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An averaging method is used to obtain an analytic solution for the density matrix of a quantum 
linear oscillator located in a thermostat and having a variable frequency w(t ) = w, + p(t  ) cos2?r,t; 
the modulation amplitudep(t ) is small compared with w,, changes little over the period 2?r/w0, 
and is in all other respects an arbitrary function of time. Conditions are investigated under which 
the sensitivity of the oscillator as a sensor for an external force f (t ) increases substantially under 
the influence ofp(t ) compared with the casep = 0. For a definite type of external-force spectrum, 
such an increase is impossible if the change of the frequency o(t ) is monochromatic @(t ) = const), 
but becomes possible if& ) is a variable function of time. It is shown that quantum nondestructive 
measurements of the oscillator are possible at any p ( t  ); an operator that realizes such measure- 
ments is constructed. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION 

Very many physical phenomena lead to the problem of 
an oscillator with variable frequency (see, e.g., Refs. 1-8). 
Widespread use of a physically verified model of a linear 
oscillator with variable frequency is hindered, however, by 
the fact that even the classical problem with arbitrary depen- 
dence of the oscillator frequency w(t ) on the time t has no 
analytic solution, whereas the problem of a classical linear 
oscillator with friction, excited by an arbitrary external force 
f (t ), can be easily solved completely. Some information on 
the properties of an oscillator with variable frequency could 
be obtained by using stochastic methods. These methods are 
effective ifw(t ) is a random function of the time whose partial 
or total characteristics are delta-correlated in time.Iv5 This 
assumption cannot always be physcially justified. Without 
the use of stochastic methods, to our knowledge, a palpable 
analytic solution was obtained only for the case of a small 
monochromatic (or harmonic) variation ofw(t ) (see, e.g., Ref. 
9) and for adiabatically slow variation of w(t ) (see Ref. 10). 

The present paper is devoted to one more case when all 
the calculations can be carried through to conclusion in ana- 
lytic form, by using an averaging method.'' Let 
o ( t  ) = w, + { (t ), where w, is the frequency of the unper- 
turbed oscillator. Borrowing the terminology from the the- 
ory of parametric  amplifier^,^ we shall call { (t ) a regenerative 
signal. Let the regenerative signal 6 (t ) be nonmonochroma- 
tic, concentrated near a resonant frequency 20,. In general 
form we can write 

o ( t )  =oo+p  ( t )  cos S )  2mot+ 6  ( T )  d z  , 

wherep(t ) and S (t ) are time functions that vary slowly com- 
pared with the frequency a,. We assume the signal to be 
weak: Ip(t)((wO. In addition, we set S = 0, for only in this 
case can the averaging method yield an ana1y)ic solution of 
the problem. The condition S = 0 means that the carrier fre- 
quency of the regenerative signal is exactly equal to the fre- 
quency 20,. 

We thus obtain an analytic solution under the condi- 
tions 

~ - ' < 0 ~ / 2 3 t ,  1 p ( t )  1 ,  6=0, (1.2) 

where r is the characteristic time of variation ofp(t ). 
In the more general case when the condition S = 0 is not 

imposed, not even the averaging method can yield an analyt- 
ic solution, and numerical integration of the equation of mo- 
tion in terms of the slow variables is necessary (see Ref. 12). 

The condition (1.2) notwithstanding, the solution ob- 
tained by us in Sec. 2 contains much physical information 
and permits an investigation of various physical situations 
that arise when the oscillator is excited. In the present paper 
we consider one such situation. Let the oscillator be used as a 
sensor (meter) for an external force f (t ). Wishing to change in 
a required direction the properties of such a sensor, we must 
regenerate the oscillator by a signal 6 (t ). The classical linear 
oscillator must then satisfy the equation 

i + v i + o o 2  [ I + - 1 
p(t) cos 2oot+ 6 ( t , ) d t ,  z = - 

00 ( )] m f ( t ) *  

where m is the effective mass of the oscillator and Y is the 
damping decrement. What regenerative signal must be used, 
for example, to increase the sensitivity of the sensor or to 
increase its spectral width? Using the solution obtained by 
us, we answer in Secs. 3 and 4 these and other similar ques- 
tions. 

Of course, another situation is also possible, wherein 
the investigated physical phenomenon manifests itself in a 
change of the oscillator frequency w(t ), and the external force 
f = 0. Let w(t ) = w, + x(t ) + { (t ), where an external mo- 
dulationp(t ) results from the action exerted on the oscillator 
by the investigated phenomenon and 6 (t ) is a regenerative 
signal applied to improve the properties of the oscillator as a 
sensor for the external modulation x( t  ). If the action imposed 
on the oscillator by investigated phenomenon is such that 
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x (t) =2m (t) cos 2mot, 

and m(t ) satisfies conditions similar to (1.2), the solution ob- 
tained by us in this paper makes it possible to determine the 
advantages that can be gained in, the measurement of x(t ) by 
some particular choice of the regenerative signal 5 (t ). 

By stipulating S = 0 we have confined ourselves to re- 
generative signals having a perfectly defined carrier frequen- 
cy. This is a rather strong restriction, but still makes our 
results widely applicable: When the regenerative signall (t )is 
specified, it makes sense to formulate a problem in which { (t ) 
has all the necessary properties. 

Both the external force and the regenerative signal 
pump the oscillator (increase its energy). In this paper we 
study the pumping by the regenerative signal only to the 
extent that it influences the pumping by the external force. 

Since the amplitude p of the regenerative signal can 
vary with time, this signal is norimonochromatic. So far, the 
important question of the influence of the regenerative signal 
on an external-force signal was considered only for a mon- 
ochromatic signal k and S constant) on the basis of a well- 
known analytic solution for this case (see, e.g., Ref. 1 and the 
literature cited therein). Using Ithe solution obtained in this 
paper, we shall show that in sonne cases a nonmonochroma- 
tic regenerative signal must be used to improve the proper- 
ties of the sensor. 

In the Appendix we show idso that regeneration of the 
oscillator by a nonmonochromatic signal does not prevent us 
from performing nondestructive quantum measurements on 
the oscillator. 

2. BASIC EQUATIONS AND OSCILLATOR ENERGY 

The evolution of the oscilla.tor density matrixp(t ) satis- 
fies the equation 

where H is the Hamiltonian of a linear oscillator with fre- 
quency (1.1). Introducing, as usual, the operators a and a+ 
and averaging only the resonant terms, we write the Hamil- 
tonian in the form 

f (t) =fc(t)cos oot-tf,(t)sin coot, 

where f (t ) is the external force, ,whilef, andf, are functions 
of the time t that are slow compared with a,,. The interaction 
of the oscillator with the thermostat is described by the colli- 
sion integral I, (see Refs. 7 and 13): 

where Y is the effective collision frequency (the reciprocal 
relaxation time), N = (eWT - I)-' is the average number of 

quanta in the oscillator in the state of thermodynamic equi- 
librium with temperature T. It is convenient to solve Eq. 
(2.1) in the representation of the Wigner function for the 
density matrix14 

where a and q are complex numbers. Let 

Re a= (moo/2il)'"x (u, v) , Im a=p (a, v) / (2fimoo) ". 
Writing down Eq. (2.1) in the representation of the Wigner 
functions and averaging the obtained equation over the peri- 
od 2?r/a, we obtain a Fokker-Planck equation for the func- 
tion W(t,u,u) in terms of the slow variables u and u: 

The calculation procedure that makes it possible to trans- 
form from (2.1) to (2.2) is described in greater detail in Ref. 7. 
The physical meaning of the slow variables u and u is clear 
from expression (2.4) below. The analytic solution of (2.2) 
can be easily obtained if an analytic solution is found for the 
equation of the characteristics: 

d u(t) 1 -fc  ( t )  
T ( v (t) ) = 2 (2hmoo)" ( f a  (t) ) 

We note that Eq. (2.3) arises also in a simpler formulation of 
the problem, when the equation (1.3) is solved for a classical 
oscillator. Indeed, setting 

2ti r- (-) ' (u cos OJ+V sin mot), 
moo 

i=- (?)'" (U sin oat-v cos mot) 

and using the averaging method, we reduce (1.3) to the form 
(2.3). We obtain the solution (2.3) by a standard method, 
stipulating that the matrix2 (t )in the square brackets of (2.3) 
satisfy the commutation condition 

at all t, and t,. We c?? then find a constant matrix 0 such 
that the matrix 0 -'A0 is diagonal, after which the solution 
of (2.3) entails no difficulty. The condition (2.5) is satisfied 
for all t, and t, if S (t ) = Cp(t ), where C is a constant. This 
relation holds, for example, in the well-investigated case 
whenp and S are independent of time (see, e.g., Ref. 11). We 
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consider another case, when 6 = 0 and it must be assumed 
that C = 0. The solution of the homogeneous equation (2.3) 
takes in this case the form 

We note that when Y = S = 0 the substitution t-+J leads im- 
mediately to (2.6). Now the solution of (2.2) for the Wigner 
function can be found in standard fashion by taking the 
Fourier transform with respect to the variables u and v (see, 
e.g., Ref. 15). We write this solution with the aid of a Green's 
function, 

where 

Knowing the Wigner function, we can find all the char- 
acteristics of the quantum system, for example the level po- 
pulationp, (to calculatep, it is convenient to use the proce- 
dure of Ref. 7). In the present paper we are interested in a 
relatively rough but but palpable characteristic of the sys- 
tem-its total energy 

3. REGENERATION BY A NONMONOCHROMATIC SIGNAL 

We have obtained an analytic expression for E (t ) under 
the assumption thatp(t ) is a small function of the time, slow- 
ly varying over the period 2rr/w0, but otherwise arbitrary. 
We now assume that p(t ) is a random function and, averag- 
ing the obtained expressions over the realizations of p ,  ob- 
tain in a statistical formulation a solution that is closest to 
the real experimental conditions. We note that the tradition- 
al statistical methods are restricted to the assumption that 
either the entire signal { (t ) (Refs. 2 and 5) or its phase S (t ) 
(Ref. 1) is delta-correlated. We, however, do not need this 
assumption. 

We note also that the assumption that p(t ) is random is 
not mandatory for our formulation of the problem. It is per- 
fectly possible for the optimum change of the properties of 
the oscillator as a sensor for an external force to take place 
under the influence of a regular regenerative signal, for ex- 
ample when p(t ) = 2 M cosdt [in this case, of course, we 
must assume that M(w, and A<wo; see conditions (1.2)]. 
The actual type of regenerative signal that must be used to 
measure the force f depends on the type of the forcef, on 
those characteristics of this force which are measured in the 
particular experiment, etc. We assume p( t  ) to be a random 
function, since the advantages of regeneration by a nonmon- 
achromatic signal are clearly evident when the force f (t ) is of 
definite form (see Sec. 4 below). 

We consider now the expression (2 .8) for the energy. 
We assume that the amplitudesf,, of the force f (t ) are such 
that 

da, <ft ( t )  fa ( t f )  )==dla jx F(@) e'm(t-t'), 

(fi ( t )  )=O, i=c,  S ,  

where F(w) is the external-forces spectrum centered about 
the resonant frequency a,. The angle brackets denote aver- 
aging over the realizations. We represent p( t  ) in the form 

~ ( t )  = p o + ~ i ( t ) *  

where p ,(t ) will be regarded as a random Gaussian process, 
i.e., d o  

( p i  ( t )  pi ( t ' )  )= j  M ( a )  e im( t - t ' ) ,  

The calculations yield 
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We assume also thatf; andp, are statistically independent. 
We average expression (2.8) for ,E (t )over the realizations off;- 
andp, (see Chap. 1 of Ref. 3 in this connection). In the steady 
state as t - t ~  we obtain E = E,, + &ESP + SE /, where E, is 
the thermal energy, 6Esp is the so-called statparametric en- 
ergy,'and 6Ef is the energy obtained from the external force. 
In this case 

d o  
6~,= I - F ( o )  1 (o)  ; 

2n 

I (w) here is the contour of the oscillator that describes the 
reaction of the oscillator to the external force. The appear- 
ance of 6Esp is due to the simultaneous influence of the ther- 
mostat and (or) of the quantum fluctuations, on the one 
hand, and of the parametric excitation on the other. A classi- 
cal oscillator in a thermostat with zero temperature has 
SEsp = 0. In our case calculations yield 

The contour 1 (w) turns out to equal 

i (o)='/a (11  (a) +b (a )  ) , 

1 dS-2 M ( P )  QEI Q& + T~z1T(2 sinz + 2 sin2 --sin2 
2 2 

We consider first the behavior of the oscillator under the 
action of only parametric excitation, i.e., when f (t ) = 0. The 
condition for the convergence of the integral (3.2) determines 
the region of parametric stability, when 6Es, (t-ta, ) < a,. It 
can be easily seen that the oscillator remains stable if 

where M (0) is the spectral density ofp, at zero frequency. In 
the case when (3.4) is not sati~~fied, stability is lost and the 
oscillator energy increases in time without limit. 

Let A, be the characteristic width ofthe spectrum M (0 ) 
of the quantity p,(t ), as well ,as a smooth function in the 
intemald, . For fast fluctuations ofp,, whend, )v - M (O)/ 
2, (3.2) assumes the simpler form 

4. COMPARISON OF CONTOURS AND DISCUSSION 

Let now the oscillator be acted upon also by an external 
force. The energy received by the oscillator from the external 
force is determined by the contour (3.3). In the presence of an 
external force the parametric instability threshold does not 
change and is determined as before by expression (3.4). As- 
sume that we are near the threshold, i.e., let v - p, - M (O)/ 
2(v. The contribution from I, can then be neglected and 

I (w)=l l,(w). We consider two limiting cases. In the case of 
fast fluctuations, when the spectrum of p, is so broad that 

we obtain from (3.3) for the controur I (w) the expression 

For slower fluctuations, when 

we have 

I (2n)  " expE -402 /M(0)  A,] 
1(0)=- 

2m (~(0)~, ) ' " (v- -p~--M(0) /2)  ' 
(4.4) 

We present also a known expression for the contour if 
the regeneration is produced by a monochromatic signal 
bl = O,PO>O) 

Whenp ,(t ) is a randon 6-correlated function of time, its 
spectrum M(R ) has a width A, = a, . This case is equivalent 
in a certain sense to the case of fast fluctuations, since (4.2) 
contains only M (0) but not A,. The case of slower fluctu- 
ations, however, is way outside the framework of the as- 
sumed 6 correlation. Indeed, the conditions (4.3) limit A, 
both from below and from above; the result (4.4) contains A, 
and does not admit of the limiting transition A, +a,. Regen- 
eration by a monochromatic signal, which yields the contour 
(4.51, differs qualitatively from the regeneration by a non- 
monochromatic signal, which gives a contour (4.2) or (4.4), 
in the following respect. We approach the instability thresh- 
old, for example, because of the adiabatically slow increase 
ofp,. In the case of regeneration by a monochromatic signal, 
the threshold valuep, ofp, is equal to v. Whenp,-+p, = v 
the central part of the contour (4.5) increases without limit, 
but the wings do not increase. Indeed, according to (4.5) we 
have 1 (w) = 1/2m02 at w2>(v - P,)~. Therefore the width of 
the contour ( 4 3 ,  equal to (p, - pol at half-maximum, tends 
to zero aspo+pc. In the case (4.1) or (4.3) the threshold value 
of pc for p, is somewhat lower than in the first case: 
p, = v - M (0)/2. More important, however, is another fact. 
As p+p,, both the central part of the contour I (a) and its 
wings increase without limit; the contour width does not 
decrease but equals M (0)/4 in case (4.1) and [ln2.M (Ow, ] I t 2  

in case (4.3) (see Figs. l a  and lb). 
Assume that the oscillator is acted upon by an external 

force whose spectrum does not contain harmonics near the 
resonance frequency w, (see Fig. lc). We regenerate the os- 
cillator to increase its sensitivity as an external-force sensor. 
If the regeneration is produced by a monochromatic signal, 
the energy SEf obtained from the external source will not 
increase without limit when the instability threshold is ap- 
proached [see Eqs. (3.1) and (4.5)]. If, however, the regenera- 
tion is by a nonmonochromatic signal, this energy increases 
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FIG. 1. Plots of contours and spectrum of external force, centered about 
the frequency o,: a) the contour I (o) for regeneration by a monochromatic 
signal; b) contour 1 (a) for regeneration by a nonmonochromatic signal 
[case of fast fluctuations, (4. I)]. Plots a and b are constructed under the 
condition that p, on curve 2 is larger than p, on curve 1. In the case of 
curve 2 the oscillator is closer to the instability threshold than in the case 
of curve 1; c) external-force spectrum containing no harmonics near the 
resonance frequency. 

without limit1' [see Eqs. (3.1) and (4.3) or (4.4) and Figs. 1 and 
21. 

The oscillator as an external-force sensor operates bet- 
ter the higher the ratio: 

The quantity R is a measure of the "signal/noise" ratio, the 
noise being due to the external force and to thermal and 
quantum fluctuations of the oscillator. The ratio R has a 
complicated dependence on the spectrum of the external 
force and on the regeneration method, inasmuch as regen- 
eration increases both SEf and SE,, . 

Let, unlike in the spectrum shown in Fig. lc, F(o) have 
no anomalous smallness at o = 0. We introduce the charac- 
teristic width Af of F(o) and consider, for the sake of argu- 
ment, the case of a narrow spectrum, when Af is small (see 

FIG. 2. Energy received by oscillator from the external force in the steady 
state, as a function of the amplitude of the constant part of the regenera- 
tive signal. The solid and dashed curves correspond respectively to the 
monochromatic and nonmonochromatic cases. The difference between 
the threshold values ofp0 in these cases is equal to M(0)/2. 

below). It follows then from (3.1), ( 3 4 ,  (4.2), (4.4), and (4.5) 
that the regeneration always increases the ratio R, but the 
degree of this increase depends on the form of the spectrum 
of the regenerative signal. If the regeneration is produced by 
a monochromatic signal,p, = 0 and A (v, asp, approaches 
the threshold value we have in order of magnitude 

where R, is the ratio R in the absence of regeneration, i.e., at 
po = p, = 0. If the regeneration is by a nonmonochromatic 
signal and Af (v and Af (M (0), we have 

Since the ratio (4.7) is larger than (4.8), regeneration by a 
monochromatic signal is more effective. The reason is that at 
o = 0 the contour (4.5) increases like (p, - asp,+p,, 
and the contours (4.2) and (4.4) increase more slowly than 
(pc - po)-2 If, however the external-force spectrum F(o) is 
anomalously small at o = 0, as in Fig. lc, R can be increased 
only by regeneration with a nonmonochromatic signal. In- 
deed, asp,+p,, at the statparametric energy SE,, = 00.  At 
the same time, in regeneration by a monochromatic signal, 
SEf remains finite and the ratio R 4 .  If, however, the re- 
generation is by a nonmonochromatic signal and Af ( v ,  
M (0), the energy SET, as well as SE,,, tends to infinity as 
p,+p,. As a result, the estimate (4.8), according to which 
the ratio R is considerably increased in the case M(O)(v, 
remains in force. 

Depending on the spectrum of the regenerative signal, 
the oscillator can have a Lorentz contour (4.2), (4.5) or a 
Gaussian contour (4.4), or else a contour of more complicat- 
ed shape. Let, e.g., p, = 0 and 

M (P) = M  [6 (52-A) +6 (52+A) 1. (4.9) 

The contour I (w)  is then given by the integral (3.3) in which it 
is possible to integrate with respect todo.  Figure 3 shows the 
contour I (o) for the case A = 4v and M = 160v2. The nontri- 
vial character of the contour in Fig. 3 demonstates by way of 
example the extensive possibilities afforded by regeneration 
with a nonmonochromatic signal. 

FIG. 3. Contour I (o) for regeneration by a nonmonochromatic signal with 
spectrum (4.9). The ordinates and abscissas are respectively the ratios 
1 (o)/mwO2d and o/v. 
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The external force f (t ) has no harmonics at the carrier 
frequency w,, i.e., F (0) = 0, when f (t ) is an amplitude-modu- 
lated sinusoid of frequency a,,. This case is frequently en- 
countered, for example, in information transmission. To re- 
cord such a force it is necessary to use nonmonochromatic 
regeneration of the oscillator while the width M (0)/4 of the 
contour I (o) in the case of fast fluctuations and the width 
[ln2.M(0)A,]"2 in the case of slower fluctuations must be 
not less than the width of the external-force spectrum. 

Regeneration by a nonmonochromatic signal may be 
useful also when it is desirable to record an external force 
with an unknown spectrum. This problem arises, for exam- 
ple, in gravitation-wave experiments. Indeed, it follows from 
the foregoing that if the external force has a relatively high 
spectral density at the frequency w,, it is necessary to use 
regeneration with a monochromatic signal in order to in- 
crease the "signal/noise" ratio. If this density is small, how- 
ever, a nonmonochromatic signal must be used. Since the 
external-force spectrum is unknown, it is reasonable to use 
first one and then the other method of regeneration. It must 
be emphasized here that the width Af of the external-force 
spectrum should in our calculation be much smaller than the 
carrier frequency w, but can exceed greatly v, p,, M (O), and 
all other frequencies of this typte. In all cases when the width 
Af is large in the indicated sense and is not contained in some 
expression, it can be assumed that this expression remains 
valid as to order of magnitude also at Af -ow 

APPENDIX 

NONDESTRUCTIVE PARAMETRIC QUANTUM OPERATOR 

A continuously measureable nondestructive quantum 
operator is an operator Q (t ) that satisfies in the Heisenberg 
representation the condition of continuous measure- 
ment16.": 

For a linear system with one degree of freedom the operator 
Q (t ), made up of coordinates and momenta of degree not 
higher than second and taken itt one instant of time, can be 
represented in the general case in the forms 

Q$ (t) = [,ql (t) +q2 (t) x(0) +ciqZ (t) P (0) (1) 2 (0) 

+ c : ~ ~ ( ~ ) ~ ~ ( o )  + (cZq2(t) +2c,q2(t) j 0 dr)  ~ ( 0 )  P(O)]C~. 
0 

here v1 to 17, are arbitrary functions of the time, C, to C5 are 
constants, and CI2+C, in (A.2); furthermore, x(0) and p(0) 
are operators in the Schrodinger representation. To obtain 
theexplicit form oftheoperators Q (t )it is necessary to substi- 
tute in (A. 1) and (A.2) the operatorsx(0) andp(0) expressed in 

terms of the operators x(t ) andp(t ) in the Heisenberg repre- 
sentation. 

We consider an oscillator without a thermostat with a 
Hamiltonian H (see Sec. 2). Solving the Heisenberg equation 
and using in this case (2.6), we find that 

where 

i ch T sh T -f, ( r )  
x I d d s h T  chT) (  j.(r) ) ' 

t 1 ' T=S p (r') dr', 1 = - -5 2 p (r)  dr. 
* 

These formulas solve our problem in principle. The result, 
however, is extremely unwieldy, and we present it therefore 
only for the case when there are no external forces: 

Qi(t) =R,' (t) +R:(t)x (t) +Rip (t) p (t) +R,"(t) x2(t) 

+RiPPp2 (t) +RISpx(t) p(t) , i=1,2. 

The functions R ,(t ) for the operator Q,(t ) are given by 

Ris=qz (t) ( Y I ~ +  Ciytz), RtP=qz (t) (y,2+CIy22), 

RlY=q3 (t) +yiiyZil2(t) (C2+ 2C, f 0 dr)  , 
0 

For the operator Q2(t ) we have 

RzZ=qz ( t )  (Y,i+C,Y2'), RzP=q2 (t) (Y~~+C,Y~Z),  

Rz"=qz (t) (~ii~C3+~21~C3C2+C4yiiy21), 

R2PP=q2 (t) ( Y ~ ~ ~ C ~ + Y Z ~ ~ C ~ C ~ + C ~ Y , ~ Y ~ ~ ) ,  

RzZP=q2 (t) (2C3 (~li~i2+CZ~Zi~22) +C4 (~iI~22+~12~Zi)).  
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In the limiting case J(1 the expressions obtained are 
equivalent to the corresponding expressions in Ref. 8, where 
the same question was analyzed by perturbation theory at 
J(1. Our analysis dispenses with this restriction. 

The authors thank the participants of V. B. Braginskiys 
seminar for a discussion. 
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