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An investigation is made of the correlation properties of large-period structures. It  is shown that a 
Berezinskii phase, which is characterized by power-law decay of the correlations, can exist in such 
structures at temperatures T >  Tp . Transition to this phase from one with an ordinary long-range 
order is isomorphous with a phase transition in a two-dimensional plasma. Therefore, in the static 
limit, in spite of the potential relief of the substrate which is considerably greater than the interac- 
tion between adatoms, the behavior of large-period structures at temperatures T >  Tp is equiva- 
lent to the behavior of a crystal on a smooth substrate. 

PACS numbers: 64.60.Cn 

1. Many adatom structures are known in which the pe- 
riod along one or two directions represents several (up to 
nine) substrate periods (see Refs. 1 and 2 and the literature 
cited there). The physical reason for the existence of such 
structures is, for example, the dipole-dipole interaction of 
adatoms (for other mechanisms see Refs. 3-5). Clearly, in the 
case of large-period structures the potential relief of the sub- 
strate is considerably greater than the interaction between 
adatoms. However, adatoms may be displaced over dis- 
tances (substrate period) which are small compared with the 
structure period. Therefore, we can expect that in the static 
limit and at finite temperatures these structures behave as a 
two-dimensional elastic crystal. This behavior of two-di- 
mensional systems (the appearance of properties typical of 
systems with a continuous symmetry in a system which has a 
discrete symmetry) was first predicted in the case of the Zp 
model in Ref. 6. The model has been investigated subse- 
quently by many authors (for a review see Ref. 7). 

Halperin and Nelson8 demonstrated that a continuous 
translation group can appear at finite temperatures in the 
case of commensurate structures subject to a weak potential 
relief. Ostlund9 obtained the same result for adatom sublat- 
tices subject to a strong potential relief and this was done by 
selecting a special interaction potential. We shall show that 
in the case of large-period structures with a practically arbi- 
trary potential of the interaction of adatoms with one an- 
other and with the substrate there is a possibility of the exis- 
tence of a phase with the correlation properties of a_ 
two-dimensional crystal on a smooth substrate (Berezinskii 
phase1'). The results obtained can be applied to a large num- 
ber of real experimental systems. 

2. Linear structures are the simplest example of large- 
period structures. These structures are observed on faces 
with a strongly anisotropic atomic relief. The atomic and, 
clearly, the potential reliefof the W(112), Ma(112), ~e (10 i0 ) ,  
etc. faces is in the form of deep grooves along which the 
amplitude of the relief is considerably less than in the trans- 
verse direction. Linear structures are rows of adatoms (for 
example, Sr, Li, Mg, and La) oriented across the grooves. 

(1 Xp) type. A detailed description and elementary estimates 
of the parameters of such systems can be found in Ref. 2. 

Adatoms in their ground state are located at minima of 
the potential relief with the coordinates (r,pa, ryb )where p 
is the linear-structure period, and r, and r, are integers. 
Since the structure period is large, the interaction between 
rows should be significantly less than the potential relief (or 
the binding energy in a row) and adatoms are always located 
at the minima of the relief. In this case the displacements of 
adatoms between lattice positions r = (r, ,ry ) can only have a 
discrete set of values u, = n,a. We shall discuss a model in 
which an increase in the energy as a result of displacement of 
adatoms from their equilibrium positions is of the form 

f1=1V2E V(r-d)  (nr-nr.)2. (1) 
I,?' 

Here, the sum over r and r' is taken over all the adatoms in a 
linear structure. A set of values of V(r) is determined by the 
actual form of the interaction between adatoms. 

It should be noted that the proposed model differs from 
that discussed in Ref. 2. In the latter, only one excited state 
was considered. Therefore, the dependences of the melting 
point and of the depinning temperature on the interaction 
constants obtained below differ from those found in Ref. 2. 
The two models represent different limiting cases. The mod- 
el of Ref. 2 should describe best the structures in which the 
number of excited states is small, i.e., when the structure 
period is not too large. The model discussed in the present 
paper should describe the case of very long periods ( p >  1). 

The structure period a 'Ow is to the correspond- FIG. I. Schematic represention of a / I  x 4) linear structure. The thick 
ing substrate period (Fig. and across a row it lines are the row of adatoms and the dashes are the minima of the ~otential 
several (up to nine) lattice periods; these are structures of the relief along the X axis of the substrate. 
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FIG. 2. Schematic representation of a superstructure formed as a result of 
mixing of linear structures with periods 2 and 1.  The notation is the same 
as in Fig. 1.  The superstructure is identified by shading. 

The case of very long periods may be encountered as a result 
of mixing of linear structures with different periods. For ex- 
ample, in the Mg-Re(1010) system there are linear struc- 
tures' with periods 3a and 241, respectively, when the cover- 
age is 8 = 1/3 and 1/2. The diffraction reflections obtained 
for intermediate coverages can be explained if we assume 
that a uniform mixing of structures with periods 2 and 3 
takes place. The resultant superstructure is shown in Fig. 2. 
Finally, the third class of systems which can be described by 
the model adopted in the present paper are lattices of soli- 
tons in incommensurate crystals under conditions of pinning 
by the substrate" (this is discussed below). 

3. It is most convenient to consider the model of Eq. (1) 
in the case of linear adatom structures. We shall be interest- 
ed in the range of temperatures in whch the condition 
(n:)(p2 is obeyed. In this case the contribution of states 
with large values of n, is small (an estimate is obtained be- 
low) and in the partition function we can sum over all the 
values of n, . The set of variables n, can be converted conve- 
niently by a dual transformation to a different set N,. The 
variables N, appear as a result of a change from the summa- 
tion over n, to integration with respect to a continuous vari- 
able p, using the Poisson summation formula. Consequent- 
ly, the partition function of a system described by the 
Hamiltonian (1) is 

X exp (2nip,Nr). (2) 

In the partition function of Eq. (2) the integral with respect to 
p, is Gaussian and integration can be carried out exactly. As 
a result, we obtain (to within a normalization factor) 

The quantity V (q) is simply a Fourier transform of the inter- 
action energy in Eq. (1). In the long-wavelength approxima- 
tion the form of V(q) is governed by the theory of elasticity. 
The symmetry of linear structures yields unambiguously 

V ( q )  =€,9,2+€,q,Z. ( 5 )  

The dependence (5) means that the interaction between var- 

iables (charges) N, increases logarithmically at large dis- 
tances. Therefore, the energy required for the creation of one 
charge N, diverges logarithmically on increase in the dimen- 
sions of the system. Consequently, the charges N, can ap- 
pear only in pairs with opposite signs, which makes Eq. (3) 
subject to the condition ZrNr = 0. We thus find that the 
problem of fluctuations in linear structures is isomorphous 
with the problem of a two-dimensional Coulomb plas- 
ma.l2*l3 A two-dimensional plasma has two phases: in one of 
them the charges of opposite sign combine into molecules 
and the plasma is an insulator, whereas in the other the mole- 
cules split into separate unbounded charges and the plasma 
is conducting. The conducting plasma phase corresponds to 
a low-temperature phase of linear structures (the phase with 
large values of N, ), whereas the insulating plasma phase cor- 
responds to a high-temperature phase of linear structures 
(N, become bound to form neutral pairs). The temperature 
of the transition between these two phases12." is governed by 
the quantities E, and E,: 

The correlation function of displacements in a linear struc- 
ture can be expressed directly in terms of the variables N, . In 
fact, by definition, we have 

Here, the angular brackets denote averaging over the states 
of the Hamiltonian (1) and pa is the linear structure period. 
Comparing Eqs. (7) and (2), we can readily see that the 
expression in the angular brackets differs from the partition 
function of Eq. (2) only by additional fractional charges 
+ l/p and - l/p, respectively, located at lattice sites r, and 

r,. Therefore, at high temperatures when the phase we are 
dealing with is characterized by the fact that N, become 
bound into pairs and the number of pairs is small, we can 
simply ignore N, ; then, the correlation function (7) becomes 

G ( r )  =exp [- (2nT/p2)  u ( r ) ]  . (8) 

This means that over long distances the correlation function 
decreases in accordinace with a power law; for example, 
along the X axis (i.e., along the grooves) it decreases as 

In the low-temperature phase the quantities N, are large and 
can be regarded as continuous variables. The addition of l/p 
simply represents an unimportant shift of the variable N,. 
Therefore, the correlation function of Eq. (7) is simply equal 
to unity. We can see that the low-temperature phase is char- 
acterized by the usual long-range order, whereas the high- 
temperature phase exhibits the Berezinskc order.'' 

The Berezinskc ordering is typical of a two-dimension- 
al crystal on a smooth substrate. Therefore, in the static limit 
at temperatures T> T, we can regard a linear structure as an 
elastic anisotropic (with one component of the strain tensor) 
crystal with the elastic moduli K, and K,. These elastic mo- 
duli are proportional to the constants E, and E,, respectively. 
The relationships between them can easily be obtained by the 
scaling transformation: 
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and hence we obtain directly 

We shall now consider the physical picture of the transition 
in terms of the displacements u, . We shall do this by estimat- 
ing the mean-square value of displacements in one row at 
temperatures T 2  Tp : 

Thus, at T = Tp a row is "smeared out" between the neigh- 
boring minima of the potential relief. It should be noted that 
the temperature T, is much less than the melting point T,,, of 
a two-dimensional anisotropic crystal, which is given by (see, 
for example, Ref. 14): 

T,= (p2a2/8n) ( K ,  K2)'"= (p14) 'T,>T,. (13) 

4. We shall now consider a situation when a displace- 
ment u, of a row can assume a continuous range of values, 
i.e., when the substrate potential has a finite amplitude. This 
potential can be selected in the form suggested by Villain": 

The potential (14) is periodic, the period being a, and at low 
temperatures characterized by T<w,, this potential becomes 

We shall now adopt a new variable M, in Eq. (14) using the 
Poisson summation formula 

In the case under consideration the partition function can be 
written in the form (apart from a normalization factor) 

1 
Z cc ? 2 1 du. enp {- - x v (r - rr) (ur - url)'] 

M,--m -m 
2T 

r .  r r  

In the partition function (17), exactly as in the case of the 
partition function (2), integration is carried out over all the 
values of ur , since large values of u, such that u, /a -p  make 
only a small contribution. We can easily see that the parti- 
tion function (17) differs from that given by Eq. (2) simply by 
a larger chemical potential of the formation of pairs of 
charges Mr. The phase transition occurs at a point at which 
dissociation of the charge pairs begins. The first to dissociate 
are the pairs of the largest size. Therefore, the transition 
temperature is determined by the interaction between 
charges over large distances and not by the concentration of 
pairs. This means that the transition temperature Tp of lin- 
ear structures is governed solely by the interaction of rows 

with one another and not by the magnitude of the potential 
relief. It is natural to assume that the expression for Tp is 
independent of the potential relief also in the case when its 
form differs from Eq. (1 4). 

We shall use these results to investigate depinning of a 
soliton lattice in a two-dimensional incommensurate crystal 
(see Ref. 11). In an incommensurate crystal a soliton lattice 
should form near the commensurate point when the differ- 
ence between the film and substrate periods is compensated 
(for details see Ref. 16). When an incommensurate crystal is 
formed from a commensurate one by compression along one 
of the crystallographic directions of the substrate, the resul- 
tant soliton superstructure has a one-dimensional periodic- 
ity. In the case of large periods a soliton lattice can be repre- 
sented by a system of lines oriented along one direction of the 
substrate and displaced in the perpendicular direction. The 
energy of a single soliton depends periodically, with the lat- 
tice period, on its position (this is known as the pinning of 
solitons by the substrates"). The amplitude of the corre- 
sponding potential relief differs from the potential relief of 
the substrate in the case of single adatoms. We can easily see 
that the problem of the correlation properties of a soliton 
lattice in the case of pinning by the substrate is physically 
analogous to the above problem of linear structures. The 
elastic moduli of a soliton lattice K, and K, governing the 
transition temperature Tp in the case when the soliton colli- 
sions are ignored is given by": 

KI=A ( ~ ~ 1 1 )  e-"'o+ B(ha3/Z3), K , = E , / ~ .  (18) 

Here I is the solition lattice period; I,-a(A /w,)"~, whereA 
is the elastic modulus of an, adatom lattice, is the soliton 
width; w, is the substrate potential; 6,-a(A /w,)"~ is the en- 
ergy density per unit length of a soliton; A - 1 and B are of 
the order of the ratios of the elastic constants of the filament 
substrate. The temperature T, is described by 

At finite temperatures the collisions of solitons begin to play 
an important role in their therm~d~namics . '~  We shall esti- 
mate a contribution to the temperature T p .  According to 
Ref. 14, such collisions make a contribution AK, only to the 
elastic modulus K,: 

AK1=nZTZ/~ ,P .  (20) 

It follows from Eqs. (1 8) and (20) that at T = Tp , we have 

AKI=2nK, (n / l )*<K, .  (21) 

Our analysis shows that soliton collisions make no signifi- 
cant contribution to the value of Tp . It is clear that a similar 
conclusion can also be drawn for large-period adatom sub- 
lattices. 

The approach developed above makes it possible to in- 
vestigate also the case when both adatom lattice periods are 
large compared with the substrate periods. This corresponds 
to a problem of a two-dimensional plasma with two kinds of 
charges, exactly as in the problem of melting of a two-dimen- 
sional crystal.' A detailed investigation of this topic is out- 
side the scope of the present paper but we may point out that 
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once again a transition is possible toa phase with power-law 
decay of correlations. 

The author is grateful to V. L. ~okrovsk; for discus- 
sions. 
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