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A theoretical investigation is made of the influence of the surface roughness on the carrier mobil- 
ity in inversion layers in semiconductors. A relationship is obtained between this mobility and the 
main parameters of the roughness: the average height of the projections and the characteristic 
scale in the tangential direction. The dependence of the mobility on an electric field normal to the . 
surface is found. The temperature dependence of the mobility is studied: in contrast to the well- 
known Schrieffer theory, the dependence agrees well with the available experimental results. 

PACS numbers: 72.20.Fr, 72.20.Jv, 72.10.Fk 

1. INTRODUCTION 

Schriefferl in his well-known treatment studied the sur- 
face mobility of carriers in semiconductors under conditions 
of their totally diffuse reflection from the surface. Numerous 
subsequent experimental investigations (the fullest bibliog- 
raphy can be found, for example, in Greene's papers2) have 
shown that, although the surfaces always scatter strongly, 
such scattering cannot be regarded as totally diffuse. Intro- 
duction of the Fuchs boundary condition with a phenomen- 
ological diffuseness coefficient 6 (which represents the frac- 
tion of the carriers which are scattered diffusely) does not 
account for the experimentally observed temperature depen- 
dence of the surface mobility. This is due to the fact that this 
approach ignores the dependence of the scattering efficiency 
on the angle of incidence of carriers and on their energy. 
Moreover, the diffuseness coefficient can only be introduced 
in certain cases (we shall discuss this aspect later). 

We shall investigate the surface mobility of carriers in 
semiconductors allowing for their scattering by the surface 
rouhness. We shall describe the surface scattering employ- 
ing a boundary condition obtained by Fal'kovskiL3 It relates 
explicitly the distribution function f ' of carriers reflected 
from the surface to the distribution function f ' of the inci- 
dent carriers, and can be written in the form1 

Here, p, and q, are the moduli of the components of the 
momentum normal to the surface, which can be expressed in 
a self-evident manner in terms of the tangential components 
p and q and in terms of the energy ~=p:/2m: 

p*= (po2-p2) 'Ir, q z =  (po2-qZ) 'I=, 

valid in the case of elastic scattering by the surface projec- 
t i o n ~ . ~  the function W(q - p)= W(p) is the Fourier trans- 
form of a binary correlation function of the surface of the 
surface projections. It is essentially different from zero and is 
of the order of (ad )2 in the range p < d  -', where a and d 
represent, respectively, the average height of the surface pro- 
jections and the characteristic scale of the projections in the 
tangential direction. For example, in the case of a Gaussian 
distribution of the surface projections, the function in ques- 
tion is 

W (p) =8n ( a d )  exp ( -p2dZ/2) .  

Equation (1) is derived on the assumption that p, ,a( 1. For 
this reason we shall assume that the average height of the 
surface projections is much less than the thermal electron 
wavelength, i.e., we shall assume that a<RT/2a. This as- 
sumption is quite reasonable because, for example, in the 
case of electrons at room temperature in silicon we have 
/lT - loo A. 

We shall consider the specific case of a model p-type 
semiconductor with an inversion region near its surface (Fig. 
1). The z axis is directed into the semiconductor along the 
normal to its surface; the x axis is in the plane of the surface 
and it is parallel to a longitudinal electric field Ex. Electrons 
are localized near the surface in a layer of thickness 
z z z T  = kT/eE, . We shall assume that in this layer the field 
Es is independent of z. Under steady-state conditions this 
assumption is obeyed only if the surface electron density r, 
is much lower than the surface concentration of donors r,, 
in the space charge region. We shall use the constancy of the 
field to simplify the calculations; we can show that if the 
opposite inequality is obeyed, the surface mobility differs 
from that obtained by us only by a numerical factor. There is 
another situaton of interest in practice, when E, is constant: 
this is the case of transient depletion, which appears (for 
example) in charge-couple  device^.^ 

The boundary condition (1) was used earlier by 
Fal'kovskii to analyze the influence of the surface roughness 
on the anomalous skin effect in the absence5 and in the pres- 
ence6 of a magnetic field, and also on the conductivity of thin 

FIG. 1. 
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metal The specific nature of the semiconductor 
problem is that the motion of carriers occurs in the presence 
of an electric field which drives them toward the surface. 
These carriers collide periodically with the surface and the 
frequency of such collisions increases on reduction inp, (the 
period is T, = 2p, /eE, ). This has the effect that glancing 
electrons are scattered strongly by the surface. In the case of 
thin films, the situation is reversed: glancing films collide 
rarely with the surface (T, ccp: '), and their collision time is 
governed entirely by the bulk mechanisms. Therefore, as the 
bulk scattering time T tends to infinity, the mobility of carri- 
ers in thin films rises without limit, which is not true of an 
inversion layer in a semiconductor. 

Strictly speaking, the boundary condition (1) is applica- 
ble only when the localization length z, of electrons is much 
greater than their wavelength, i.e., when the quantization 
effects are unimportant near the surface. For this reason all 
the results obtained will apply to this specific case. More- 
over, we shall show that is possible to go to the quantum 
situation in the limit. 

2. GENERAL SOLUTION 

As in Schrieffer's work,' we shall solve the transport 
equation 

Here, f, = f - f, is the correctioil to the equilibrium distri- 
bution function f,. We shall consider the specific case when 
the electron gas is nondegenerate, i.e., when 

(we shall show later how this result can be obtained in the 
degenerate case). We shall also assume that the bulk scatter- 
ing time .r is independent of the electron energy. This as- 
sumption does not affect significantly the results obtained, 
because in fields in which the surface mobility becomes 
much less than the bulk value (and is, consequently, gov- 
erned by the surface scattering mechanisms), it ceases to de- 
pend on T. 

We shall solve Eq. (2) by introducing an energy param- 
eter 

e,=pZZ/2m+eE.z (3) 

and we shall assume that f, is a function of E, and z. Conse- 
quently, Eq. (2) reduces to 

It has the following solutions: 

e'G p%ExfO { 
P (e 2 )  

fi> = --- I-al (e,) ery [+I} , 
m kT 

e ' ~  p B S o  pZ (en 2 )  
(5) 

f = - ----- 
m k~ { l-a2(ez)exP[ --.I} 

wherep, = eE, T; a,(&, ) and a,(&,) are integration constants 
dependent on E,; here, p, is understood to be the positive 
branch of the root p, = [2m(~, - e ~ , z ) ] ' / ~ .  At the turning 
point of carriersz, = E, /eE, (Fig. 1) the condition f ' = f < 

should be satified; therefore, 

a ,  (6 , )  =az (4 =a(&*).  

The function a(&,) is found from the boundary condition (2) 
and we should seek a = a(p:), because when z = 0 we have 
E, =p5/2m. 

Before substituting the solutions of Eq. (5) in Eq. (I), it 
sould be pointed out that the surface mobility may differ 
from the bulk value only in fields such thatp, %pT, which is 
equivalent to the condition I, <I, [p, = (2mkT)'I2 is the 
thermal momentum, I, = kT/eE, is the localization length 
of carriers near the surface, and I, is the mean free path in 
the bulk]. This condition occurs in Schrieffer's theory pre- 
cisely as the condition of a considerable difference between 
the surface and bulk mobilities, and it reflects the circum- 
stance that carriers should collide more frequently with the 
surface than be scattered in the bulk. In our problem the 
condition is necessary but insufficient, because the scatter- 
ing probability differs from unity for collisions with the 
boundary. Therefore, we cannot regard this condition as al- 
ways satisfied. Then, in the expressions of Eq. (5) the differ- 
ence between the exponential function and unity is impor- 
tant only when the difference f '  - f < is obtained. 
Retaining in this difference only the first term of the expan- 
sion and introducing a new function 6 (E, ) = 1 - a(&, ), we 
obtain from Eq. (1) 

(6) 
An analytic solution of this equation can be found in two 
limiting cases: l)p,d< 1; 2)pTd) 1. 

We shall have to calculate the surface mobility 

Under the same assumptions as those used to derive Eq. (6),  
we find that 

ft'+fiC-2 (erlm) (EzfolkT) pXE (pZ2).  (8) 

Substituting this function into f, of Eq. (7) and introducing 
new variables s = E,/E and c = &/kT, where E, is given by 
Eq. (3)  and E = p2/2m + E, (the Jacobian of the transforma- 
tion is proportional to t ), we obtain 

3. SOLUTION IN THE p,dgl CASE 

If d<p, I ,  the function W(p)  can be regarded as con- 
stant and can be taken outside the integral in Eq. (6). Then, 
the integral with q,g (9:) vanishes because the integrand is 
odd. As a result, we obtain 

and hence 

g =  [1+ W,pO3p,/3n] - I .  (11) 

It should be noted that although the scattering probability in 
Eq. (10) does depend on the angle of incidence of carriers (it is 
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proportional to p,), this dependence disappears from the 
function 6 which is used as a measure of the effectiveness of 
the surface scattering. This is due to the fact mentioned ear- 
lier: glancing electrons collide more frequently with the sur- 
face (the collision frequency is T ;  ' ap, I ) .  

Equation (9) allows us to find the surface mobility 

If W,p: r,/3n-< 1, we can ignore the second term in the 
denominator of the integrand and we then obtain p, = er/ 
m, i.e., the surface mobility is identical with the bulk value. 
When the opposite inequality is obeyed, we can ignore unity 
in the denominator and we then obtain 

where uT = pT/m is the average thermal velocity of carriers. 
In fact, the condition of validity of Eq. (13) isp, <er/m. 

For a Gaussian distribution of projections the function 
W, is W, = 84ad ),. In this case we obtain from Eq. (13) 

where A. = 2?r/pT. If we regard defects as spherical craters 
of radius r with the concentration N, we find that W, a r6N. 

Vanishing of the "arrival" term in Eq. (6) reflects the 
fact that a wave scattered by a defect of size r&2, is cylindri- 
cally symmetric. It is precisely in this case that we can intro- 
duce the diffuseness coefficient which depends naturally 
both on the angle of incidence of carriers and on their energy. 
A similar result is obtained also in the case of scattering by 
small defects in the bulk, but then the scattering is (r/A )4 

times weaker because of the smallness of the wave function 
near the surface on which it vanishes. 

4. SOLUTION IN THEp,&-1 CASE 

In this case we find that in the interval defined by Eq. (1) 
the function W( p) differs from zero only in the region 
p < d . Following Fal'k~vskii,~ we shall expand the 
function q, [ f (q) - f (p)] in powers of (q - p)i and reatin only 
terms to the differential equation 

-2 ( P ~ ~ P , )  (1-E) =Qtp,ZVf<+QzV (pzZVf<) , (15) 
where 

On the left-hand side of Eq. (15) we have already substituted 
the value for the difference f ' - f ' . 

Ifp, - p  > d - I ,  then we have Q, = 0 because the inte- 
grand is an odd function, and Eq. (1 5) for 6 (s) becomes 

S(S-1) EM+ (3s-1) ~ ' + 1 / ~ ~ = ( p ~ / 2 Q ~ ~ I ) ~ ' b ( l - E ) .  (17) 

Here, as in Eq. (9), we haves = pt/pi. Since in the limit 6-1 
the surface mobility reaches the bulk value, it would be inter- 
esting to consider the case when 6<1. Then, on the right- 
hand side of Eq. (17), we can ignore 6 compared with unity 
and the solution of this equation is of the form 

PC 1 . n 
f=ctFl+czFz + -- sin -- 

2Qzp, n V2 

Here 

are hypergeometric functions. A particular solution of an 
inhomogeneous equation is selected so that it remains finite 
throughout the interval [0, 11, whereas the solution Fl has the 
divergence (1 - s)-' in the limit as s-1 ans the solution F, 
diverges logarithmically as s 4 .  

We shall find the constant c, by rewriting Eq. (6) in the 
form 

The right-hand side of the above equation is finite for any 
values of c, and c,. Therefore, l ( p )  on the left-hand side 
cannot have a divergencep-Z in the limit asp-0 and, conse- 
quently, we have c, = 0. The appearance of the solution F, is 
associated with the fact that the expansion (15) is not valid at 
p = 0 iff ( p) diverges. This is not strictly true in the case of 
the logarithmically diverging solution F,, because it is valid 
only in the rangep, - p > d - I .  We can find the constant c, 
by allowing for the first term on the right-hand side of Eq. 
(1 5) because near the boundary of the regionp, it differs from 
zero. Asp, 4 ,  the left-hand side of Eq. (1 5) tends to zero. 
The term with Q, also vanishes because it is a solution of the 
equation with Q, = 0. As a result, we obtain the boundary 
condition 

p,ZVf=O for p,=O, (21) 

which in the case of Eq. (17) becomes 

sdE/ds=O. (22) 

Consequently, the constant c, vanishes. In fact, Eq. (15) can 
be regarded as the diffusion equation for particles whose 
concentration is f in a planep, and the left-hand side of this 
equation describes their drift because of acceleration during 
the motion in a fied Ex in the bulk, whereas the right-hand 
side describes diffusion in the momentum space due to the 
surface scattering. Then, the boundary condition of Eq. (21) 
is simply the condition for the absence of a particle flux 
across the boundary p,. 

When Fal'kovskii calculated the carrier mobilities in a 
thin metal film,' he obtained formulas similar to Eqs. (15) 
and (17), but the boundary condition for his equations dif- 
fered considerably from that obtained by us. This was due to 
the fact that, as pointed out earlier, in the case of a thin film 
the free time between collisions with the surface is T, ccp; ', 
i.e., glancing electrons collide rarely with the surface, and 
their scattering time is governed by the bulk scattering time. 
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In this case the boundary condition specifies that the mobil- 
ity of glancing electrons should attain the bulk value. How- 
ever, in our case we have a different situation: glancing elec- 
trons collide more frequently with the surface (T, ap ,  ); they 
are scattered strongly by the surface and the bulk time T 

drops out from the final results. This is reflected in Eq. (15) 
by the presence on the left-hand side of a factorp, as a result 
of which in the limit asp, -0 this side tends to zero and we 
obtain the boundary condition (21). In the case of a thin film 
we find that p, is replaced with p, ', which gives risz to a 
divergence in the limit asp, +0, and Eq. (21) cannot be used, 
but we then have a chance to achieve matching with the bulk 
mobility directly. 

Substituting the solution (18) into Eq. (9), we obtain 

The value of the integral was obtained by numerical meth- 
ods. In the case of a Gaussian distribution of the surface 
projections, we have Q2 = 16(a/d )2 and 

y,-8.4. ( vT lES)  ( d / ~ ) ~ .  (24) 

5. DISCUSSION 

We shall begin an analysis of the results from the case 
pTd(l,  i.e., we shall assume d(AT/2.rr, which is usually re- 
alized in semiconductors (in contrast to metals, when the 
opposite inequality A, (d is more likely because the Fermi 
wavelength obeys A, (AT).  Comparing the mobility given by 
Eq. (14) with the Scjrieffer value, when p, a uT/Es, we find 
that the former is higher than the latter because (A $/ad )2) 1. 
This is due to the fact that the vanishing of the carrier wave 
function on the surface and the smallness of the tangential 
scale of the scattering centers compared with the thermal 
wavelength reduce the scattering cross section because of 
(ad /A :)2 ( 1. 

The dependences of the mobility on the normal field 
given by Eqs. (13) and (14) are the same as in the diffuse 
scattering case, i.e., when p, a E L  ', but the temperature 
dependence is considerably different. The Schrieffer mobil- 
ity rises with temperature as T 'I2. This is due to the fact that 
on increase in temperature the carriers move away from the 
surface, collide less frequently with the surface, and are scat- 
tered less. On the other hand, it follows from Eqs. (13) and 
(14) that the mobility decreases as T - 3 1 2 ,  which is a conse- 
quence of a reduction in the carrier wavelength on increase 
in temperature: A,  a T -'I2. Electrons can then approach 
the surface more closely (because of A ; 2 ,  and this increases 
the effectiveness of the surface scattering. Such a tempera- 
ture dependence is reported in many investigations, for ex- 
ample in Refs. 9 and 10, and it supports the conclusion that 
the scattering by projections plays an important role at high 
temperatures. 

We shall now consider the results reported in Refs. 9 

and 10 in greater detail. These results were obtained by mea- 
suring the surface mobility in the case of a silicon MIS struc- 
ture directly under an oxide formed by oxidation in dry oxy- 
gen9 and then in the presence of chlorine. lo In the latter case 
the surface mobility was much higher and its temperature 
dependence was in both cases described by the T -312 law 
valid at high values of T. Obviously, such a reduction in the 
mobility could be very difficult to explain by an increase in 
the effectiveness of the scattering by phonons. Therefore, in 
this case the scattering by the surface projections was in our 
opinion the main scattering mechanism. One should point 
out that the surface roughness should be understood in a 
wide sense, because the only important feature is the vanish- 
ing of the wave function at the boundary; therefore, our 
treatment applies also to stacking faults near the surface, 
whose concentration decreases as a result of oxidation in the 
presence of chlorine. 

In the derivation of the expressions for the surface mo- 
bility we have assumed that the electron gas is nondegener- 
ate near the surface. However, we can readily obtain the 
corresponding expressions also for the strong degeneracy 
case. We then have to substitute in Eq. (2) the expression df,/ 
6 ' ~  a S(E - E,)  instead of f,/kT. The integration in Eq. (7) is 
then carried out in an elementary manner and, instead of Eq. 
(14), we obtain p, a (v,/E, )(A ;/ad )2,  where u, and A, are, 
respectively, the electron velocity and electron wavelength 
at the Fermi level. 

At low temperatures (high values of A ), exactly as for 
strong fields E, , the nature of motion of carriers in an inver- 
sion layer near the semiconductor surface is influenced by 
the effects of quantization of such motion along thez axis. In 
the quantization limit, when carriers are in the first quantum 
band, the expression for the mobility was obtained by En- 
tin" and Cheng12: for A,>a,d, it has the form 

p,a ( ~ 7 ~ l - E ~ )  ( h o z l ~ d )  ', 

where uo=fi/mAo and A, - (fi2/meEs )'I2 are, respectively, 
the characteristic velocity and localization length of elec- 
trons at the first level. Therefore, it is quite clear that in the 
limit we go over to a quantum situation involving the replac- 
ment of uT  and A, with u, and A,, respectively. 

In the case of large amplitudes of surface projections it 
may happen that in the surface plane d the inequality A T /  
2 ~ ( d  is satisifed. This may occur also at high temperatures 
ifA, is small. Then, the mobility is described by Eq. (24). The 
appearance of a factor (d /a)2> 1 is due to the fact that the 
probability that an electron is scattered by the surfaceis then 
w2-pSa2 [in contrast to the case when p,d<l, when the 
probability is w, -p,py(ad )2], but electrons are scattered 
into a solid angle AR -(p,p,d 2)-'(. The total number of 
collisions necessary for the scattering is 

N z -  (w,AQ) -i-pod2/p,aZ, 

so that after averaging over the angles we obtain N, -d '/aL, 
the effectiveness of the scattering in the case of collisions 
with the boundary is 7, = N ,  ' -a2/d 2. In the former case 
we have AR = 27~ and 7,- (ad /A $)2. Hence, it is clear that 
the effectiveness of electron scattering by a boundary, which 
in the first case rises with a temperature as TZ, reaches now 
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saturation in the limit k B m / d  2 .  The surface mobility will 
then increase with temperature as T ' I 2  because of delocaliza- 
tion of carriers near the surface. 

In fact, the validity of Eq. (24) is not limited to the con- 
dition a(/2,/27r. It can easily be generalized to the case of 
rare surface projections of dimensions rgAT.  The scattering 
cross section for such projections is u z 3 [in contrast to the 
case when r(AT/27r, when - as shown above - we find 
that a-r2(r/ /2 )4], and in the absence of scattering interfer- 
ence, i.e., when the condition uN( 1 is obeyed, the efficiency 
of the scattering by the surface is characterized by ?N. 
Clearly, in this case we should understand a and d in Eq. (24) 
to be r and N - ' I 2 ,  respectively. 
"Weusefi= 1. 
*'For simplicity, we assume that the dispersion law of carriers is quadrat- 

ic. 
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