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A theory is developed of nonresonant sound and electromagnetic absorption in dielectric glasses 
at low temperatures Tin the frequency range tiw 2 T. It  is shown that at tiw 2 T the nonresonant 
absorptances are proportional to w3 and are independent of temperature. The existence of a 
characteristic energy Ec is established, a typical value of which for glasses is 10-20 K. For level 
spacings exceeding Ec the conventional definition of a two-level system becomes meaningless, 
since the energy uncertainty due to interaction with the phonons exceeds the level spacing. Nor 
does perturbation theory hold for the calculation of the absorption at frequencies &I 2 Ec or 
temperatures T 2 Ec . 
PACS numbers: 77.90. + k, 43.35.Gk 

Q l .  INTRODUCTION 

The purpose of the present paper is to construct a the- 
ory of low-temperature nonresonant electromagnetic and 
ultrasonic absorption in glasses. We are primarily interested 
in the quantum region of frequencies w satisfying the condi- 
tion 

( T  is the temperature in energy units). It is assumed that the 
absorption is due to interaction of ultrasound (or electro- 
magnetic) waves with so-called two-level systems. The exis- 
tence of such systems in glasses was suggested independently 
by Anderson, Halperin, and Varma' and by Phillips.* 

The physics of acoustic and electromagnetic absorption 
in glasses are quite similar. We shall therefore carry out the 
entire exposition with acoustic absorption as the example, 
and present in $7 simply the result for electromagnetic ab- 
sorption. 

Next, so as not to clutter up the notation, we present 
first the results for the so-called isotropic model of two-level 
systems. In this model the deformation-potential tensors 
that characterize the interaction of these systems with the 
deformation (see below) degenerate into scalars, and the two- 
level systems themselves interact with longitudinal acoustic 
phonons. Later, however, we shall lift this restriction and 
consider the general case. 

For high-frequency sound of sufficiently low intensity, 
the main contribution to the absorption is resonant. Its phys- 
ics consists in the fact that the wave of frequency o 
"chooses" for itself two-level systems with energy (level 
spacing) E = h, which are the ones responsible for the ab- 
sorption. The obtained expression for the resonant absorp- 
tion coefficient r ''' is'-3 

I'(r) = nun (ha) ha 
<M2>,, th- 

pv3 2T ' 

It is proportional to the quantity tanh(h/2T),  which is the 
equilibrium population difference between the lower and up- 
per levels; n (E)  is the state density of the two-level system, 
and the expression for r(')contains naturally n(E ) at E = h .  

In general, however, according to the experimental data, 
n(E) is a practically constant quantity at least in the energy 
interval E from several dozen mK to several K; M denotes 
the so-called deformation-potential constant that character- 
izes the amplitude of the probability of a transition between 
two levels under the influence of the deformation. The sym- 
bol (...), denotes averaging over all the two-level systems 
with specified value of E. From the experimental data one 
can apparently conclude that the quantity (M *), also de- 
pends quite little on E. Finally, v is the speed of sound andp 
is the density of the glass. 

Resonant absorption decreases with increasing T, inas- 
much as in this case the level populations become equal. The 
equalization of the populations takes place also when the 
sound intensity Jincreases. The characteristic intensity Jc at 
which this becomes noticeable is in fact quite low. For exam- 
ple, in experiment on sound absorption in SiO, glass at fre- 
quencies o /2n -~0 .5  GHz, the value of Jc was =:lop7 W/ 
cm2 at T = 23 mK (Ref. 4). 

If the sound intensity exceeds J,  noticeably, the reso- 
nant absorption is suppressed and we are left with the so- 
called nonresonant or relaxation absorption (see, e.g., the 
review3). The reason for this designation is that the contribu- 
tion from one arbitrary two-level system to this absorption is 
proportional to a quantity determined by a relaxation for- 
mula of the Debye or of the Mandel'shtam-Leontovich type; 
as applied to glasses, it was obtained by Jackle5: 

Physically, such a relaxation contribution is due to the peri- 
odic (with frequency o) level-spacing oscillation produced 
under the influence of the sound. Naturally, in this case the 
answer is expressed in terms of the diagonal constant of the 
deformation potential D, which characterizes the ratio of the 
separation of the levels under the influence of the deforma- 
tion to the value of the deformation itself. As a result of 
variation of the level spacing, the distribution function f 
(which characterizes the occupation of the upper levels) lags 
the equilibrium value f,. The measure of the lag is deter- 
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mined by the relation between the frequency o and the relax- 
ation time T(E ), the latter given by3*5 

This expression is proportional to the square of the matrix 
element M that characterizes the probability of transition 
accompanied by emission or absorption of a phonon of ener- 
gy E. At T = 0 expression (1.4) yields simply the lifetime of 
the two-level system in the excited state relative to the spon- 
taneous emission of a phonon of energy E. To obtain the total 
nonresonant absorption, an expression of the type (1.3) must 
be summed over all the two-level systems. 

We shall be interested below in the high-frequency edge 
of the nonresonant absorption. The corresponding contribu- 
tion is obtained from (1.3) if it is assumed that for most sys- 
tems that take part in the absorption the following inequality 
is 

In the classical frequency region, when fiwg T, the charac- 
teristic energy E which is the argument of T in this inequa- 
lity, is of the order of T. Substituting for this case (1.4) in (1.3) 
and summing over all the two-level systems, we arrive at the 
following result for the nonresonant absorption coefficient 
r j"", obtained by Jackles: 

This result was obtained for the isotropic model. In addition, 
it was assumed in its derivation that mean values of the type 
(M'D ') are practically independent of E - it is precisely 
in this case that r'"" is proportional to T3. Favoring this 
assumption is the fact that the r'""- T 3  dependence is ob- 
served in e~periment."~ 

The model in which both n(E)  and the mean values of 
the products of the quantities of the type M and D do not 
depend on E in the significant energy region will be called for 
brevity the E-independent model. 

Our task is to obtain an expression for r '""in the quan- 
tum region of freqeuncy, where the inequality (1.1) holds. To 
this end it is natural to use quantum-mechanical perturba- 
tion theory. Its first-order approximations should yield the 
correct answer both in the classical and in the quantum fre- 
quency regions provided that the inequality (1.5) is satisfied. 
We shall now formulate and discuss the results. Their deri- 
vation will be given in the subsequent sections. 

In the lowest (second) perturbation-theory approxima- 
tion, the nonresonant absorption is described by processes in 
which, besides the acoustic quantum fiw, one more phonon 
takes part. We assume that in this absorption process the 
very state of the two-level system changes, i.e., it goes over 
from the gound state 1 to the excited state 2 or vice versa. 
There are also possible processes in which the initial and 
final states of the two-level system coincide. In this approxi- 
mation they describe elastic scattering of sound with conser- 
vation of its frequency. We shall not discuss these processes 
here. At the end of the introduction we shall examine briefly 

how to distinguish in experiment between the absorption 
and scattering processes. 

The general expression for the coefficient of nonreson- 
ant absorption, obtained in the isotropic model, takes the 
following form: 

f 
ho-E 

sh- 
2T 

The factor of n(E)  in the integrand describes the contribu- 
tion" made to the absorption by two-level systems with ener- 
gy E. If both n(E ) and ( M  'D 2, are smooth functions of E, 
then the important role in the integral (1.7) at tiw4T is 
played by values of E of the order of T, and this expression 
goes over into 

In the E-independent model, this formula goes over into 
(1.6). 

In the opposite limiting case, fiw>~T, we obtain from 
(1.7) 

In the E-independent isotropic model it is easy to write 
down an expression for the case of an arbitrary relation 
between fiw and T: 

ri("') = n3n,<M2D2>TL 
16p2fi5v8w 

fio 

2T 

From this we obtain at fiw) T 

The relation r '"" a 03 can be easily interpreted physi- 
cally. In second-order perturbation theory, absorption of a 
quantum fiw is accompanied by excitation of the two-level 
system with energy E and by emission of a phonon of energy 
fii2 = fiw - E. The density of the phonon states is propor- 
tional to 02. From among the two-level systems, the only 
ones that take part in absorption are those having E<fiw. 
The total number of such systems is also proportional to o. 
In the upshot we obtain the proportionality cc u3. 

It is quite difficult to satisfy the inequality fiw>T in 
experiment for sound, since temperatures of the order of 1 K 
correspond to frequencies o/2a in the 20 GHz range. We 
know of only one experiment in which the frequency depen- 
dence of the phonon mean free path I was measured in the 
frequency range w/2a from 100 to 300 GHz at T- 1 K in 
SiO,. The resultlo was I - '  -02 9 + 0  . The measurements 
were performed at a total power level (3-300)X W/ 
cm2. 
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We discuss in this article ($55,  6) also the fundamental 
problem of the general structure of the theory of interaction 
of two-level systems with a phonon field, and of the applica- 
bility of perturbation theory to the description of this inter- 
action. It is evident from (1.4) that this interaction increases 
rapidly with E ,  since perturbation theory should no longer 
be valid at a certain value Ec . This energy turns out to be of 
the order of 

where m is the average mass of the atoms making up the glass 
and O is the Debye temperature of the glass. In estimates of 
this kind we do not distinguish between the constants D and 
M, whose experimental values are of the same order, 1-2 eV. 
The characteristic energy Ec amounts then to 10-20 K, i.e., 
it is much lower than the Debye energy O. The quantity 
fi/r (E) (the energy uncertainty of the two-level system) is 
rewritten in terms of Ec in order of magnitude in the form 

This form explains the physical reason why perturbation 
theory is not valid: at E 2 Ec the energy uncertainty of the 
levels should exceed the distance between the levels. 

The foregoing leads to the following conclusion that at 
E 2  Ec the concept of two-level systems in its traditional 

becomes meaningless. It is tempting to compare this 
conclusion with the known experimental facts that definite 
anomalies are observed in the thermal conductivity of 
glasses and in their acoustic properties at T- 10-20 K. 

The condition that allows us to confine ourselves to the 
second-order perturbation-theory approximation in the de- 
scription ofnonresonant absorption takes at fiw 2 T the form 

o<m,=E,/fi ,  (1.13) 

while the perturbation-theory expansion is in powers of the 
parameter (w/wc),. It can be assumed that for the inverse 
inequality the absorption is due to multiphonon processes. 
The development of a theory for absorption in this frequency 
region is one of the most interesting as yet unsolved prob- 
lems. 

The more complicated structure of the perturbation- 
theory series arises in the classical region of the frequencies 
fiw< T, where the expansion should be carried out in terms of 
two parameters, l/wr(T) and fiw/T. It is usually more con- 
venient, however, retaining the first parameter, to choose as 
the second the product 

The twofold requirement: 1) applicability of perturba- 
tion theory and 2) a classical frequency interval, leads to the 
following double inequality 

l ~ m . t ( T )  ( E , / T ) 2 .  (1.14) 

The upper bound on wr(T) is none other than the condition 
h ( T .  

As a result, the following unusual situation arises in the 
classical frequency region (1.14). The resonant absorption (in 

the linear regime) turns out to be proportional to the small 
parameter h / T ,  whereas the nonresonant absorption is 
proportional to an entirely different small parameter 1/ 
wr(T). It turns out in final analysis that in the classical region 
there exists a certain frequency interval where the second 
parameter is larger than the first, i.e., where nonresonant 
absorption prevails over the resonant. This interval is given 
by the double inequality 

it exists at T<E,. 
As for the case T 2  Ec, we see no reason for assuming 

that the existing theories can describe the contribution of 
two-level systems in absorption in this temperature region, 
since it corresponds (as already mentioned) to the strong- 
coupling case. 

In this paper we also take into account the anisotropy of 
the interaction of deformation with an individual two-level 
system. Detailed expressions for the absorption coefficients 
are given in $83, 4, and 7. Here we wish only to note the 
following circumstances. The frequency and the tempera- 
ture dependence of the total absorption coefficient in the E- 
independent model (with allowance for the anisotropy) can 
be represented by the following formula: 

Here a, 6 ,  c, and d are constants; the first term in (1.16) 
describes the contribution of the resonant absorption; the 
three remaining ones describe the contribution of the nonre- 
sonant absorption. 

Consider the difference p (w, TI) - p (a ,  T,) at two dif- 
ferent temperatures, TI and T2 and at equal frequency w. We 
have 

f (a ,  T I )  -f (a ,  T p )  = ( T i 2 - T Z Z )  [am-' ( T i Z + T Z 2 )  + h w ] .  

This difference depends thus on the frequency w in nonmon- 
otonic fashion: at relatively low temperatures it decreases, 
and then begins to increase. The minimum value is reached 
at the frequency 

If tanh(fiw/2T) can be replaced with sufficient accuracy by 
unity at this frequency and at the temperatures T ,  and T,, 
this expression is simply the difference between the absorp- 
tion coefficients at the temperatures T ,  and T2. This differ- 
ence was investigated in and it was found 
that it has a nonmonotonic dependence on w. It is possible 
that the results of our theory are capable of explaining this 
behavior of this difference without invoking for this purpose 
other additional hypotheses. 

So far, all the foregoing pertained to dielectric glasses. 
It is of interest, however, that the results can lead to an im- 
portant conclusion with respect to the behavior of the coeffi- 
cient of nonresonant absorption of sound in metallic glasses. 
It is well known (see, e.g., Ref. 13) that this absorption is 
usually due to the interaction of two-level systems with the 
conduction electrons. Owing to the high state density of the 
conduction electrons, the corresponding relaxation time of a 

1336 Sov. Phys. JETP 56 (6), December 1982 V. L. Gurevich and D. A. Parshin 1336 



two-level system turns out to be shorter by several orders of 
magnitude than in interaction with phonons. The latter, 
however, decreases rapidly with the characteristic energy E 
of the two-level system, and as a result its role becomes more 
and more pronounced with increasing T o r  w. This should 
mean, in particular, that at sufficiently high frequencies o 
the phonon contribution to nonresonant sound absorption in 
metallic glasses may turn out to be larger than the electron 
contribution. 

There are two types of experiment that permit observa- 
tion of nonresonant absorption. In the first one observes the 
damping of traveling waves propagating through the glass. 
The problem in this case is how to separate in experiment the 
true sound absorption from its damping due to elastic scat- 
tering by the two-level systems. Increasing the intensity of 
the incident signal it is possible to suppress the resonant 
damping of the sound. The latter, in fact, is not absorption in 
the true sense of the word, but resonant scattering: all the 
absorbed waves are reradiated in various directions with 
their frequency unchanged. 

It is still, however, not quite clear what happens with 
the scattering upon deviation from resonance when the 
sound intensity is increased. Such nonresonant scattering 
should also cause a certain damping of the traveling waves. 
The appropriate analysis calls for the development of a non- 
linear theory of sound scattering, and this is beyond the 
scope of the present paper. 

The second type of experiment consists in exciting 
acoustic oscillations in a resonator whose dimensions are 
much smaller than the mean free path of the sound waves 
relative to their nonresonant absorption. This can be a reso- 
nator of complicated shape, such as was used, e.g., by Gana- 
pol'skii et a1.I4 in experiments where inversion of acoustic 
waves took place and as a result it was possible to observe 
their true absorption. This can be also a system consisting of 
many resonators, such as glass powder. If it becomes possi- 
ble to excite an electroacoustic echo in such a system, the 
nonresonant absorption can also be determined from the 
time dependence of the damping of the echo signals (see, e.g., 
Ref. 15). 

52. DIAGRAM TECHNIQUE. INTERACTION OF TWO-LEVEL 
SYSTEMS WITH PHONONS 

The Hamiltonian of one two-level system interacting 
with the phonon field takes the form 

Here H,, is the Hamiltonian of the free field of the phonons, 
u,=a, and u,=az are Pauli matrix elements acting in the 
space of the wave functions of the two-level systems, uap(r,) 
is the operator of the strain tensor of the glass vibrations and 
is expressed in standard fashion in terms of the phonon cre- 
ation and annihilation operators; the vector r, defines the 
position of the given two-level system in space. To abbreviate 
the notation in the expressions that follow, we have intro- 
duced a single notation for the constants of the deformation- 
potential tensor, putting Kapl-MaB and KaB3=DaB/2. 

To construct a diagram technique with the operators a,. 
we use a method proposed by Abrikosov.'' We introduce the 
Fermi-field creation and annihilation operators a, and a; 
and express in their terms the operators a i :  

where (a, ),,. (M, M ' = 1,2) are the elements of correspond- 
ing Pauli matrices. 

The definitions of the phonon (or photon) Green's func- 
tions contain, besides the standard operations, also the aver- 
aging operation 

(. . .> =Spl (e-€'IT. . .) / S p f  e-"IT. 

The prime denotes here that the trace is taken only over the 
physical states. For a single two-level system these are the 
states 10,l) and 11,0), and the unphysical states 10,O) and 
I 1,l) are excluded. l6 For the Fermi operators a ,  and a; the 
physical states do not constitute a complete set. This makes 
the formulation of the diagram technique difficult. To get 
around this difficulty, Abrikosov proposed to carry out in 
the initial Hamiltonian an energy substitution 

and to take into account in the calculation of the mean values 
all the states, and after calculating the mean values let2 go to 
+ a, which corresponds physically to introduction of an 

infinitely large negative chemical potential. After this oper- 
ation*' a contribution to the mean value is made only by the 
physical state-this contribution is proportional to 
exp( - 2 /T),  whereas the unphysical state of the type I1,l) 
make an infinitely small contribution, proportional to 
exp( - U / T ) ,  compared with the first. 

To eliminate the contribution of the unphysical state of 
the type 10,O) from those two-level systems whose operators 
are not located under the trace sign, it suffices to normalize 
the obtained expressions in suitable fashion.16 To this end, 
each diagram for the phonon Green's function is set in corre- 
spondence with a product of factors 

which extends over all the two-level systems (sin the number 
of the system) that contribute to the diagram. 

As for the fermion Green's functions, the averaging in 
them is carried out over all the states. 

The phonon damping, i.e., the sound absorption, is de- 
termined by the poles of the retarded Green's function. To 
find the latter it is necessary to continue analytically the 
temperature diagrams. This procedure was carried out by 
Maleev. " We write down the main results obtained thereby. 
We consider the interaction of phonons with a single two- 
level system, and then sum over all such systems. In other 
words, we confine ourselves to the linear approximation in 
their density. The corresponding parameter is K2n,Jpv2, 
which amounts to several thousandths in typical cases. 

The (retarded) Green's functions of the long-wave 
phonons are given by 
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where the index j takes on two values: I and t (longitudinal 
and transverse phonons). The last term in the square brack- 
ets, due to the interaction of the phonons with the two-level 
systems, is determined by the following expressions (summa- 
tion over the repeated symbols i and m is implied): 

Here fl,(o) is the polarization operator of the s-th two-level 
system and is determined by the sum of diagrams in Fig. 1. 
To each vertex of type 1 or 3 corresponds a Pauli matrix u, or 
0,. The solid lines, which denote the retarded Green's func- 
tion of the fermions, corresponds to the matrix g'O'(&) with 
elements 

8srup gsv (e) = I  

E + ' / ~ E  ( - l )M-h+iO ' 

The wavy lines corresponds to the quantity 

N ( a )  oSA ( o )  
Lim,  

60n2puf' 

which is the product of the spectral factor of the phonons 
and the matrix 

Lim=gl Sp KiKm-gz  Sp K' Sp  Km, (2.7) 

that characterizes the interaction of the phonons with the 
two-level systems. Here 

E1=3+2 ( v t l v i )  ', h = I -  ( v f l v i )  5, 

N (a) is the Planck function, and A (w) is a cutoff factor. In the 
simplest case it is equal to unity at w < w, and falls off rapid- 
ly to zero at w > o,, where o, is the characteristic Debye 
frequency. 

Finally, according to Maleevl7 

The plus and minus signs of the vertex r " indicate the signs 
of the infinitely small parts of the corresponding arguments: 

I'+-"'(8, e') =rm (e+iO, e l - iO) .  

We have left out of (2.8) the index s and will do so hereafter 
whenever it does not lead to misunderstanding. 

The sound absorption coefficient, as is evident from 
(2.2) is 

In the calculation of (2.9) we shall find it convenient to use 
the following expression for the imaginary part of the polar- 

FIG. 1 

ization operator, an expression that follows directly from 
(2.8): 

e r / ~  + - 
Im I I i m ( o )  = -(L--e-Y/T) Re 5 dee-eiT 

2nN 

It can be seen that the contribution from each diagram in 
Im n(o) is determined by the imaginary part of the product 
of the Green's functions (2.5) of the upper arc of the loop of 
the polarization operator by the imaginary part of the pro- 
duct of the Green's functions of the lower arc. 

We shall calculate Im n(w) by perturbation theory (the 
conditions for its applicability will be given in $ 5 ) .  The low- 
est approximation corresponds to diagram a of Fig. 1; it de- 
scribes resonant absorption, which will be considered in the 
next section. 

93. RESONANT ABSORPTION 

Substituting for r" in (2.10) the nonrenormalized ver- 
tex a,, we obtain 

Im I I i m ( o )  =n th ( h a / 2 T )  [6 ( h a - E )  +S ( f i o + E ) ]  Gi,6,,.(3. 1) 

Substituting this expression in (2.9) and taking (2.3) and (2.4) 
into account, introducing the state density n(E) of the two- 
level systems and integrating with respect toE, we obtain the 
following well known result'*18: 

Here, by definition, 

( ~ f , ~ ) , - ~ / , ~ (  (Sp M)'+2 SP M2)E, 
(3.3) 

(MtZ>E--L/sO(3 Sp  M2- (SP M)' )E .  

We recall that the angle brackets denote averaging over the 
ensemble of two-level systems with energy E. 

It can be seen that the quantities (3.3) are non-negative 
and satisfy the inequality 

<M,">E>4/3 (Mt2 )E .  (3.4) 

It agrees with most experimental data. For example, in SiO, 
at the frequency o/2n = 0.5 GHz we have (M:)/(Mf) 
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= 2.2 (Ref. 4). In a metallic glass such as Ni-P, this ratio is 
equal to 1.5 (Ref. 19). 

54. NONRESONANT ABSORPTION 

The nonresonant absorption is calculated in the next 
order in the interaction with the phonons. In this order 
Im H(o) is determined by the sum of the diagrams with a 
single wavy line (diagrams b, c, and d of Fig. 1). After rather 
cumbersome calculations we obtain 

( h o + E )  3 A ( h o + E )  ( h o - E )  3~\ (ho-E)  + t 
h o f  E h a - E  

sh - 
2 T 

Lls sh ( f i o / 2 T )  
Im I I i 3  ( o )  = Im I I 3 I  ( a )  =- 

30npv,"hc o ch ( E / 2 T )  
(ho+E)LA(hw+E)  +, ( f i o - E ) 2 A ( h o - E )  

h o + E  
sh- sh - 

2  T 2 T 

The nonresonant character of these expressions can be seen 
directly. 

To find the contribution made to the absorption coeffi- 
cient by second-order processes we must substitute the ex- 
pressions for Im II(w) in (2.3) and (2.4) and sum overs, i.e., 
over all the two-level systems. We shall perform the summa- 
tion operation in two steps. We first sum over all the two- 
level systems whose energies E lie in the range from E to 
E + dE. This results in mean values of the products of the 
components of the deformation potential, of the type 

i 
f,,r,, (a, b )  = -( (a  Sp P K m +  b  Sp Ki SP K m )  

225 

where i, m, p and n are the indices 1 and 3, while a and b are 
numbers. These mean values are functions of the energy E. 
In the second stage it is necessary to multiply the expressions 
obtained by the state density n(E) and integrate with respect 
to E. Since the characteristic energies that contribute to such 
integral do not exceed the larger of the quantities Tw or T, 
which is much less than the Debye energy, we can put 
A (o) = 1. In the upshot we obtain the following general 
expression for the coefficient of the nonresonant absorption r inrl. 

fio -- E 
x fiG1-E 

(sh - 
2 T 

, terms obtained by the 
& 

substitution E + -E (4.3) 

We have introduced here the notation 

kl (1)=f3311(2r  1 ) .  k : 1 ) = 1 / 2 f 3 3 1 1 ( 3 ,  - I ) ,  

The coefficient of n(E ) in the integrand of (4.3) describes the 
contribution made to the absorption by two-level systems 
with energy E. In particular, at E = 0, for degenerate sys- 
tems, we obtain the result of Ivanov and Fishman2' and of 
Maleev", i.e., r tn r 'a  w2. In the case of the isotropic model 
( k  "' = k "' = k '3'), however, the absorption coefficient van- 
ishes (at E = 0). 

The integral (4.3) can be easily calculated for the E- 
independent model of glass. We have 

where the constant A, B, and Care given for (for any j) 

It can be verified that these constants are not negative and 
satisfy the inequalities 

4 
B, - B,; 

3 

In the case when the tensors Map and DUB degenerate into 
scalars (isotropic model), Eq. (4.5) goes over into (1.10). 

In the limiting case h ( T  we obtain from (4.5) a for- 
mula of the type (1.6). The only difference, however, is that 
the mean value ( M  'D '). in it is replaced in it by a quantity 
A,, which is a mean value of much more complicated form. 
In the extreme quantum frequency region h > T  we obtain 
the relation r '"" a 03, where, however, the proportionality 
coefficient (M 'D  ') is replaced by C, . 

55. CONDITION FOR APPLICABILITY OF PERTURBATION 
THEORY 

We start with an analysis of the simplest case h % T  
(this is equivalent to T  = 0). The order of magnitude of the 
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FIG. 2. FIG. 3. 

perturbation-theory parameter is 
r ( n r ) / r ( r ) %  (@lo,) 2, (5.1) 

where tiw, = Ec [Eq. (1.13)]. The same parameter is ob- 
tained from a comparison of the two-phonon perturbation- 
theory approximations for Im II(w) (graphs a and b in Fig. 2) 
with the single-phonon graphs (b, c, and d of Fig. 1). 

More complicated, as already stated in the Introduc- 
tion, is the structure of the perturbation-theory series in the 
classical region &<T. To analyze this case we use expres- 
sion (2.10) for the imaginary part of the polarization opera- 
tor. It is evident from it that the integral 

which determines the absorption of the sound, is dimension- 
less. It should be small compared with unity at least with 
respect to one of the parameters indicated in the introduc- 
tion, &/Tor l/wr(T). The contribution made to f by the 
first-order diagrams (Fig. la) was calculated $3. Its order of 
magnitude is h / T (  1. 

In next order, we have diagrams b, c, and d of Fig. 1. 
The principle contribution from them to f at fiw<Tis of the 
order of 

f=RTSle,,'fio, (5.3) 

where ~ , = ( p f i ~ u ~ ) ~ ' ~ - _ ( r n v ~ @  3)114 [see (1.13)]; for fused 
quartz it amounts to 500 K, for example. Expression (5.3) is 
none other than the small parameter l / w ( T ) .  

We can now compare in the classical region the nonlin- 
ear resonant contribution and the nonresonant lowest-order 
contribution. Since the former is determined by the small 
parameter h / T  and the latter by the small parameter 1/ 
WT(T), there exists in the classical region a frequency and 
temperature interval where the second paramet& is larger 
than the first, i.e., where the nonresonant absorption exceeds 
the resonant. This interval is determined by the inequalities 
(1.15). 

Let us analyze the contribution from the higher-order 
diagrams. To each diagram there corresponds, for the polar- 
ization operator HE(@), a factor (K/E,~)~"=E; '", where n 
is the number of the phonon lines. We note furthermore that 
at h ( T ,  the largest contribution from among all the dia- 
grams of the given order is made by those containing the 
highest power of w in the denominator. To determine this 
power, we introduce the concept of dangerous cross sec- 
tions. A cross section is regarded by definition as dangerous 
if: 1) it intersects on the diagram two "fermion" lines whose 

frequency arguments differ by a; 2) to both lines there corre- 
sponds either the ground or the excited state of the two-level 
systems; 3) the imaginary part is taken of one such line and 
the real of the other. The imaginary part of the propagator 
will be designated on the diagram by a point. 

A diagram containing n phonon lines and m dangerous 
sections is of the order of 

fio T2n+m T2n+m-1 
- - 

T -'~,""(fio)" E,z*(fio)"-' ' 

By way of example we indicate the following two dia- 
grams, which contain two phonon lines each, see Fig. 2. The 
dangerous sections are indicated by a vertical dash-dot lines. 
The numbers 1 and 3 designate the types of vertices. To ac- 
quire the largest number of dangerous sections, both outer- 
most vertices should belong to type 3. The indicated two 
diagrams yield, in order of magnitude, 

T5 

Thus, the two-phonon nonresonant diagrams are related to 
the one-phonon diagrams of type b, c, and d of Fig. 1 as (T /  
Tc 12. 

In the next order, diagrams appear with four dangerous 
sections (Fig. 3). They yield 

We can draw from the foregoing the following conclu- 
sion. The perturbation-theory series can be constructed in 
such a way that at any fixed power of 1/07 there appears as a 
factor a series in powers of T/T,. This means, in particular, 
that it is possible to guarantee validity of the known relaxa- 
tion  formula^^^^ of the type (1.3) for the absorption coeffi- 
cient only if T( T, . 

56. INTERACTION OF TWO-LEVEL SYSTEMS WITH ZERO- 
POINT LATTICE VIBRATIONS 

So far we have discussed the structure of the perturba- 
tion-theory series for real processes. In the next section we 
shall discuss the role of virtual processes, primarily the inter- 
action of two-level systems with zero-point lattice vibra- 
tions. We shall show how this interaction renormalizes the 
bare level spacing E,. 

The renormalized value of the energy E is determined 
by the difference between the two roots of the secular equa- 
tion 
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FIG. 4. 

whereH,,, is the total self-energy part of the two-level sys- 
tem. To consider an interaction with zero-point vibrations it 
suffices to analyze the case T = 0. 

We consider by way of an illustrative and simple exam- 
ple the first-order approximation of perturbation theory, 
which is given by the diagram of Fig. 4. We have 

where L ''I denotes an interaction corresponding to the un- 
renormalized vertex, the upper sign in front of E d 2  pertains 
to 2, ,, and the lower to Hz,. The main contribution in the 
integrals is made by w of order a,. The characteristic ener- 
gies E likewise turn out to be of order fiw,, as can he shown 
from (6.1). Expanding the denominators of the integrands in 
terms of the small ratio E,/&,, we obtain 

Re 2,,,  ??=-a,(&) &'/,E,b, ( e )  . (6.2) 

We can similarly find that 

from which it follows, at sufficiently small E,, that 

For the coefficients bo(&) and c,(E) the following order-of- 
magnitude estimates are valid: 

In these estimates we took into account the fact that the 
definition of the energy E includes the renormalized vertex 
K, whereas the expression for the first-order perturbation- 
theory approximation of the mass operator contains the un- 
renormalized vertices K (and in order-of-magnitude esti- 
mates we did not distinguish between the different 
unrenormalized vertices). 

The coefficient 6, or c, is in fact the perturbation-theory 
parameter in terms of which the expansion is made. The 
ratio ( w , / ~ , ) ~  is of the order of lo2, and there is every reason 
for assuming that perturbation theory cannot be used to de- 
scribe the interaction with the zero-point oscillations of the 
lattice and it is necessary to analyze the exact self-energy 
parts. To this end we use the following relations: 

They are valid not only in the lowest-order perturbation the- 
ory but, as can be shown by analyzing the diagrams for 2, 
also in the general case. 

Expanding Re 2 in terms of E,, we obtain relations of 
the type (6.2) and (6.3): 

where the coefficients a, 6, and c are determined by the sum 
of all the diagrams. It is important, however, that the solu- 
tion of Eq. (6. I), expressed in terms of these coefficients, is of 
the form 

where E ,  is the root of the equation 

e+a ( P )  =0, 

and u'(E,)  is the derivative o f a ( ~ )  with respect  to^ at the point 
E = E!. Thus, if we make the natural, in our opinion, assump- 
tion that the quantities al(cl), b ( E ! )  and c(E,) are of the same 
order, and the quantity 11 -t u'(E,)J is not anomalously small 
(we see no physical grounds for this), the renormalization 
factor turns out to be of the order of unity at any coupling 
force with the phonons. The other result is that because of 
the interaction with the phonons there is no additive incre- 
ment to the energy E,,. This statement follows directly from 
the symmetry of the initial theory. 

Allowance for the finite temperatures leads to the ap- 
pearance of temperature corrections to the renormalization 
coefficient in terms of the parameter T / T , .  

As for the vertices, they can become strongly renormal- 
ized by the interaction with the zero-point lattice vibrations. 
In our opinion, the natural point of view is to regard the 
quantities K '  introduced in $2 as already renormalized on 
account of this interaction. It is precisely such quantities 
that are known from experiment, since they enter in the real 
physical effect; it is precisely these quantities which enter in 
the expression for the characteristic energy E,. Thus, the 
initial Hamiltonian that describes the interaction of phonons 
with two-level systems includes two-level systems as well as 
vertex parts renormalized on account of the interaction with 
the zero-point oscillations. 

In regard to the phonon spectrum, its renormalization 
on account of the interaction with the two-level systems is 
small at h < E ,  and TgE,, being proportional to the small 
parameter n& ' /pv2. 

57. ELECTROMAGNETIC NONRESONANT ABSORPTION 

The Hamiltonian of the interaction of an alternating 
electromagnetic field E with a two-level system is of the 
form2' 

We have introduced here an identical notation for the di- 
pole-moment constants of the system, putting p"' = p' and 
pI3' = p / 2  Proceeding as before, we obtain for the absorp- 
tion coefficient of the electromagnetic radiation, in the ap- 
proximation linear in the center density, the following gen- 
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era1 formula (the electromagnetic-absorption coefficient will 
be designated by the symbol r without a subscript): 

Herec is the speed of light and E is a dielectric constant of the 
glass. From this, using (3. l), we obtain for the resonant-ab- 
sorption coefficient 

The nonresonant absorption is due to second-order pro- 
cesses which proceed with absorption of a photon, emission 
or absorption of a p h ~ n o n , ~ ~  and a change in the state of the 
two-level system. For the nonresonant absorption coeffi- 
cient, using (4.11, we obtain in the E-independent, anisotrop- 
ic model 

(7.3) 
Here 

where 

hiwn='/~5(~ci'p'h' (El SP KPKn-E2 SP KP SP Kn) ). (7.5) 

All three coefficients A, B, and Care positive. The first two 
of them satisfy the inequality (4.6). 

At h ( T ,  expression (7.3) does not depend on w and is 
proportional to T 3  (Ref. 23). In the opposite case, &a> T, the 
coefficient of nonresonant electromagnetic absorption 
should be proportional to w3. A cubic frequency dependence 
of the absorption coefficient was observed in experiment in 
Refs. 12, 24 and 25. 

The authors are sincerely grateful to S. V. Maleev for a 
very interesting discussion of the work and for a large num- 
ber of helpful hints. 

"Compare with the result of Bottger and BryksinY for the contribution 
from two-center configurations to the hopping conductivity of a disor- 
dered semiconductor. 
"As noted by Abrikosov, this procedure is not obligatory for spin 1/2, 
since the Pauli matrices u,, acting on unphysical states, yield 0. We, how- 
ever, will use this procedure, since it simplifies all the calculations and, 
particularly, as follows from Maleev's paper," it facilitates the analytic 
continuation. 
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