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The electroabsorption method is used to investigate narrow lines on the edge and in the interior of 
the photoabsorption band of nickel-doped ZnSe. These lines are interpreted as the first experi- 
mental proof of the amorphous character of exciton capture by a transition-metal impurity: the 
lines on the photoabsorption edge correspond to capture of an electron by a d-shell and of a hole 
by a hydrogenlike orbit ("acceptor" exciton), while capture of a line in the interior of the photoab- 
sorption band corresponds to formation of a "donor" exciton with a hole in the d shell. A theory 
for amphoteric bound excitons is developed and the effect of giant enhancement of the oscillator 
strength following optical excitation of a donor exciton is explained. 

PACS numbers: 71.35. + z,71 .55.Ht978.50.Ge 

INTRODUCTION 

It  is known that the optical spectra of excitons bound to 
nickel impurities in the compounds ZnSe, ZnS, and CdS do 
not fit the usual "neutral donor plus hole" or "neutral accep- 
tor plus electron" picture that dates back to Lampert's pa- 
per.' The impurity atom of the transition metal Me(3d "4sZ), 
replaces as a rule the atom A in the A2B, isoelectronically, 
i.e., it turns out to be the neutral center Me2 + (3d ") in the 
ground state. The optical spectra of excitons bound to the 
impurity Ni(3d ') in the aforementioned compoundsZd can 
be explained with the aid of the following mechanism for the 
formation of a bound exciton: 

ds+fio= [dsh] . (1) 

This means that the light causes one of the valence electrons 
to be captured in the d-shell of the impurity, while the hole 
produced in the valence band is bound on a hydrogenlike 
large-radius orbit via the Kohn-Luttinger mechanism (the 
square brackets in (1) symbolize this bond). The free-exciton 
capture corresponding to this mechanism is described as fol- 
lows: 

d8+ [eh] = [dsh] +ho. (2) . - -  \ ,  

The energies of the optical transitions corresponding to the 
reactions (1) ad (2) are respectively 

Here E~ - is the energy of the level corresponding to the sin- 
gly charged state of the center Me+, reckoned from the edge 
of the valence band, E, is the binding energy of the hole on 
the hydrogenlike orbit, E, is the binding energy of the free 
exciton. Thus, a bound exciton should produce in the optical 
spectra a narrow line in front of the edge of the impurity 
absorption band corresponding to phdtoionization of the 
holes in the valence band d ' + fiw = d + h. According to 
the experimental data, the energy of the absorption edge is 
1.849 eV.5 

In this paper we investigate theoretically and experi- 
mentally an alternate mechanism of formation of a bound 

exciton, namely capture of the hole by the d shell and of the 
electron by a hydrogenlike orbit, and discuss the differences 
between the optical spectra of the two types of excited states 
of 3d impurities. The analog of the reaction (1) takes in this 
case the form 

d8+fio= [d'e], E,,,=E,-- [E (d8)  -E (d l ) ]  - E ~ = E C - E ~ ~ - E ~  (3) 

(E, is the binding energy of the electron on the hydrogenlike 
level, E~ is the energy of the neutral impurity center in the 
forbidden band); the exciton constitutes so to speak an excit- 
ed state of an impurity ion one of whose 3d electrons of the 
shell is taken out to an "outer orbit" of large radius. Accord- 
ingly, the capture of the free exciton via this mechanism is 
described by the reaction 

d8+ [eh] = [d7e] E(,,=eio+~,-~,,. (4) 

This process is accompanied by emission of a photon. 
The two types of bound excitons can be called "accep- 

tor" [reactions (1) and (2)] and "donor" [reactions (3) and 
(4)], in accord with the manner in which the carriers are 
trapped on the hydrogenlike levels. It can be seen from (1) 
and (2) that an exciton can be bound via the acceptor mecha- 
nism only by impurities that form charged states of Me+ 
with energy E~ - in the forbidden band. The existence of such 
levels is by far not a general rule. At the same time, for a 
donor exciton to be produced, there are no restrictions of 
this type, inasmuch as any impurity center can certainly be 
photoionized (d "-4 " - ' + e). 

Donor acceptors are close in their nature to x-ray core 
excitons (see, e.g., Ref. 7). These types of excitations of d 
atoms in crystals differ to the extent that the wave functions 
of the atomic shell are distorted by the crystalline surround- 
ing. These distortions play practically no role in the case of 
x-ray excitation of a hole in the inner shell, but can exert a 
rather substantial effect on optical transitions, which affect 
the last shell of the 3d atoms placed in a semiconductor ma- 
trix and, as will be shown below, influence decisively its 
properties. 

In the next section we report the results of experimental 
investigations of electroabsorption spectra in ZnSe(Ni) .Th- 

13=4 Sov. Phys. JETP 56 (6), December 1982 0038-5646/82/121354-08$04.00 @ 1983 American !nstitute of Physics 1354 



ese results, in our opinion, can be interpreted as evidence in 
favor of the existence of donor excitons in this system. 

ELECTROABSORPTION SPECTRA IN ZnSe<Ni) 

Very narrow peaks at an optical photon energy - 2.64 
eV were observeds by the electroabsorption method in ZnSe 
doped with nickel. The general structure of the levels of the 
charged state of the impurity Ni+(d 9), as determined by opti- 
cal mea~urements,~.' is shown in Fig. 1. It can be seen that 
the newly observed lines cannot be regarded as transitions 
from states near the top of the valence band into the only 
excited stated possessed by the ion. To assess the possibility 
of an alternate explanation, it was necessary to carry out a 
more detailed comparison of the electroabsorption spectra 
on the edge of the photoionization band with &I - 1.82 eV 
and in its depth (&I - 2.64 eV). 

The electroabsorption spectra were measured on 
ZnSe(Ni) crystals with density 5.4.1016 - 5.4.10'7 ~ r n - ~  at 
T = 4.2 K. For measurements near the edge of the photoion- 
ization band, samples were prepared with thickness 2-8 mm, 
and for the measurements in the interior of the photoioniza- 
tion band the thickness was 150-200pm. An electric field in 
the form I: = F,cos R t  was varied in the range 5-40 kV/ 
cm, and the alternating signal was registered at the frequen- 
cy 20.  

Figures 2 and 3 show the spectra of the amplitude of the 
second harmonic of the electroabsorption, a,, for ZnSe(Ni) 
in the region of the photoionization band (1.82 eV) and in the 
interior of this band (2.64 eV). Together with the a, spec- 
trum in the 1.82 eV region, the figures show also the absorp- 
tion spectrum from Ref. 5, while the arrows indicate the 
positions of the absorption lines observed in Ref. 2. The no- 
phonon line appears in the absorption spectrum at 1.822 eV 
(Ref. 5), and the corresponding singularity in the electroab- 
sorption spectrum consists of approximately equal positive 
and negative peaks, which is evidence, in accordance with 
the phenomenological approach,9 of a shift of the absorption 
line by the electric field. In this case the position of the ab- 
sorption line should coincide with the null point in the spec- 

FIG. 1. Energy levels for ZnSe(Ni). The experimentally k n o ~ n ' . ~ . ~  ener- 
gy intervals are indicated; the arrows mark single-electron transitions cor- 
responding to reactions (1 )  and (3). Also shown are the multielectron terms 
corresponding to the initial and final states for these reactions. 

FIG. 2. Spectral dependence of the amplitude of the second harmonic of 
the electroabsorption, a,, in the region of the photoabsorption edge of 
ZnSe(Ni). F, = 25 kV/cm, cNi = 5.4X lo1' cm-', T = 4.2 K. The 
dashed line shows the absorption spectrum obtained in Ref. 5, the arrows 
indicate the absorption lines observed in Ref. 2. 

tral dependence of a,, something definitely observed in our 
experiment. 

At shorter wavelengths, at energies separated from the 
energy position of the no-phonon line by a value equal to the 
LO oscillation (3 1.6 meV), the electroabsorption spectrum 
a, has singularities that duplicate exactly in shape the peaks 
near 1.822 eV. Similar singularities appear also at an energy 
that is located at a distance of two LO oscillations and are the 
second phonon replica of the leading line. In addition to 
these replicas, the spectral dependence of a, has also other 
peaks with a period 3 1.6 meV. The absorption spectrum giv- 
en in Ref. 5 does not show the singularities corresponding to 
them, although in Ref. 2 one of these peaks was apparently 
registered. In addition, in the electroabsorption spectra ob- 
tained by us there are two distinct and two weak negative 
peaks, as well as a very intense peak just barely to the left of 
the first LO replica. This peak is separated from the leading 
line by an energy 26 meV, and is probably its TO replica (the 

FIG. 3. Spectral dependence of the amplitude of the second harmonic of 
the electroabsorption, a,, in the interior of the photoabsorption band of 
ZnSe(Ni) kV/cm, c,, = 5 . 4 ~  10'' ~ m - ~ ,  T = 4.2 K. 
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TO-phonon energy is 25.6 meV). The other negative peaks 
are separated from the leading line by the following energies: 
the strong ones by 14.4 meV and 21 meV, and the weak ones 
by 12 and 23 meV. These energy intervals are in principle 
comparable with the energies of the acoustic oscillations 
measured from the absorptions and luminescence spectra in 
Refs. 10-12 and calculated in Ref. 13. One cannot exclude, 
however, the possibility that these peaks are due to other 
energy states of the bound exciton itself. 

In the 2.64 eV region, the a, spectrum has a different 
structure. The leading line consists of two positive peaks and 
of a deep negative peak between them. Such a shape of the 
electroabsorption spectrum is evidence of broadening of the 
absorption line in the electric field: and its position is deter- 
mined by the energy of the central minimum (it should be 
noted here that no lines were observed in the absorption 
spectrum in this region). The subsequent weak negative peak 
and two weak positive peaks are shifted by 7.5, 12, and 17.5 
meV towards higher energies and are apparently acoustic 
replicas of the leading line. The intense negative peak with 
shift by 23.5 meV in energy is close to the TA p h o n ~ n . ' ~ , ' ~  
The negative peak 33 meV away from the leading line, judg- 
ing from all the foregoing, is its first TO-phonon replica. The 
structure of all the succeeding intense peaks duplicates phy- 
sically the structure of the leading line. This demonstrates 
indirectly that they all are phonon replicas of the first line. 
Nonetheless, the situation in this region of the electroab- 
sorption spectrum is less clear than at the photoabsorption 
edge. 

The most reliable facts obtained as a result of measure- 
ments of the a, spectra in ZnSe(Ni) are the following: 

1) The amplitudes of the a, peaks in the interior of the 
photoabsorption band exceed the amplitudes of the peaks at 
the edge of this band by approximately 1-1.5 orders of mag- 
nitude. 

2) The distinctive form of the leading line in the elec- 
troabsorption spectrum indicates that it is shifted by the 
electric field on the edge of the photoabsorption band and 
broadens in the interior of the photoabsorption band. 

3) The structure of the peaks of high energies duplicates 
the structure of the leading line in all regions of the spec- 
trum. 

4) The amplitudes of the peaks of the LO phonon repli- 
cas is larger by 2.5 times than the amplitude of the peaks of 
the leading line on the edge of the photoabsorption band and 
are approximately equal to it in the interior of the this band. 

5) The widths of the electroabsorption peaks in the inte- 
rior of the photoabsorption bands are somewhat smaller 
than on its edge. 

We assume that the different character of the spectra on 
the edge and in the interior of the photoabsorption band is 
due to the fact that in our experiment we observed two differ- 
ent types of exciton acceptor in the former case and donor in 
the latter case. To determine the nature of those differences 
it is necessary to consider the selection rules and calculate 
the oscillator strengths for two types of optical transitions. 
This, in turn, calls for knowledge of the wave functions of the 
initial and final states in reactions (1)-(4), which we now pro- 
ceed to calculate. 

WAVE FUNCTIONS OF DONOR AND ACCEPTOR EXClTONS 

From the statements made in the introduction it is clear 
that excitons bound to transition-metal impurities differ 
from ordinary bound excitons primarily in that the packet 
made up of the Bloch waves of the conduction band or the 
valence band (electron or hole on a hydrogenlike orbit) is 
bound with a charged center having its own structure-an 
unfilled d shell with nonzero spin and orbital momenta. 
Therefore the problem of constructing the wave functions of 
such excitons cells for unification of the premises of the 
Kohn-Luttinger effective mass theory (EMT) and the mul- 
tielectron theory of impurity 3d centers. 

It must first be recalled how the multielectron wave 
function is constructed for the 3d shell of a transition-metal 
atom in a semiconductor matrix. It is shown in Ref. 14 that 
such a wave function can be constructed in accordance with 
the usual prescriptions of the crystal-field theory, but the 
initial single-electron Hartree basis must be chosen to be the 
functions 

Herep, are linear combinations of atomic 3d functions that 
transform in accordance with the linep of the representation 
y of the point group of the crystal, and are contained in the 
usual crystal-field theory (y = t,, e). The second term in the 
square bracket describes the distortion of the initial wave 
function, due to the admixture of bloch states p,, from dif- 
ferent bands a of the superconductor. The hybridization ma- 
trix element contains the crystal field 

Uf (r) = V (r-R,,) 

(substitutional impurities are considered). Hybridization 
with the band states renormalizes also the energy level E, of 
the electron in the crystal field: the true single-electron level 
E,,, is obtained from the equation 

In the situation of interest to us the forbidden band con- 
tains single-electron Hartree levels E~ ,  both for the ion 2 " 
and for the ion 2 "+ ' (the tilde indicates that the "pseudo- 
ion" states are constructed out of "swelling" wave functions 
of the type (5)). As to the level E, for the ion 2 " - ', it can be 
assumed that in the semiconductor ZnSe with rather narrow 
upper valence band E,, it turns out to be located in the broad 
gap betwen the bands E,, and E,,, being pushed out there by 
the hybridization interaction (see (6)) and lands thus in the 
region of the discrete spectrum of the crystal (Fig. 1). Its 
energy splitting is determined in this case mainly by the usu- 
al crystal field U', and the contribution of the hybridization 
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to $,p- and .ciZ will be small compared with the configura- 
tions d " and d " + '. 

Multielectron wave functions for the configuration 2 " 
and 2 "*'  are constructed in accordance with the usual 
scheme of the strong crystal field out of the cubic harmonics 
of 2 " and 2 " * ' (5) with the aid of Clebsch-Gordan coeffi- 
cients for point groups and the Racah fractional-parentage 
coefficients: 

(we disregard for the time being the spin-orbit interaction). 
Accordingly, the multielectron energies for the ions 2 "  and 
2 " * ' are obtained from the Hartree energies E (i,"~" - ") 
and E ( t , m ' ~ n  * I - mp ) with allowance for the nonspherical 

part of the Coulomb interaction and exchange (which are 
described by the known Racah parameters A, B, and C)." In 
this case the crystal-field parameter 1 0 ~ ~  contains besides 
the usual contribution also the hybridization renormaliza- 
tionI6 defined by Eq. (6). 

The bound exciton is in essence an excited state of the 
ion 2 ", in which either an electron was transferred to an 
outer hydrogenlike orbit (donor exciton [ a  "el), or a Cou- 
lomb hole of Bloch waves of the valence band is produced 
near the charged ions (acceptor exciton [ a  " + ' h  I). To find 
its eigenfunctions and eigenenergies it is therefore necessary 
to go through a procedure similar to that described above. 
We shall demonstrate how this is done using the simpler 
example of a donor exciton. In contrast to the ground state 
(7), in this case there are n - 1 equivalent electrons making 
up a 2 " - ', configuration, to which is added one weakly lo- 
calized electron on an outer orbit. To construct the correct 
n-electron wave function one can therefore use the frac- 
tional-parentage scheme 

The indices A and A ' denote here the aggregate of the quan- 
tum numbers for the configurations 2 " - 'e and 2 " - ' re- 
spectively, 6 is the wave function of the "hydrogenlike" 
electron, C j  ., are Clebsch-Gordan coefficients that reduce 
the direct product of the representations ofJhe point group 
A ' andA and add up their spin vectors, and A is the antisym- 
metrization operator of the electron coordinates. The frac- 
tional-parentage scheme is constructed for a fixed staten ' of 
the 2 " - ' ion (as a rule, the ground state shown in Fig. 1 if 
there are no physical reasons for assuming that the creation 
or decay of the exciton is accompanied by excitation of inner 
electrons). 

The wave function $: is calculated in the central-field 
approximation, the Hartree potential of which has the usual 
form of the effective-mass theory: 

V H  (r) =.-e2/&rf V e e  (r) ,  (9) 
i.e., it consists of the Coulomb substitution potential of the - 
d, -, ion and corrections for the fact that the charge is not 
pointlike. These corrections are substantial only if the ion 

radius r, is comparable with the radius of the orbit r,  of the 
donor electron. In the case of the ion 2 " - ', as already men- 
tioned, they can apparently be neglected. The solution of the 
problem is then well known and is of the form 

u, (r) is the Bloch amplitude at the bottom of the conduction 
band, and A , ,  is the hydrogenlike envelope. The energy of 
the exciton in the Hartree approximation is 

( " )  EY; =Eat (2"--') + e , - e ,  , (11) 
where ~ ( , e )  is the Coulomb level of a shallow donor. 
Allowance for the noncentral Coulomb field and for the ex- 
change interaction reduces the wave function to the form (8) 
and splits the terms E F) in accordance with the expansion of 
the direct product A = A  ' x A  into irreducible representa- 
tions. In the concrete case of the Ni3+(d ') ion we have for the 
ground state of the electron on a hydrogenlike orbit 
A ' = 4A2, R = ,A1. If the spin-orbit interaction in the d shell 
is less than the Coulomb and exchange interactions between an - '  and e, the angular momenta add up in accordance with 

the L S  scheme: 

(the notation in the 3rsymbol for the point group T, is taken 
in accordance with Ref. 17). As a result, the quantum 
numbers A = I'MSM, correspond to two exciton levels 
* 'A2. Allowance for spin-orbit interaction leads to split- 

ting of the quintet and to a shift of the triplet: 

'A2+E+Tl,  3A2-+Tz. 

The wave function of the acceptor exciton is sought in 
the form 

The indices A ' and A correspond here respectively to the 
configurations 2 " + ', 2 " + '6; $: is the wave function of the 
hole, i.e., a superposition of Slater determinants for the va- 
lence band without one column that corresponds to the coor- 
dinate r, + , . In the case of nickel it is convenient to go over 
to hole notation and in the d shell we have (2 9+d *): 

In the case of an acceptor exciton allowance for the 
spin-orbit interaction becomes already of fundamental irn- 
portance, at least as applied to $:, since the hole binding 
energy is E : ) ~ A ,  where A  is the Kane parameter of the spin- 
orbit interaction at the center of the Brillouin zone. Chang- 
ing over to the effective-mass theory for holes, we have (see, 
e.g., Refs. 18 and 19) 

Here up, , are the components of the Bloch amplitude at the 
top of the valence band (y = T,), A $p are envelopes. The 
wave function of the ground state of the acceptor takes in the 
spherical approximati~n '~. '~ the form 
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h 
*s"/, (r) = up (r) AS"/? (r), 

A912 ( 4  = Ro (r) 1 0 ' 1 2  3/2 F z )  + R2 (1.1 1 2 3/2 '12 F,), 

I I"/, F F,) 
(15) 

The 3j symbols correspond here to vector addition of the 
angular momentum I and of the effective spin j = 3/2 to 
form the total angular momentum F = 3/2 and up (r) is the 
radial component of the Bloch amplitude. The functions 
R,(r) are determined by a system of two differential equa- 
tions and can be obtained by a ~ariat ional '~ or by a numeri- 
calZO method. Allowance for the cubic terms in the EMT 
transforms the representation FF, into r8M. 

The influence of the spin-orbit interaction on the state 
of the "core" is much weaker, although it manifests itself in 
several places: in particular, in the single-electron function 
(5) it changes all the components of both terms in the square 
bracket. This question will be considered in greater detail 
separately, but for our present purposes it suffices to note 
that the ground-state term d '(t,) splits, when account of Vso 
is taken, into r, + r , ,  so that among the states (13) that 
transform in accordance with the irreducible representa- 
tions contained in r8 X r 7  and r, x r , ,  there are terms with 
arbitrary symmetry from A, to T,. 

SELECTION RULES AND PROBABILITIES OF OPTICAL 
TRANSITIONS 

The selection rules for optical transitions with partici- 
pation of bound excitons are dictated by the configurational 
quantum numbers A (2 "), A '(2 " - 'e) and A '(2 " + 'h  ), but 
the oscillator strengths are determined by the single-electron 
matrix elements, so the usual spectroscopic treatment is in- 
sufficient, and to obtain complete information it is necessary 
to calculate in explicit form the reduced matrix elements of 
the dipole operator. 

We begin with calculation of the probability of the tran- 
sition (3) with excitation of a donor exciton. If we disregard 
the fine structure of the spectrum, which is due to Vso, we 
have only one allowed transition 3 ~ , ( 2  8)-+3~2(2 7e) for the 
excitation of the lower Lyman state of the bound exciton. We 
note that the fractional-parentage coefficients that connect 
the configuration 4A2(t :e4) with the states A (t ;"e8 - ") im- 
pose very stringent restrictions on the possible reaction 
channels: e.g., transition with excitation of a 3A, exciton is 
possible only from the ground state of the ion 2 '. 

We reduce the matrix element of the dipole transition 
operator 5 to a single-particle reduced matrix element, us- 
ing the fact that for the exciton wave function !? (2 " - le) the 
fractional-parentage scheme (8) is valid. Leaving out the spin 
quantum numbers with respect to which the transition is 
diagonal, we have 

Here r "M" is the representation with respect to which the 

term of the configuration d " - ' is transformed (in this case 
this is 4A,(t :e4)), ysps are the indices of the representation il 
for the donor exciton (y, = A,), [ r  ] is the dimensionality of 
the representation r. The fractional-parentage coefficient 
G::;[$; = 1 (see Ref. 17, Appendix 5). Using the Wigner- 
Eckart theorem and summing over the intermediate indices 
M "pp,, we obtain 

(d", r M l i 1 6 " - ~ e ,  rrM')=[r] [rf] (-l)Tl+r+r' 

where the curly brackets denote the 6-coefficient. 
It  is known that the state 3 ~ , ( 2  ') in the field of a crystal 

of a Coulomb potential corresponds to the mixed configura- 
tion 5-'l2(2t :e4 - t 5e3), but after the integration in (16) only 
the first term survives,,so that y = T,. Although formally 
the selection rules for the symmetry allow the dipole transi- 
tion T2+A1, it is important in our case that the actually 
corresponding matrix element differs from zero only by vir- 
tue of the admixture, to the d states with I = 2, of Bloch p- 
waves of different parity (cf. Ref. 16), ie., owing to the pres- 
ence of the "tail" $, in (5). To calculate the reduced matrix it 
is convenient to expand the functions $, (r) and y,(r) in the 
Kohn-Luttinger basis X, : 

$b.,u(r) = z ~ ~ 3 t ~ ~ ( r ) ,  $ , 8 . 8  (r) =C A::"' xkc(r), 
h.3 k 

x k a  (r) =N-"'uOo (r) exp (-ikr) . 
(18) 

The matrix element of the gradient operator then takes the 
form 

(A,I VIT2M)= C F ~ ~ A . . ( O ~ I  V-iklOa). (19) 
h.3 

The wave function of the donor electron is well localized in 
k-space and is "tied" to the point r, . For wave functions of a 
deep level, the one-band approximation is generally speak- 
ing incorrect but, as already noted by Keldy~h,~ '  their local- 
ization in j-space is preserved to a considerable degree (if 
there are no special reasons connected with symmetry.,,), 
and in convolutions of the type (1 8) the use of the approxima- 
tions of the k-p theory is perfectly permissible. Then 

Fa (r) and A, (r) are the envelopes for the functions $, , , and 
t+bGPs. As shown in Ref. 23, the radial part of the envelope for 
the function $, can be approximately written in the form 

Ma' 
~ a ( r ) = ( ~ + ~ ~ . .  f" ,, exp ( - r xar) I 

Here&,, is the energy of the deep level for the initial state 2 ' 
of the reaction (3). 

Assuming that the spectrum in the interior of the pho- 
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toabsorption band is connected with a donor exciton, we 
must regard the level E , ,  as quite shallow (E,, - E, ~ 0 . 1 4  
eV). In the sum over a in (20) we can then leave only the 
valence bands. As a result 

Here P = m,-'@(S I Vz JZ ) is a known matrix element that 
determines the Kane spectrum of the semiconductors. 

Finally, for the transition probability we have 

The transition frequency is determined by the energy differ- 
ence (4). 

The procedure for calculating the probability of the op- 
tical transitions with excitation of an acceptor exciton with 
wave function (13), (15) is somewhat more cumbersome be- 
cause of the spinor character of the basis functions and the 
abundant fine structure of the final state, due to the spin- 
orbit interaction and exchange in the L? *h pair. Recognizing 
that in the experimental electroabsorption spectrum (Fig. 2) 
this structure is apparently not resolved, we estimate, for a 
qualitative comparison of the spectra of the two types, the 
transition probability in "integral" fashion, taking the wave 
functions of the initial and final states simply in the Hartree 
approximation. In this case in the state L? *2(L?8), which as 
already mentioned is a superposition of functions of the type 
t : and t,e, it is necessary to retain only the configuration t $, 
just as in the case of a donor exciton, since in the final state 
the d-hole has the symmetry t,. 

To estimate the reduced matrix element we use the same 
approximation as in the case of the donor exciton [see Eqs. 
(20)-(22)]. It  must be remembered here, however, that in this 
case the kernel $d of the function (5) also contributes to the 
optical matrix element, and furthermore, the singly charged 
level E,,, lies much deeper in the forbidden band than the 
neutral E , ~ ,  therefore the wave function of the tail $, is 
formed both by the valence bands and by the conduction 
band. 

As a result we obtain 

(hhll V II T,) = (h,,Il V 114 + (Ah11 V 11 b )  , 

The matrix element P, was determined in analogy with the 
Kane parameter P, but its brackets contain in place of the 
Bloch amplitudes u , ,  the envelopes of the impurity wave 
functions. For the transition probability we have an expres- 
sion similar to (23), in which the irreducible matrix element 
and the frequency of the light are determined by Eqs. (24) 
and (l'), respectively. 

DISCUSSION OF RESULTS 

The theory constructed in the preceding section for do- 
nor and acceptor excitons enables us to analyze the elec- 
troabsorption spectra shown in Figs. 2 and 3, and argue that 
the second of them corresponds to optical transitions with 
excitation of donor excitons. It  was already stated above that 
the position of the leading electroabsorption line in the inte- 
rior of the photoabsorption spectrum (liw = 2.64 eV) cannot 
be ascribed to a transition into an excited state of an exciton 
[d 9 h ] ,  since this assumption does not fit the well known 
structure d the energy levels of the ion d (see Fig. 1). Fur- 
thermore, a transition into the excited state should give 
braoder lines in the spectrum than a transition to the ground 
state, whereas in experiment the picture observed is re- 
versed. If, however, we assume that the 2.64-eV line corre- 
sponds to the transition 2 ' 4 [ d  7e], then the level turns 
out to be much shallower than the level E,, : E,,, - E ,  ~ 0 . 1 4  
eV, E , , ~  - E, = 1.85 eV. This circumstance explains the most 
striking difference between the electroabsorption spectra on 
the edge and in the interior of the photoabsorption band- 
giant increase of the amplitude of the peaks in second case 
compared with the first. 

It is known that this enhancement is observed in the 
case of transitions with participation of bound excitons com- 
pared with free ones. Rashba and Gurgenishvili4 attributed 
this fact to the greater smearing of the envelope for the 
bound exciton, which increases the amplitude of the interac- 
tion of the exciton with the light field (the "antenna effect"). 
A peculiar antenna effect acts also in our case, but the inter- 
action with the electromagnetic field involves not only weak- 
ly localized wave functions of donor and acceptor electrons 
on the outer shells, but also the swelling shells of the impuri- 
ty core. Indeed, the values of the reduced matrix elements in 
(23) for the transition probability are determined principally 
by the degree of overlap of the wave function of the electrons 
in the d shell and on the hydrogenlike orbit, but it is precisely 
with respect to this degree of overlap that the donor and 
acceptor excitons in ZnSe:Ni differ. 

In the case of a donor exciton we have for the envelopes 
(21) and (10) 

where rd is the radius of the orbit of the donor electron, 
r, = K; is the radius of the Bloch component of the tail, a 
component connected with the band v, and the factor 
M '(1 + ZM ' )-I determines the contribution of this compo- 
nent to the wave function. In the calculation of the corre- 
sponding factor for the acceptor exciton one must bear in 
mind a circumstance noted in Ref. 22: the vicinity of the 
point r, makes practically no contribution to the envelope 
F,, since the density of states at the bottom of the conduction 
band is low and hybridization at the center of the Briollouin 
zone is symmetry-forbidden so that for the Bloch component 
of the wave function of the impurity electron the effective 
forbidden band is in fact the distance between the points r ,  
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and LC in the Brillouin zone. Thus, the level E , ,  reckoned 
from the bottom of the conduction band turns out to be quite 
deep, and to estimate the wave-function radius we can use 
rc = f i [ 2 m , ( ~ , ~  - E ~ , ~  ] 1'2, where mo is the free mass. For 
the acceptor envelope ( 1  5) there are unfortunately no analyt- 
ic expressions, but in the calculation of the overlap integral 
with a strongly localized function Fc(r) we can use for the 
radial function Ro(r) the expression20 

Ro ( r )  =2xuXJ-" exp (-xur) , I= 1 ( I  Ro12+I R.12) r2 dr,  (26) 

where r,, = @ ~ / m , ,  *e2 is the radius of its central part and 
is determined by the effective mass of the heavy hole. The 
contribution to the integral from R ,  can at any rate be ne- 
glected, inasmuch as in the localization region of Fc(r) we 
have R, -r,  so that R2(r)4Ro(r) at r < r,. Then 

(F ,  IA,)=[Mc1(ei, 9) /J{1-l-M.'(~i ,  9 ) )  ] ' h ( r c / r ~ ) h .  (27) 
The function M :  (E, . )  in the approximation (yp 1 U' lka) 
= const is the derivative of the Hilbert transform of the state 

density taken with opposite sign. For arguments its behavior 
is known: 

M,,' ( e i )  -m.*B~i-'ll at ei /es<i ,  (28) 
where E ,  is the width of the allowed band. 

The matrix elements (A, llVllb ) in (24) can be estimated 
as -m,,P#i-2(rd/rhh)3'2, i.e., as the "atomic" matrix element 
multiplied by the degree of overlap of the atomic and accep- 
tor wave functions. It can be seen that they can be neglected 
compared with (27). Finally, the matrix element P, can be 
estimated at P (r,/r,,), where r, is of the order of the radius 
of the Wannier functions for semiconductor bands and is 
discarded under the condition r, <rc. 

With account taken of all these relations, we obtain the 
following estimate for the ratio of the probabilities for the 
excitation of the donor and acceptor excitons: 

With respect to the values of the parameters E," and m,, 
the published data are contradictory but, using the latest 
experimental estimatesZS for the parameters 
m: = 0.16m0, m,,* = 0.29m0) of the band structure of 
ZnSe and choosing for the positions of the levels E , ,  and E , ,  

the values 0.14 and 3 eV respectively, we find that the gain is 
a z 80. Taking into consideration the roughness of the ap- 
proximations made when describing the acceptor exciton, 
this estimate can be regarded only as qualitative. Nonethe- 
less we assume that in principle it explains the mechanism 
whereby the intensity of the optical transitions is increased 
in the case of donor excitons. 

The fact that the absorption lines in the interior of the 
photoexcitation band in a strong electric field broaden, and 
the lines on the edge of the photoexcitation band only shift, 
can also be explained by assuming that there are different 
types of excitons corresponding to these lines, but this differ- 
ence is due not to the "inner" d shells, for which these fields 
are too weak, but the outer hydrogenlike electrons (holes). 
Since the donor level in ZnSe is much shallower than the 
acceptor level (30 and 100-120 meV, respectively), in a field 

F ~ 4 0  kV/cm the second of them undergoes only a Stark 
shift, whereas for the first there can take place a noticeable 
tunnel ionization. Indeed, if we use for the estimate of the 
probability of such an ionization the elementary quasiclassi- 
cal formula 

Wion-2-1h Ry* exp ( -2h/3) ,  

where A =  Ry*/eFr,, Ry* is the effective Rydberg, r, is the 
radius of the wave function, and F is the intensity of the 
electric field, we obtain for a donor exciton A ~2 at F = 40 
kV/cm, so that the level acquires an appreciable width. No 
quantitative theory of ionization in strong electric fields has 
yet been developed for acceptor levels, but an estimate can be 
obtained with the aid of the same quasiclassical formula. If it 
is recalled that Ry* for an acceptor is determined principally 
by the heavy mass m,, ,and the wave-function asymptotic 
value that governs the tunnel integral is determined by the 
light mass me, * z m: (Refs. 18-20), it can be seen that in one 
and the same field F the ionization probability of the accep- 
tor exciton is smaller by a factor exp( - m,,/m,,)  than the 
probability of ionization of the donor exciton, although 
allowance for the corrections for the central cell can de- 
crease this estimate somewhat. 

Thus, on the basis of the arguments presented in this 
section it can be stated that the line width %o = 2.64 eV in 
the interior of the photoabsorption band corresponds to a 
spin-allowed transition 2 8 ( 3 ~ , ) - 2  7e(3A2) with formation of 
a donor exciton. The absence of noticeable electroabsorption 
lines that are not phonon replicas of the leading line points to 
weakness of the spin-orbit interaction in this case. 

As for the phonon replicas of the electroabsorption 
lines, for their unambiguous interpretation it is necessary to 
know what part of the exciton wave function contributes 
mainly to the exciton-lattice interaction-the "swelling" (;I 
core or the hydrogenlike envelope. To answer this question, 
a microscopic theory must be developed for multiphonon 
optical transitions from deep d levels, in addition to the al- 
ready existing symmetry premises that use effective pheno- 
menological Hamiltonians. The development of such a the- 
ory is a task for the nearest future. 

The authors are grateful to B. L. Gel'mont and A. M. 
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