor laser in the case when the radiation 
intensity was - lo6 W/cm2 were reported in Refs. 6 and 14. 
Measurements indicated that the limiting power and its de- 
pendence on T~ were in agreement with the conclusions de- 
duced from the kinetic theory developed for the case of a 
homogeneous field. A calculation of the Q factor for the ex- 
perimental conditions gave 7 -0.1 (Ref. 14), i.e., the semi- 
conductor laser operated in the low-Q regime when, as 
shown above, the limiting field and its dependence on r0 
were practically identical for the cases of a homogeneous 
field and a field of the standing-wave type. 

The results of Ref. 14 also confirmed qualitatively the 
conclusions reached in Ref. 15 that the limiting field should 
increase on increase in the impurity concentration in the 
active material of an injection laser. 

The results of the present study allow us to conclude 
that in the case of semiconductor lasers employed in these 
experimental investigations the electron transitions giving 
rise to the optical radiation were of the impurity-band type. 
The observed increase in the limiting field on increase in the 
impurity c~ncentrat ion '~"~ in the case of semiconductor la- 
sers operating in the low-Q regime is in qualitative agree- 
ment with the results obtained in our study. 

The authors are grateful to V. F. Elesin and A. I. Larkin 
for a valuable discussion. 
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