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A study is made of the statistical properties of the transparency of a disordered layer. The asymp- 
totic behavior of the transparency of a thick layer is investigated in quasi-one-dimensional and 
three-dimensional cases: in particular, a formula is obtained for the relationship between the self- 
averaging decrement of the transparency and the asymptotic value of the transparency probabil- 
ity density of separate filaments forming a quasi-one-dimensional layer. Expansions of the decre- 
ment are obtained in powers of the density of scatterers for different positions of the incident 
particle energy relative to the spectrum of an infinite disordered system. 

PACS numbers: 05.60. + w, 61.80. - x 

The problem of the tunnel penetration of particles 
across a homogeneous potential barrier with randomly dis- 
tributed scattering centers (impurities) was considered in 
Ref. 1. In the present paper, which is related to the treatment 
in Ref. 1, we shall first analyze the statistical properties of 
some of the fundamental quantities characterizing the tun- 
nel passage (and the transparency throughout the spectrum 
in the quasi-one-dimensional case) and, second, develop a 
regular method for expanding the decrements of various 
characteristics of the passage in powers of the scatterer den- 
sity.' 

1. INTRODUCTION 

We shall consider the incidence (normal, for the sake of 
simplicity) of a flux of particles of unit intensity and of ener- 
gy E on a layer of a disordered medium of thickness L and of 
cross-sectional area S. This process is described by the 
Schrodinger equation with a potential U (r) which differs 
from zero only in the region O<x(L occupied by the layer. A 
homogeneous layer corresponds to the potential U, = const 
and in the simplest case the disorder can be regarded as gen- 
erated by a random function of the type 

where the points r, are distributed randomly with a density n 
in the layer and u(r) is the potential of a single impurity (al- 
though many of the facts given below are valid also in the 
case of potentials of more general form). Therefore, the total 
potential modeling such a layer is 

U(r) =Uo+v (r) . ( 1.2) 

Our task will be to investigate the asymptotic (corre- 
sponding to large L ) properties of the transparency a, of a 
layer, defined as the ratio of the particles transmitted by the 
layer to the number of the incident particles: 

where j denotes the x component of the flux density emerg- 
ing from the layer. We shall consider two cases: three-di- 

mensional and quasione-dimensional when the layer con- 
sists ofM = Sb -' separate filaments whose transverse size is 
b and the mean free path representing jumps from one fila- 
ment to another is large compared with L. This situation is 
possible only because of the strong anisotropy of the effective 
mass. In the quasi-one-dimensional case the layer transpar- 
ency a, [Eq. (1.3)] is 

1 
0' = 7 CD'.. (1.4) 

, = I  

where DLi is the transmission coefficient of a single filament -. 

corresponding to the potential 

and x, are the coordinates of the impurities incident on a 
filament. 

In the theory of disordered systems the characteristics 
that have been investigated much more thoroughly are those 
which are additive functions of the dimensions.' The main 
distinguishing feature of such characteristics is that after di- 
vision by the relevant dimensions of a system, they become 
valid also in the macroscopic limit, i.e., these characteristics 
are self-averaging. The integral occurring in the definition of 
the transparency (1.3) is clearly an additive function of the 
transverse dimensions of the investigated layer and, there- 
fore, for a fixed layer thickness L and for an area S tending to 
infinity, the transparency becomes self-averaging. 

The most usual is a situation corresponding to the pas- 
sage through a three-dimensional layer of particles of energy 
E > Ec , where Ec is the mobility edge (threshold). In this case 
the process is described by a transport equation which gives 
reliable characteristics of the passage when a natural condi- 
tion S s L  ', is obeyed and (a,) is inversely proportional to 
the layer thi~kness.~ 

For E < Ec in the three-dimensional case and also for all 
energies in the quasi-one-dimensional case, all the states in a 
disordered system are localized. For this reason the trans- 
parency decreases exponentially on increase in the thickness 
L and its average value (a,) is obtained, as shown below, 
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only for values of S which are exponentially large compared 
with L. 

In the quasi-one-dimensional situation the effective de- 
crement of the transparency ( 1.4) 

depends on the relationsip between L and S. In the limiting 
cases this decrement can be expressed in terms of the charac- 
teristics of a single filament i.e., in terms of the decrement of 
the transmission coefficient DL 

=- lim L-' In DL (1.7) 

or in terms of the decrement of the average transmission 
coefficient2 

The decrement 7 has the property of self-averaging4 and is 
related by the expression 

to another self-averaging quantity, very thoroughly investi- 
gated in Refs. 5 and 2, which is the growth increment y+ of a 
wave function with a fixed (at some point) logarithmic deri- 
vative: 

y,=lim (2x)-' ln [q2 (2)  + I  E 1 -'Q" (2) 1. (1.10) 
X* m 

This quantity is an important characteristic of one-dimen- 
sional disordered systems because it is identical with the re- 
ciprocal of the localization radius of a wave function. 

We shall show below [see Eq. (2.15)] that in the case of 
large values of L and S the effective transparency decrement 
of a quasi-one-dimensional layer ye, given by Eq. (1.6) is also 
a self-averaging quantity. The limiting value y, of this quan- 
tity is given by the following relationships only when the 
parameter q is either sufficiently small or sufficiently large3: 

which are identical with 7 and yd, respectively. In the gen- 
eral case of an arbitrary q, the decrement y, satisfies the 
inequality 

and can be found with the aid of Eq. (2.16) which expresses 
this quantity in terms of the probability density of the trans- 
mission coefficient (2.12). In particular, it follows from Eq. 
(2.16) that y, is a monotonically decreasing function of q. 

These properties of the process of passage are discussed 
in detail in 4 2 (subsections 1 and 2), whereas in $ 3  (subsec- 
tions 1 and 2) we shall obtain expansions of y, and in terms 
of the density of scatters for various positions of the energy E 
of the incident particles relative to the spectrum of an infinite 
disordered system with the potential (1.5). In the case when 
E, > E > E,, where E, is the lower boundary of the spectrum 
of the corresponding infinite disordered system, we can ex- 

pect the so-called resonance tunneling.' Intermediate 
asymptotes for (a, ) in the vicinity of local one-center level 
are obtained in Ref. 1. In 4 2.3 we shall give similar asymp- 
totes for the values of E close to E,. However, if E <E,, it 
follows from the classification of Ref. 1 that nonresonance 
tunneling takes place. In this case, because of the strong sub- 
barrier damping, the three-dimensional problem is largely of 
one-dimensional nature and, therefore, it is meaningful to 
calculate the decrement of the average transparency of a 
three-dimensional layer: 

Such a calculation is carried out in $ in 3.3. 
To conclude this section, we shall mention that since 

the problem of the passage of particles across a layer of a 
randomly inhomogeneous meidum is, from the point of view 
of the formalism employed, very close to the corresponding 
wave problem, it follows that although we shall use only the 
quantum-mechanical terminology, all the main ideas and 
conclusions will apply also in the wave case. 

2. STATISTICAL PROPERTIES OF THE TRANSPARENCY 

1. We shall begin with the following simple example, 
already considered in Ref. 2. We shall assume that in a fila- 
ment of length L there are NL randomly distributed point 
scatterers [for these scatterers the potential u(x)  in Eq. (1.5) is 
k$(x)].  The transmission coefficient of one impurity is 

Therefore, in the simplest possible approximation when 
multiple scattering is ignored, the transparency a, (which, 
in the one-dimensional case, is identical with the transmis- 
sion coefficient DL ) is 

Since the probability that NL = N in the one-dimensional 
case should be in the form 

where n ,  is the one-dimensional density of the scatterers, it 
follows that as L-+ w we have N,-+w for most of the config- 
urations of the impurity points. However, this means that for 
almost all the configurations of impurities the transmission 
coefficient DL approaches zero exponentially as L--+w and 
the corresponding logarithmic decrement is a nonrandom 
quantity 

1; =-lim L-' In DL=--n, In D. 
L-rm 

Next, since in this case we have (DL ) = exp[ - n ,L (1 - D )I, 
it follows that 

yo=-- lim L- 'In<D,>=n, ( l -D) .  (2.5) 
L-rm 

The difference between the right-hand side of these two 
asymptotic formulas illustrates the nonself-averaging nature 
of the transparency in the one-dimensional case. 
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The properties of the transparency of a single filament 
demonstrated in the simplest approximation of independent 
scatterers, as described by Eqs. (2.1)-(2.3), are retained also 
in the general case. For example, for any one-dimensional 
random potential with a finite radius of the statistical corre- 
lations in each realization the transparency of a filament de- 
creases exponentially on increase in the filament length and 
the decrement 7 of Eq. (1.7) is an asymptotically valid (i.e., a 
self-averaging) quantity. 

The filament transparency (DL ) averaged over the re- 
alizations of a random potential with a finite correlation ra- 
dius also decreases exponentially on increase in the thickness 
of the layer for any energy of the incident particle.' How- 
ever, the corresponding logarithmic decrement of Eq. (1.8), 
which is always smaller than y,, 

can be calculated only in a few cases.4 For example, in the 
range of energies 

whereB (x) = ( U  (x)U (0)) - (U  ( x ) ) ~  is the correlation func- 
tion of a random potential, it is given by".' 

Since in this region, which is "quasiclassical" for a potential 
in the form of Gaussian white noise,5 it follows from Ref. 2 
that 

then the relationship (2.8) can be rewritten in the form 

Comparing this relationship with the general formula (1.9), 
we can see that in the range (2.7) the logarithmic decrement 
of the average transparency of a filament y, is four times less 
than the transparency decrement of a filament for typical 
realizations 7. 

Another case in which it is possible to indicate a method 
for approximate calcuation of y, is considered in Ref. 1 and 
in $3. It applies to the potential of Eq. (1.5) in the subbarrier 
region k < U, and the calculation is carried out utilizing the 
low density of the scattering centers. 

2. We shall now consider a quasionedimensional layer 
of area S = Mb2. Here the rms deviation 6 from the trans- 
parency of (1.4) considered in the approximation of single 
scattering is-according to Eqs. (2.2) and (2.3): 

6-M-'" exp ['/,n,L (1 -D) 7 ], ilf=erlL. (2.9) 

The small value of this parameter, i.e., the inequality 
q > n , ( I  - D )2, is the condition for the formation of the aver- 
age transparency of a single filament and, consequently, the 
condition that for most realizations we have ye, -- y, in the 
example under discussion. It follows from Eq. (2.9) that 
these conclusions are valid if the number of filaments in a 

layer (and, therefore, it cross-section area) are exponentially 
large compared with its thickness. A "wave field" at the exit 
from such a quasi-one-dimensional layer should be basically 
in the form of a dark background with very rare and bright 
flashes at those points where filaments with representative 
but untypica12 numbers of scatterers are located [in the ex- 
ample described Eqs. (2.2)-(2.3), which is under considera- 
tion here, these numbers are n,L (1 - D)/lln D I and n,L 1. 

On the other hand, if the number of filaments in a layer 
is not exponentially large, then with a probability tending to 
unity we can expect L - '  Ino, to be identical with the loga- 
rithm of each term in the sum (1.4) divided by L, i.e., in this 
case we can expect ye, zjj with the same probability as be- 
fore. 

We shall now analyze ye, of Eq. (1.6) for high values of 
L and arbitrary q in the relationship (1.11) between L and S. 
We shall assume that 

and rewrite Eq. (1.4) in the form 

The random quantities 6; are statistically independent (be- 
cause the configurations of impurities on different filaments 
are independent) and their total probability density p , ( l )  
can be represented in the form 

whereA is the normalization constant. This representation is 
valid for any random potential with a finite correlation radi- 
us when 6 < 7 ,  which can be proved (for example) by the 
method of Ref. 4. It should be noted that in discussing the 
resonance effects (see Ref. 1 and subsection 3 below) we find 
that the main role is played by the configurations character- 
ized by 1, and y - L - '. Therefore, although arepresenta- 
tion of the (2.12) type does apply, this is due to a completely 
different reason than in the6 < 7 case. The function p(l ) is an 
analog of entropy in statistical physics and, like entropy it is 
a convex function of 6, i.e., we have p "  >0. 

For the model of Eqs. (2.1)-(2.3) we have 

In the range of energies defined by the inequalities in Eq. 
(2.7) we find that for any random potential with a finite radi- 
us of the statistical correlations the function p(f) has the 
universal form: 

( P ( E ) = Y / ~ Y ,  E<y, (2.14) 

which can be confirmed using the results of Refs. 6 and 2. 
We shall show that the quantity ye, becomes reliable 

for any fixed value of q and large values of L, i.e., 

and its limiting value y, has the form 

~ p = ? f  min { ( p ( E )  4). (2.16) 
V ( E l 6 P  
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Using the properties of the function q,({ ), we can rewrite the 
above formula as follows: 

where co(q)>O is a solution of the equation p (lo) = q, 
q, = p ({I), andg, isapoint where thefunctionp(6) - 6 hasa 
more minimum, i.e., where q, '(6,) = 1. 

It is clear from Eq. (2.17) that if q is the smallest param- 
eter with the dimensions of the reciprocal length, then 
yq zF. Conversely, if q > q,, then a minimum in Eq. (2.16) 
coincides with a maximum over the whole range 6 ~ 7 ,  i.e., 
with yo. 

In the approximation of single scattering described by 
Eqs. (2.1)-(2.3) the decrements 7 and y, have the form of 
Eqs. (2.4) and (2.5); moreover, according to Eq. (2.13), we 
have q, = n,(l  - D + D In D )  and for q(nl, the quantity 
n , In D is characterized by yq =: y, . 

In the case by described by Eq. (2.14) a minimum in Eq. 
(2.16) is always reached at the edge of the interval, i.e., at the 
point g0(q), and it is of the form 

Here y, approaches a constant value y, = 7/4 when 
q, = p(7) = ?/4, whereas for 947, we have yq z 7. 

The validity of Eqs. (2.15)-(2.17) follows essentially 
from the following simple considerations. Using Eqs. (2.10) 
and (2.1 I), we shall write down ye, in the form 

- 00 

where 

b i  

It is clear that at high values of L  the function q(6)  can be 
replaced with na(6)  smoothed out over any fixed interval a. 
Then, 

It means that if p(6 )<9, then the average value of the func- 
tion n, g ) is exponentially large and its relative fluctuations 
are correspondingly small. In the additional interval where 
p(f ) > q, the average ( m a g  )) is exponentially small. There- 
fore, the integral in Eqs. (2.18) has the asymptotic value 

J ~ x P { L ( s - - ~ ~ ( E )  ) ) d l .  
I~(E)=+ 

and this is clearly equivalent to Eqs (2.15) and (2.16). We 
shall now estimate the order of magnitude of fluctuations of 
ye,. Let us assume that q < q,; we shall postulate that 

i 

N ( t )  = J n ( E ) d l .  
b+* 

e the quantity co is described by the condition 

(N(0)) = 1. It follows from Eqs. (2.12) and (2.19) that this 
definition yieldsq, (6,) = q + O(ln L  / L  ), i.e., in the asympto- 
tic limit it is identical with the above definition q, (6,) = q 
making it more precise for the subsequent calculations. We 
shall use - v /L  to denote the difference between ye, - 7 
and the quantity 

1 h  
e"(n (E)  ) d E )  =q-ko - - lrr - 

L I-h' 

which is asymptotically identical with Eq. (2.17a). Then, us- 
ing as the integration variable the function (N (t )), we shall 
represent q in the following form: 

We shall denote the integrals in the above expressions by J, 
and J,, respectively. We can readily show that if 

N ( )  x ( N ( t z )  > = x ~ > x + ,  

then the probability that in the interval (6, + t,, 6, + t,) 
there are N values of l i ,  i.e., that the function 
N (x,,x2) = N (t,) - N (t,) assumes the value N, is 

( z 2 - x i )  Ne-(xz-x*)/N!.  

The integrals Jl and J2 correspond to the different ranges of( 
and are therefore independent. In the calculation of 
(q) ,  (q)  ', . . . we can average over J, for a fixed value of J2 and 
in the result so obtained we can allow for fluctuations ofJ,. It 
is readily shown that the dispersion is uJ,- 1 and the other 
ofSq is determined by the averaging over J,. The above aver- 
aging procedure rapidly converges in respect of N and, there- 
fore, we can estimate Sq simply by considering the case 
N (0,l) = 1. A random value of J, in terms of the variable6 is 
J, = eLc, where go < {<?. Going back to the variable x, we 
find that 

and similarly that Sq -A - '. Therefore, (q2) z-.U -' and 

This estimates changes in two cases. If q > q,, fluctuations of 
Sy,, are exponentially small and in the simplest case when 
q, = p(F), they are of the order of q S L  - I .  If q S L  - I ,  we 
then find that Sg,, - (Lp "(60))-1'2, i.e., there is a continuous 
transition to the case of a single filament (qL41, M = 1, 
ye, = 7 - f ), when an estimate of this kind is a direct conse- 
quence of Eq. (2.12) for the probability density pL (6). 

3. As shown in Ref. 1, in an analysis of the tunneling it is 
necessary to distinguish two cases: nonresonance and reso- 
nance. The resonance case is encountered when the energy of 
incident particle lies within the spectrum of the correspond- 
ing infinite system, but below themobility edge (E, > E >  Eg) 
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it is then found that at every energy there are low-probability 
configurations for which the transparency is close to unity. 
However, it is these configurations that dominate the contri- 
bution to the average transparency because in the case of 
typical configurations the transparency is extremely low 
and, therefore, the probabilities of resonance configurations 
and their energy widths determine (a, ). 

The vicinity of a one-impurity local level where, on the 
one hand, the resonance effects appear most strongly and, on 
the other, the wave functions corresponding to the reso- 
nance configurations have a clear structure, belongs to this 
range and it is considered in Ref. 1. The configurations in 
question correspond to fairly symmetric distributions of im- 
purities so that the amplitudes of the wave function of a par- 
ticle are identical at the exit and entry to the layer. However, 
the considerations used here can also be applied to other 
parts of a discrete spectrum. 

We have to distinguish here two cases. In the first the 
density of the statesp(E ) is a smooth function in the vicinity 
of the energy under consideration. In this case an expansion 
of the optimal parameter with a resonance level E of width 
(SE )L 5 e - where a2 = U, - E, near the center of the 
layer again gives cr2 - 1. The probability of this even is 

W ( E )  -C ( E )  e-C(E)L, (2.22) 

whereC (E ) = p(E )(SE ), -p(E )e istheconcentrationof 
the resonant clusters. 

Such a situation occurs in the fluctuation region of the 
spectrum. Here, p(E ) obtained in Refs. 8 and 2 has the form 

P ( E )  zexp [--And (E-E,)-d/2], (2.23) 

where d is the dimensionality of space and the factor A is 
expressed in terms of the effective mass of a particle moving 
in an infinite medium where all the scatterers are located at 
the minimum distance a. We find from Eqs. (2.16)-(2.18) 
that the contribution made to (uL ) by the resonance config- 
urations of the fluctuation type is 

The contribution of the other (nonresonance) configurations 
is already a smooth function and, therefore, in the case of a 
low density it can be obtained in the form of a cluster expan- 
sion of its powers (see Ref. 2 and $3). Denoting this contribu- 
tion of a,, , we find that 

where 

( 4  - yo -yo for d=3, 
( d )  - y. -yo for d=l. 

We then find in the (E, L ) plane a line which is defined by 

and which divides in this plane two regions, in one of which 
the average transparency for sufficiently high values ofL has 

the form given by Eq. (2.24), whereas in the other it is given 
by Eq. (2.25) in accordance with the nature of the configura- 
tions (the resonance or nonresonance) that determine (a, ). 
It is clear from Eqs. (2.26), (3.6), and (3.12) that at low con- 
centrations of impurities we find that Eq. (2.19) is valid in the 
case of sufficient thicknesses of the layer if the energy E > Eg 
is fixed, and at energies not too close to E,, it is valid if the 
layer thickness L varies within specified limits. 

The contribution of multiple resonances is found to be 
negligible. In fact, in the case of a chain of N clusters the 
resonance width is, as in Ref. 1, (SE ),,, - e - OL 'N and, in- 
stead of Eq. (2.22), we now have 

The factor pN /N! which is then obtained ensures the small- 
ness of the corresponding contribution compared with that 
already under discussion. 

The second possible case of resonance tunneling occurs 
at those energies E, for which the density of states has a 
sufficiently sharp peak of integrated amplitude C, = C (E,) 
and of width SE,. As in the former case, C, can be regarded 
as the density of the corresponding resonance levels, but the 
value of SE, is now not determined by the length of a fila- 
ment and the number of centers in a resonance chain but by 
the structure of the density of states in the vicinity ofE,. [For 
example, in the case of a peak due to two impurities located 
at the minimum distance a, we have C, - n2a - 3d and ac- 
cording to Ref. 2 SE, is of the order of SE, 
cc exp( - 2k0n - ' Id ,  where n is the impurity concentration 
and k = (E,(.] The condition for the sharpness of a peak is 
the inequality 

where on the right we have-according to Ref. 1-the energy 
width of a resonance at which N is the number of impurities 
in an optimal chain. In the example of a two-center level 
mentioned above, this inequality becomes 

As in the case of Eq. (2.25), variation of L at low values of N 
causes "switching" from one intermediate asymptote to an- 
other. 

The upper limit to the resonance energies in the three- 
dimensional case is located in the vicinity of the mobility 
edge E,, which separates the range of high energies where 
the wave functions extend over the whole crystal, from the 
region below E, where they are localized at impurity atom 
clusters or, more commonly, at some more or less local fluc- 
tuations of the random potential. The localization radius R, 
of the states (correlation radius of the wave function) be- 
comes infinite at E = E, . In accordance with the percolation 
scaling concepts near the mobility edge we have 
R, a (E, - E)  - v ,  where v > 0. On the other hand, it is 
quite natural to assume that the damping length of the inci- 
dent wave in the range E < E, should also be R,. Therefore, 
near E, but in the range E < E,, we have the relationship 
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It follows from similar considerations, at E < E, and for suf- 
ficiently large thicknesses when the diffusion coefficient can 
be used, that 

(oL>a L-I (E-E,) '. (2.28) 

When the impurity concentration is increased, a region of 
delocalized states may appear near the center of the impurity 
energy band formed from the individual impurity levels. The 
boundary of this region in the (n, E )  plane is given by the 
curve n = n, (E ) (see Ref. 2), which also corresponds to 
becoming infinite: 

Rca [nk (E) -n] -"I, v,>O. 

Therefore, formulas analogous to Eqs. (2.27) and (2.28) 
should apply also in this situation, but it is then more natural 
to express them in the form 

LL-' In ( o 3 a  [nk ( E )  -n] "I, 

(oL)a L-'[n-nk(E)I &'. 

3. EXPANSION OF TRANSPARENCY DECREMENTS IN 
POWERS OF THE DENSITY OF SCATTERERS 

(3.3) 
Using the representation (1.10) from Ref. 1, we can readily 
show that if aL, 1, then 
D (u&e-za~. 

L , I), (x) /D,'"= (I-pi)', DL (x,, xZ) lDj0' 
= 4 (1-Y,2e-?alx2-xli ) -2, (3.4) 

wherep, = k,(2a + k,,)- is the "subbarrier" scattering am- 
plitude for one center. Therefore, we finally obtain? 

yD=2utn,p,(2-pi) -n,TS,+ . . . , (3.5) 

The method used to obtain the expansion (3.5) is analo- 
gous to that employed in the derivation of the virial expan- 
sion in statistical physics9; it allows us also to find higher 
terms. This method is equally suitable for the discrete case 

1. We shall consider first a quasione-dimensional sys- when impurities can occupy with a probability c ,  the sites in 

tem. The corresponding three-dimensional formulas are ob- a regular lattice with a period a (and even in a more general 
case when impurities cannot approach one another to dis- tained analogously and will be given in subsection 3. As in 
tances shorter than acertain minimum). In this case the non- 42, we shal assume that all the scatterers are point-like, i.e., 
resonance energies lie below the boundary of the spectrum of we shall take u(x) in Eq. (1.5) in the form u(x) = k,S(x). 
the periodic system in which all the sites are occupied by Since the quasione-dimensional case corresponds to a 
scatterers and the corresponding expansion has the form layer in the form of a bundle of thin filaments with an inde- 

pendent dynamics of particles on each of them, the wave 
function $(r) at r = r, = rj, =, is governed by the coordi- 
nates r ,  ... r, of only those particles which are on a filament 
terminating at the point r, . We shall assume that the impur- 
ities are distributed continuously and homogeneously 
throughout the layer (nonresonance passage is then possible 
if the impurities are repulsive with k, > 0 and E < U,) and we 
shall write down the transparency in the form 

Hence, it follow that i f M = S b  -',I, 

where n, = nb is the average number of scatterers per unit 
length of the filament; DL (x ,,..., x, ) is the transmission coef- 
ficient of a one-dimensional barrier with m impurities at the 
points x,, ... x, . Expanding Eq. (3.2) in powers of n,, taking 
logarithms of the resultant series, and reexpanding again in 
powers of n ,, we obtain 

The additional (compared with the continuous case) term of 
the order of c: appears because two impurities cannot occu- 
py the same point in the lattice. 

We can similarly obtain an expansion in terms of the 
concentration and of the value of 7 from Eq. (1.8) which- 
according to Eq. (2.17)-is a decrement of a, for small areas 
S. We then have to apply the above considerations to the 
expression L -' ln[$2(L ) + aP2f2(L )], which on the 
strength of Eqs. (1.9) and (1.10) is asymptotically identical 
with 7. As a result we obtain:' 

~ = 2 a - n ,  In (l-pl)Z-!-n,Sz+ . . . , (3.7) 

The quantity 7 can be expanded in powers of the density also 
in these cases when the energy of the incident particles lies 
within the spectrum of an infinite disordered system with a 
potential described by Eq. (1.5). In particular, for a contin- 
uous distribution of attractive point scatterers when E < U, 
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(subbarrier resonance region according to the terminology of 
Ref. l), the formula for 7 differs from that given by Eq. (3.7) 
only because in the expression for the coefficient 3, in the 
integrand there should be a logarithm of the modulus since 
in the region under discussion p, = 1 kol ( I  kol - 2a)-' may 
be greater than unity. This expansion becomes meaningless8 
only for Ip, l>l,  i.e., in the direct vicinity of a local level 
(a z lko1/2). The cause of this are resonance effects in the 
passage process, which are discussed in Ref. 1 and in $2.3. 

2. An expansion in powers of the density in the investi- 
gated case of statistically independent point scatterers can 
also be obtained in the suprabarrier region E > Uo. For sim- 
plicity, we shall consider the repulsion case with ko > 0. The 
attraction case corresponds to some modification of the in- 
termediate formulas and to the substitution ko+lk,,l in the 
final results given by Eqs. (3.8) and (3.9). 

It is clear from the meaning of 7(E) that in the range 
E > 0 this quantity represents the real part of the analytic 
continuation of 7(E ) from the subbarrier nonresonance re- 
gion E < 0 (we recall that at this stage we are assuming that 
Uo = 0) and the doubled number of states 2N (E ) is the imagi- 
nary part of the same continuation. In the expansion coeffi- 
cients of Eq. (3.7) such a continuation is made by replacing a 
with - ik, for which p, becomes kd(ko - 2ik ). After this 
substitution and separation of the real and imaginary parts 
in the resultant expressions, we obtain the following formu- 
las: 

n, 4+niZ/kz 
-2 arctg - In 

2k 2 ,  

In the Appendix we shall describe a different metod for ob- 
taining these expansions and enabling definite conclusions 
to be made about the rate and radius of their convergence. 

We note that obtained from Eq. (3.8) is a small quanti- 
ty. However, the cases when 7 is small are the most interest- 
ing. In fact, in such cases the thickness of the layer can be 
very large and the transparency for typical realizations 
exp( - 7L ) need not be very small. The parameter - .  
q = L - ' ln(S/b 2, of Eq. (1.1 1) issmall because the-cross-sec- 
tional area is in reality finite. However, it then follows from 
the general formula (2.17) that ye, is essentially identical 
with 7. 

A question may arise whether it is possible to expand 
the decrement of the average transparency yD (E ) in powers 
of the density in the suprabarrier region. In attempting to 
obtain such an expansion by a method which yields Eq. (3.5), 
we find that integrals of the same type as in the above for- 
mula appear in the expression for the coefficient S2. How- 
ever, if E > 0, these integrals diverge because instead of the 
damped exponential functions, we now have oscillatory 
ones. Nor can such an expansion cannot be obtained by the 

analytic continuation method because y, (E ) is determined 
by the mean-square value of the modulus of the wave func- 
tion and, therefore, does not have such good analytic proper- 
ties as jj(E ). The reason for these formal difficulties is the 
possibility of the appearance of characteristic resonance si- 
tuations' in the case when the energy of the incident particles 
lies within the spectrum of an infinite disordered system 
with a potential given by Eq. (1.5), so that the dependence of 
7(E ) on the density of scatterers in the E > 0 range is not 
generally analytic. 

3. We shall now consider the three-dimensional case 
and assume, as before, that impurities are point-like. It is 
known that in the three-dimensional case this means that 
they are attractive and the amplitude u is related to the radi- 
us ro by the relationship u cc rOp2, where ro is the smallest 
parameter with the dimensions of length in our problem. In 
view of the attractive nature of impurities, a nonresonance 
range of energies exists (as in the one-dimensional case) only 
when impurities from a lattice gas (in the more general case, 
they cannot approach each other to distances smaller than a 
certain fixed value). Following essentially the same proce- 
dure as in the derivation of Eq. (3.3), we find that an expan- 
sion of the damping decrement of the average transparency 
is 

where c is the impurity concentration. . . 

As shown in Ref. 1, in calculating the quantities a, 
(r,, ..., r,, ) in the case when a L )  1, we can ignore the waves 
scattered from the boundaries x = 0 and L on the internal 
part of the barrier, i.e., we may assume that the boundaries of 
a homogeneous barrier are moved away from the layer to 
infinite distances on each side. Bearing this point in mind 
[see Eqs. (4.4) and (4.6) in Ref. 11, we find that the coefficient 
of c in Eq. (10) is 

wherep is the amplitude of subbarrier scattering by one cen- 
ter in the three-dimensional case, introduced in Ref. 1. This 
much simpler (than in the one-dimensional case) expression 
is obtained here because the term of the second power in p ,  
containing the sum over the layer of h2(r), where 
h (r) = r- 'e - O r  is the Green function of the three-dimen- 
sional Schrodinger equation for U (r) = 0 and E = - a2, is 
found-because of the more rapid decay of this function in the 
three-dimensional case, i.e., because we now have r- 'ear in- 
stead ofe " l x l  -to be of the order of ln (aL ) and not aL.  For 
the same reason the first of the terms of the order ofc2 in Eq. 
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(3.10) due to the lattice nature of the distribution of impuri- 
ties is also of the order of In (aL ). Therefore, in the three- 
dimensional case the corrections to the "virial" expansion of 
y, in powers of c are of the order of (aL ) - '  ln(aL ), and not of 
(aL )-' as in the one-dimensional case. A calculation of the 
coefficients of c2 requires very lengthy although basically 
simple operations, and we shall give directly the final expres- 
sion for 4, : 

, , 

p2 S, = - [1-4paza3 
h2(r) 

a3as 
r e 0  

1 --p2h2 ( r )  

(both sums in the brackets apply to the whole infinite lattice). 
It follows from the above conclusion and the resultant 

formulas that an expansion of the decrement of the average 
transparency y, in powers of the concentration is applicable 
in the subbarrier range of energies. Consequently, the con- 
vergence radius of the series (3.5), (3.6), and (3.12) on ap- 
proach of the energy to the actual boundary of the spectrum 
Eg . However, the expansion obtained can also be used in the 
case when E > Eg , provided only that E - Eg (E, . In fact, as 
shown in $2 (see also Ref. 2), the spectrum in this range of 
energies consists of fluctuation states which are realized at 
clusters of impurities of sufficiently large size. Therefore, at 
these energies we obtain large values of the coefficients of the 
very high powers of the concentration, which are of the or- 
der of the number of impurities in a fluctuation cluster 
amounting to [a(E - Eg)"*] - a .  The appearance of these 
terms is the result of activation of the mechanism of reso- 
nance tunneling at fluctuation levels discussed in Ref. 1 and 
in $2. Hence, it is clear that in the part of the expansion in 
terms of the concentrtaion which corresponds to the small 
numbers of impurities represents the contribution of nonre- 
sonance configurations and can therefore be used as an ap- 
proximate expression for y, on condition that the right- 
hand side of Eq. (2.2 1) is less than the left-hand side. Using a 
more mathematical terminology, this can be formulated as 
the statement that under these conditions the cluster expan- 
sion becomes an asymptotic series for y,. 

APPENDIX 

We shall obtain an expansion of 7 in powers of the con- 
centration using a formula which follows from Eq. (1.9) and 
from Refs. 5 and 2: 

Here, z is the logarithmic derivative of the wave function and 
its probability density p(z) satisfies, according to Ref. 11, the 
following equation (when U, = 0): 

( z2+k2)p(z )  =n, p ( z r )  dz1- t iV(E) ,  
2-ko  

where N (E ) is the number of states of energy not exceeding E 

per unit length of the system. If in this equation we regard 
the integral term as a perturbation, sve find that 

The functions f, (< ) then satisfy the following recurrence 
relationships: 

which can be used to show that for each fixed energy E the 
series in Eqs. (A.2) and (A.3) converge for all values of n ,/k 
at a rate no less than that for an exponential function, i.e., 
these series are complete analytic functions of the parameter 
n,/k. It follows that N -'(E) is a function of the same kind. 
As for 7(E ) and N (E ), the series for these quantities are ob- 
tained by reexpression of the fractionsin Eqs. (A.2) and (A.3) 
in powers of n ,/k, and their radius of convergence is equal to 
the distance to the nearest zero of the denominator, which- 
because the coefficients A ,  are positive-is not located on the 
positive semiaxis of the complex plane of the parameter n,/ 
k. For the same reason both T(E ) and N (E ) can be expanded 
as series in the vicinity of any point of this semiaxis. 

In the limit E-0 the convergence of the series for 7 
deteriorates. This is due to two factors: firstly, the parameter 
of the expansion is not the density n , but the ratio n ,/k and, 
secondly, the coefficients B, increase [for example, 
B, - ln(k,,/k ) as k-01. Therefore, we can expect the appear- 
ance of a singularity in respect of the density for the decre- 
ment T(E)  as E+O. This can be demonstrated by considering 
a somewhat simpler case in which the amplitudes of the scat- 
terers are also random independent quantities with the prob- 
ability densities k,- 'exp( - k /k,). In this example, p(z) for 
E = 0 is found e~plicitly'~: 

p ( z )  =Cz-'O (2)  esp  ( -z;k , -nl /z) ,  

where Cis the normalization constant. Now using Eq. (A. 1) 
to calculate F(O), we find that if n , (k, then 

"We shall consider only a one-particle problem in which the particles 
experience only elastic collisions with randomly distributed force 
centers. 

"Since we are interested in quantities which decrease exponentially on 
increase in the layer thickness, the symbol lim should not be understood 

L - m  

literally. In reality, we have to calculate the first terms of the asymptote 
(which are generally intermediate) with respect to L for the decrements 
in question. 

"The corresponding inequalities will be made clear later. 
4'The inequality (2.6) follows directly from the ine uality between the 

arithmetic and geometric mean values: (eC)>e(<?. 
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"For a potential of the type (1.5) this expression is equal to the reflection 
coefficient of one impurity calculated in the Born approximation and 
multiplied by n,/2. 

@In Ref. 1 the coefficient S, is given incorrectly with a multiplier 1/2. 
"In Ref. 1 the value of the coefficient S, is given incorrectly. 
''The same conclusions are obtained by employing the approach of Ref. 
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