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Electron localization near a band edge in one-dimensional disordered systems is investigated at 
arbitrary values of the parameterp,l- 1. The ~erezinskirdia~ram technique is used. It is shown 
that nearp,I the localization length I,,, and the static dielectric constant E' decrease by one or two 
orders in a narrow interval of the parameterp,l. This abrupt transition explains the temperature 
dependence of E' in TCNQ salts with asymmetric cations. 

PACS numbers: 71.50. + t, 77.20. + y 

1. INTRODUCTION 

Interest in the theory of Mott localization of electrons 
in one-dimensional disordered systems has increased mar- 
kedly in the last few years, both in connection with the possi- 
bility of obtaining exact solutions of this problem and with 
the interesting experimental data on the electric properties 
of quasi-one-dimensional organic conductors Qn(TCNQ), 
and Adz(TCNQ), with strong structural disorder.IT3 Among 
the interesting results obtained in this field are the large val- 
ue and strong temperature dependence of the static dielec- 
tric constant E' (Refs. 1-3) and its high sensitivity to radi- 
ation  defect^.^ The large value&' - lo3 and its decrease in the 
region T >  150 K can be easily explained with the aid of a 
localization theory that takes phonon defects into account.' 
This theory, however, did not explain the low-temperature 
decrease of E'(T), wherein E' decreases by 3-5 times com- 
pared with its maximum value.14 In addition, the very 
strong sensitivity of E' to relatively small densities of radi- 
ation defects remained unexplained (the value of E' decreases 
by one-half at c,,,, = 0.6%). 

It is shown in the present paper that these facts can be 
explained within the framework of the localization theory 
developed by ~erezinskii,~ with account taken of the large 
impurity density (c = 50%) and the relative proximity of the 
Fermi level E, z 500-600 K to the edge of the band (one- 
quarter of the band is filled in Qn(TCNQ), and 
Adz(TCNQ),). The reciprocal free-path time in these com- 
pounds, estimated by various rnethod~'.~ is r- ' ~400-600  K 
and it is necessary to take into account in the ldalization 
theory the corrections in powers of ( ~ ~ ~ ) - ' - ( p ~ l ) - ' -  1, 
which were discarded in Ref. 5. Allowance for these effects 
decreases greatly the electron localization length I,, in a 
narrow energy interval near the edge of the band. This leads 
to strong decreases of the polarizability of the localized 
states and explains the strong dependence of E' on the tem- 
perature T (Refs. 1-3) and on the density c,,,, of the radi- 
ation  defect^.^ To calculate the localization length L,, and 
dielectric constant E' we use the ~erezinsk; technique.' For 
simplicity we consider in the present paper a continual mod- 
el of a one-dimensional disordered system with a potential of 
the "white noise" type and with a quadratic electron disper- 
sion. 

This model admits of an exact solution, which makes it 
possible to calculate the dependences of I,, and E' on the 
parameterp,l. It turns out that nearp,l=: 1 the values of I,, 
and E' decrease sharply by one or two orders of magnitude, 
corresponding to a strong decrease of the characteristic di- 
mension of the electronic states. This transition is interpret- 
ed as the boundary between the usual bound states and the 
Mott localized states.' It is interesting to note that the transi- 
tion pointp,l corresponds to the Ioffe-Regel' ~r i te r ion .~  

2. DERIVATION OF THE BASIC EQUATIONS 

We consider a one-dimensional gas of non-interacting 
electrons with a dispersion law ~ ( p )  =p2/2m*, located in a 
random potential V(x) produced by randomly disposed 6 
functions of equal amplitude u, and density c. In the Born 
approximation, such a potential is described by the pair cor- 
relator 

where the angle brackets denote averaging over the realiza- 
tions of the random potential. 

We shall assume that the relation between the electron 
momentum p, and the reciprocal electron mean free path 
I -' = C U : / U ~  is arbitrary. 

To determine the characteristics of the localized elec- 
tron states it is necessary to calculate the correlation func- 
tions of the density and current operators j '(x) and jl(x). 
These correlation functions are expressed at the frequency w 
in terms of mean products of exact Green's functions 
G * = (E - H f i0)-' (Ref. 5): 

It will be shown later that X +  makes no contribution to the 
static characteristics, and will be omitted hereafter. 

In diagram language, these mean values are represented 
in the form of a polarization loop, in the vertices of which are 
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located the operators 

The diagram expansion in terms of V is constructed in the 
usual manner in the coordinate-energy representation, using 
the zero Green's functions 

where p = (2m*.5)'12 and v =p/m*. On the diagrams, the 
Green's functions G ,+ and G ; are represented respectively 
by single and double lines. When averaging over the impuri- 
ty positions, i.e., when integrating over their coordinates, we 
shall use diagrams ordered along the x axis. The Green's 
functions G ,+ (E, X, x') can therefore be represented in fac- 
torized form: 

The corresponding factors can be included in the impurity 
vertices. 

The ~erezinskii diagram technique5 was based on re- 
tention of only those diagrams in which the rapidly oscillat- 
ing factors of the type exp(ip,x) cancel out. This corresponds 
to a diagram-selection criterion @,I)-'(1. In the present 
paper we wish to sum a series in powers of this parameter, 
which is assumed to be not small. Therefore, in addition to 
the impurity vertices that were taken into account by Bere- 
zinskii5 (see Fig. l), we should also take into account all other 
vertices (see Fig. 2) in which no cancellation of the oscillating 
multipliers takes place. The multipliers corresponding to 
these vertices are indicated in the figure captions. The corre- 
lators of the impurity potential (1) are shown in Figs. 1 and 2 
by wavy lines. By not assuming smallness of the reciprocal 
free path time T- ' = v/I compared with the electron energy 
E, we do not assume smallness of the external frequency com- 
pared with E. 

We must next calculate the polarization loop with the 
operators ja(x) and J "(x') in the entrance and exit vertices. 
The number of impurity vertices of the type of Figs. 1 and 2 
that can be inserted in this loop is arbitrary. It can be easily 
seen that the numbers of pairs of single and double lines in 
the vertical sections of the diagrams need not be equal to 
each other, since additional vertices of the type shown in Fig. 
2 alter them in an asymmetric manner, unlike the vertices of 

FIG. 1 .  Impurity vertices with cancellation of the main phase 
factors. A prime denotes replacement of single lines by double 
ones. The vertices correspond to the following factors (we have 
introduced for brevity the notationp, = p ( ~  + 0/2), 
p, = P(E - 0/2), 1, = 1 (E + 0/2), 1, = I (E - 0/2): a, b, 
c - ( - I , ) - ' ;  a', b', c' - ( - I,)-'; d - (l l12)p1~2; e - (1- 
,I2)-'I2 exp (2ix(p, -pz)); f - (l,l,)-1/2exp(2ix@, -p,)). 

FIG. 2. Impurity vertices containing rapidly oscillating factors. 
A prime denotes replacement of single lines by double ones and 
vice versa, meaning complex conjugation and interchange of the 
indices 1-2. The vertices correspond to the following factors: a, 
c - ( - I,)-'exp(2ip1x); e( l , l , ) -1 '2  exp ( - 2ip,x); g- 
( - I , ) - '  exp (4ip,x); i-( l , l , )1/2exp (2ix@, +p2)). The expres- 
sions for the vertices b, d, f, h, j are obtained from the corre- 
sponding expressions for the vertices a, c, e, g, and i by complex 
conjugation. 

the type shown in Fig. 1. It  is therefore necessary to intro- 
duce separately in each section of the diagram m,  and m2 
single and double lines. We note that a similar situation 
arises when account is taken of the discreteness of the lattice 
and of the commensurability of the electron wavelength with 
the lattice period.' Subdividing now at x >x '  the diagram 
into three parts, namely righthand (to the right ofx), central 
(between x and x') and left hand (to the left of x'), we obtain 

for the ,corresponding diagram sums R (x), z : j m 2  (XI, x), - 
Rmimi (x') Dyson equations that take on, after separating the 

coordinate dependences of the right-hand sides (Refs. 5 and 
7) 

for Rmlm2 the form 
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Equation for Z:$;(X', x) with allowance for the trivial 
boundary condition 

mi'mt' 
Zmlmr (5-0, X )  =6m,mt'6mzmz* 

can be easily t ran~formed~.~  by introducing the quantities 

~ T t m *  E 

(The appearance of the terms Rmlm2  + and R,, + ,,* is due 
to allowance for the entering vertices in which the double 
and single lines are oppositely directed), 

X P,;,,,,, exp[2i ( (m,p , -m,p2)x-  (m,'p,-rn!'p,) x') I (6)  

to the form 

The correlation functions X a- (E ,E ,~  ) are expressed in terms 
of the quantities P:,,, and QL,,,, in accordance with the 

Equations (4) and (7) enable us to calculate the main charac- 
teristics of localized electron states near a band edge. We 

note that the quantities Rmlm2 must satisfy the trivial bound- 
ary condition R,,, = 1. 

3. STATE DENSITY 

We note first that Eq. (4) with m, = 0 describes the 
averaging of the exact electron Green's function G + ( E  + o/ 
2, x, x )  at coinciding points7 and determines thus at o = 0 
the electronic state density distribution p(&) in accord with 
the known formula 

The expression for p ( ~ )  in terms of R,(E) = R,,(&) takes in 
this case the form 

. " 

where it is convenient to introduce the quantities R, with 
m < 0 in accord with the fomrula R, = R 5, .  The quanti- 
ties R ,  satisfy the trivial boundary condition R, = 1. 

The equation for R ,  is of the form 

2imp2Rm=3m2Rm+m(2m+l) Rm+,+ m(2m-1)R,- ,  
f 1 l 2 m  ( m + l )  Rm+a +1/2m(m-1)  Rm-z. (1 1) 

Introducing the function - 

we obtain for it the following equation: 

(3+cos 2q+4 cos q) dRl@+ (s-2 sin 9-sin 2cp) R=Cl, (1  2) 

where s = 2pl and the constant C ,  is chosen to satisfy the 
periodicity condition R (0) = R (277). The function R (9 )must 
satisfy the normalization condition 

The substitutions 
9 z= (s/4)Ih tg  - and R ( p )  ( l + t g 2 T )  =n ( ~ / 4 ) ' ~ p ~  ( z )  
2 2 

reduce Eq. (12) to the form 

dpo/dz+ ( z 2 +  (s/4)'!') po=C,, 

where the constant C, is determined from the condition that 
p,(z) decrease at infinity, p,( co ) = po( - co ) = 0. This equa- 
tion coincides with the known Halperin equation.' Its solu- 
tion, which satisfies the conditions that they decrease at in- 
finity, is 

s ( z )  =exp (- i / ,zS-2Ez) -=  i esp  ( ' / , u ~ +  2Eu) du, 

where 

The constant C is determined from the normalization 
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condition 

j ,,(z),=~. 
- ,, 

The state density&) can be easily expressed in terms ofpo(z): 

m 

-2p. J P .  (2) po (-2) dz, 
- rn 

where po = 0m*/2cu~)"~. The expression for p ( ~ )  can be 
easily transformed into the standard equation of Frisch and 
Lloyd9: 

1 
= ,[ (Ai ( -2E)) '+ (Bi ( - 2 E ) )  'I-', 

n (19) 

where Ai and Bi are Airy functions. The functionp(E ) has a 
characteristic maximum at Ez0 .2 .  The asymptotic form of 
p ( ~ ) a s ~ - + f  co is 

The quantities R ,  are expressed in terms of po(z) in accord 
with the formula 

Equation (22) determines, in particular, the solutions of (4) at 
m, =Oandm,=O: 

4. LOCALIZATION LENGTH 

The stationary distribution of the density of a localized 
electronic state is known5.'0 to be determined by the low- 
frequency asymptotic form of the electron-density correla- 
torX O(~,w,k ). In the limit of small w (T-' the important role 
in Eqs. (4) and (7) is assumed by large m,, m,-dw~)-'> 1, so 
that we can transform from difference to differential equa- 
tions. It is convenient to introduce for this purpose new dis- 
crete variables M = m, + m, and m = m, - m,, and, using 
the condition M> 1, expand Eqs. (4) and (7) in powers of 
M - 'g 1 up to the first term. Introducing now the continuous 
variable q = - ivM and v = w~(1, we obtain after simple 
transformations the equations: 

where 

The expression for the correlators X 5 n  terms of P ", 
and Q ",takes as 0 . 4  the form 

We note that at q = 0 Eq. (24) goes over into Eq. (1 I), there- 
fore the functions R ,  (q) satisfy the boundary condition 

where R ,  is defined by (22). 
it is easily seen that for the density correlator 

X 0  (~,w,k ) expression (27) takes the form 

This means that in the time representation the density 
correlator X 0  ( ~ , t ,  X) has as t-cc a stationary distribution 
that determines the density distribution p m  (x) of the local- 
ized electron state. It must be emphasized that the very pres- 
ence of the stationary density distribution p m  (x) follows di- 
rectly already from the general structure of Eqs. (4) and (7), 
as manifest in their "nondimensionalization" upon intro- 
duction of the continuous parameter q = - iv(m, + m,) at 
large m ,,m+ 1. We note that an analogous structure is pos- 
sessed also by the corresponding equations for the correlator 
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X ?+ ( E , w , ~  ). This correlator, however, is an even function of 
w, so that its expansion in powers of w as o+O begins not 
with the term -( - iw)-I, as for XO- ( E , w , ~ )  (see (29)), but 
with a constant. Therefore X$ (~ ,w,k)  makes no contribu- 
tion to the stationary distribution of the electron density as 
f-+co, and influences only the time dependences and the rate 
at which this distribution is reached. In the calculation of the 
static characteristic the contribution of X 0, can therefore be 
omitted. 

To calculate the localization length I,, it is necessary to 
find the position of the branch point of Q O, (q,x) with respect 
to x, which determines the exponential asymptotic form of 
p, (x) at 1x1 )I.I0 The position of the branch point relative to 
x can be easily determined from the asymptotic form of 
Q (q,x) at small q( 1 (Ref. 1 1). Indeed, substituting in (25) 
with a = 0 and q(l the quantities QL(q,x)--a,qA, we ob- 
tain for the coefficients a, the following linear equations: 

O=a,(A ( A f l )  +ims-ix-3m2) +a,,,-, (2m-1) (A-m+1) 
+a,,, , (2m+l) (-A-m-I) 
+~ , , - , [ -~ /~h (h+l )+  (m-1) (h+l)--'l,m(m--l) I 
+a.,+2[-'/2h(A+l) - (m+l)  (A+l) - l /zm(m+l)l .  (30) 

The position of the x branch point is determined from 
the equation 

At larges) 1 only the term with m = 0 are significant in (30). 
As a result, the equation for A takes the form 

and the branch points located at x = i/4 (Ref. 10). This cor- 
responds to a localization length I,, = 41. We shall find it 
convenient to introduce a new length unit 
lo = (2~u: (m*)~)-~ '~ .  In these units, l , , / l o~  16E at E)1 
(s) 1). The first correction to I,,, in terms of the parameter 
s-'(1 can be easily calculated by perturbation theory: 

We note that this correction is relatively small only at 
s > 10(E > 1). At arbitrary values of the parameters- 1, Eqs. 
(30) and (3 1) can be easily solved by numerical methods. The 
corresponding plot of I,, /Io vs E is shown in Fig. 3. It must 
be emphasized that the function I,, has a characteristic 
maximum at E ~ 0 . 3 5  (plz 1) and falls off rapidly at E < 0.35. 
This rapid falloff points to the existence of a rather abrupt 
boundary between the localized Mott states that are pro- 
duced as a result of interference of the scattered electron 
waves in a one-dimensional disordered system,' and the usu- 
al bound states. We note that the abrupt decrease of the lo- 
calization length takes place near p F I z  1. It is curious that 
according to Mott's qualitative  argument^'^.'^ the Anderson 
transitions from the localized to the delocalized states takes 
place in two- and three-dimensional systems at the point 
p,l=. 1 (the Ioffe-Regel' criterion6). This statement agrees 
well with the results of numerical calculations for three-di- 
mensional systems (see the review14). 

Thus, even in one-dimensional systems this point is the 

FIG. 3. Plots of the localization length l,,,,/I,, vs the electron 
energy E. The dashed line shows the asymptote 1,,,,/1,, = 16 Eat 
E,l. 

boundary between the weakly and strongly localized elec- 
tronic states. 

The function I,,, in the region of strong localization, at 
negative values of E, can be easily obtained by analytically 
continuing (30) into the region of complex values of the pa- 
rameter s, in analogy with the procedure used in the preced- 
ing section. 

We note, in particular, that as E-t - co the value of I,, 
decreases relatively more slowly: I,, (E) a (E I-"*. This re- 
sult agrees well with the usual ideas, advanced by I. M. Lif- 
shitz,I5 concerning the structure electronic states in a fluctu- 
ation tail. 

5. DIELECTRIC CONSTANT 

Equations (24) and (25) at a = 1 enable us to calculate 
the current correlator X L (E ,o ,~  ) that determines, in accord 
with the Kubo formula, the complex conductivity u(w) of the 
systems5 It follows from these equations and from (26) 
and(27), in particular, that w-0, X I- ( ~ ,w)  a ( - iv) at k = 0 
and vanishes at o = 0. Similar properties are possessed also 
by the equations for the correlator X :  (&,a), and this also 
causes it to vanish at w = 0. This correlator, however, is an 
even function of w and its expansion as w--4 begins with the 
term - v2 and makes no contribution to the static dielectric 
constant E', but contributes only to the low-frequency ab- 
sorption. The static dielectric constant is therefore fully de- 
termined by the correlator X 1- and takes the form 

(34) 

where the quantity qf,(q) is the solution of Eqs. (25) at x = 0 
and when P 2 s  replaced by 

(here e is the electron charge and S is the cross-section area 
per conducting filament). In particular, at large E> 1 only 
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- d e p ( e )  J e ( e - p ~ , T + l  
= const. 

- m  

FIG. 4. Plots of the static dielectric constant vs E. The dashed 
line is the asymptote of E ' / E ~  = 2< (3)E 'I2 at E> 1 .  

the terms with m = 0 are significant in the sums over m, and 
Eq. (34) takes the form 10 

e'=eoE3':2% (3),  E> 1 ,  (35) 

where 6 (3) z 1.205 is a Riemann 6 function. 
The solution of Eqs. (14) and (25) at arbitrary pl- 1 can 

be easily obtained by numerical method. A plot of sl(E ) is 
shown in Fig. 4. We note that this function, just as I,, (E ), 
has a characteristic maximum at Ez0.35 (plz  1). The de- 
crease of E' to the left of the maximum is even more abrupt 
and reaches two orders of magnitude. The presence of a steep 
rise of e' in the regionpl < 1 explains the substantial tempera- 
ture dependence of s '(T) in Qn(TCNQ), and Adz(TCNQ), at 
low temperatures1-3 and the strong sensitivity of s' to low 
densities of radiation defects. 

We note in conclusion that at large negative E the value 
of E' decreases rapidly, exponentially: Ins' a ( - IE I3l2), 
owing to the exponential decrease of the density j ( E  ) of the 
electron states. 

6. ANALYSIS OF EXPERIMENTAL DATA 

The strong al(E) dependence near Ez0.35 leads to a 
substantial temperature dependence of E'(T). Indeed, as 
shown in Ref. 2, the Fermi energy E, in Qn(TCNQ), and 
Adz(TCNQ), is close to 500 K. Therefore at T-- 100 K the 
electron gas in these substances cannot be regarded as 
strongly degenerate and in the calculation of s' it is necessary 
to take into account the thermal smearing of the Fermi dis- 
tribution. The temperature dependence of s l (T)  is deter- 
mined in this case by the relation5.I0 

where p is the chemical potential. The function p ( T )  is de- 
fined by 

At the present time, the most detailed data onsl(T) were 
obtained for Qn(TCNQ), (Refs. 1 4 ,  16). These studied re- 
vealed an abrupt fall-off ofel(T) (by approximately 5-6 times 
compared with the maximum s,,, (200 K) --, 1500-2000) in 
the temperature interval 50 < T <  200 K. The mean free path 
1 estimated from the maximum of sf amounts in Qn(TCNQ), 
to about 2.5 lattice constants b (bz3.8 A).' It can be easily 
seen that a similar estimate of I based on the value of ~ ' ( 0  K) 
yields I = 6. This value is in good agreement with estimates 
of the impurity potential ( V-0.1 eV) obtained by computer 
calculations3 of the chemical structure of Qn(TCNQ),. Since 
the electron band in Qn(TCNQ), is &filled, we havep, = T /  

46 andp,/ z0.7-0.8. Figure 5 shows the temperature depen- 
dence ofsl(T) determined from (36) atp,l = 0.7 (the param- 
eter~, /  was determined at zero temperature). We note that 
within the limit of the scatter of the experimental data'6 the 
agreement between theory and experiment is good enough. 
Thus, the noticeable decrease of s' with decreasing tempera- 
ture can be successfully explained within the framework of 
the theory of one-dimensional localization. 

It is easily seen that the abrupt decrease ofa' in a narrow 
interval of the parameterp,l can explain also the decrease of 
E', by one order of magnitude, at a radiation-defect density 
c ,,,,, - 10% (Ref. 4). 

It is easy to see that our interpretation of the strong 
influence of the radiation defects on the value of a' is based 
on the assumption that the parameter p,/ is close to unity; 
this corresponds to the region of the abrupt decrease of a' 
and to a relatively short mean free path 1-6. This estimate 
agrees well with the notion of strong disorder in 

FIG. 5 .  Plots of the temperature dependence of d ( T )  in 
Qn(TCNQ),. The circles are the experimental points.16 The solid 
line is theoretical for p,l = 7. 
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Qn(TCNQ),, due to the random spatial orientation of the 
asymmetric Qn++ cations. The value of the random poten- 
tial V produced in this case is numerically estimated3 at ap- 
proximately 0.1 eV, in agreement with the estimate I-b. 
These estimates agree also with the experimental data on the 
influence of radiative defects on the magnetic susceptibility 
x in Qn(TCNQ), (Ref. 17). As seen from the plots in that 
reference, small densities, - 2-3%, of radiation defects lead 
at not too low temperatures T- 50 K to weak changes ofx, 
not larger than 10%. These data point thus to a rather high 
density of the main defects in Qn(TCNQ), and agree with the 
estimate I-b. The stronger change of x in the region of a 
strong singularity of the magnetic susceptibility at low tem- 
peratures T <  20 K can be connected with collective effects 
that are of no significance at higher temperatures T >  50 K. 

7. CONCLUSION 

Our present results point to the existence of two charac- 
teristic localization lengths in one-dimensional disordered 
system near a band edge. These scales differ by an order of 
magnitude, and the boundary between them lies near the 
value p,l=: 1, in accord with the usual Ioffe-Regel' crite- 
r i ~ n . ~ . ' ~ . ' ~  In systems with more dimensions this point corre- 
sponds to the Anderson transition'"14 and separates the lo- 
calized and delocalized electronic states. In one-dimensional 
systems it is the boundary between weakly and strongly lo- 
calized states. We note that a similar phenomenon can occur 
also in two-dimensional systems. , 

In conclusion, the authors thanks E. I. Rashba and I. F. 
Shchegolev for a helpful discussion of the results. 
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