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Analysis of the stability of inhomogeneous structures (IS) has shown that in initially homogen- 
eous nonequilibrium systems it is possible to excite pulsating inhomogeneous regions whose 
volume or shape oscillates at a certain characteristic frequency. It is shown that such pulsating 
"heterophase" regions can arise, for example, when electrons are heated in semiconductors, when 
gases are ionized, and in the model that describes the ~elousov-~habotinskg reaction. Heating of 
electrons in a semiconductor by an electric field produces only the simplest of the pulsating IS, in 
the form of a pulsating current layer or pinch. In other more complicated systems the simplest 
pulsating IS are distributions in the form of a breathing stratum wall, a solitary pulsating spot or 
drop, as well as several pulsating strata, spots, or drops that are separated from one another. From 
the form of the critical fluctuations with respect to which the IS become unstable it is deduced that 
when the distance between the drops is small they become unstable with respect to fluctuations 
that constitute small in-phase changes of the volumes of these drops. Explanations are offered for 
the experimental data on local oscillations in nonequilibrium systems, including the leading 
center observed in experimental investigations of a gas discharge and of the Belousov-Zhabotins- 
kii reaction. 

PACS numbers: 05.40 + j 

1. INTRODUCTION 

Stable inhomogeneous structures (IS) of large ampli- 
tude can be produced in nonequilibrium systems with a kine- 
tic phase transition.I4 Stable IS are produced in phase tran- 
sition also in equilibrium In contrast to 
equilibrium systems, however, in nonequilibrium systems 
there can be produced homogeneous oscillations, and pulses 
that travel without damping as well as other complicated 
autowave processes can be e ~ c i t e d . ~ - ' ~  In a number of ex- 
periments, local inhomogeneous oscillations are observed, l5  

including some in the form of a leading center that consti- 
tutes a local source of generation of spherically diverging 
undamped waves.8-' ' 

In this paper we propose a mechanism and determine 
the conditions for the onset of pulsating "heterophase" re- 
gions (including some in the form of a pulsating single drop), 
whose size or amplitude varies periodically with time. We 
consider a rather large class of nonequilibrium sys- 
tems,14.8-18 whose properties are described by the equations 

~edB/dt=l~A0-q  (0 ,  9 ,  A , .  . . , G ) ,  (1) 
t,,dq/dt=TA2Aq-Q (0, q ,  A ,  . . . , G )  . (2) 

These include, in particular, a weakly ionized and 
the ~elousov-~habotinskg autocatalytic reaction,s*' ' which 
were experimentally investigated in detail. In the model of 
the latter reaction1' the activator 8 and the inhibitor (damp- 
ing parameter) q are the concentrations of the intermediate 
reaction products, while A, ..., G are the kinetic coefficients 
and certain constants that characterize the rates of the reac- 
tions as well as the concentrations of the initial and final 
products. For an ionized gas, the system (1) and (2) consti- 
tutes, under conditions when the gasdynamic description is 
applicable, the equations for the electron-density balance 
and for the effective electron temperature. l4 In this case the 

role of the activator 8 is played by the electron density and 
that of the damping parameter q by the temperature.16 

The general requirements imposed on the form of the 
functions q(8, q, A ) and Q (q,8, A ) for systems with kinetic 
phase transitions were formulated in Refs. 3 and 4, where, in 
particular, it was shown that the local 8 (q) relation that cor- 
responds to a zero isocline q(q, 8, A ) = 0 is single-valued in 
three (or two) sections separated by the points 8,(A0) and 
8 ;(A ;), at which q; = 0. On the second (unstable) section we 
have qi  < 0. The homogeneous state of the system is unstable 
only in a certain range [A,, A 5 ] of the bifurcation param- 
eter A, where q; < 0. We shall call the region corresponding 
to A <A, cold, and to A >A ; hot, while the region 
A, <A <A 6 will be called heated. The spontaneous forma- 
tion of IS in the considered systems is due to spatial decou- 
pling of the activator 8 from the damping parameter q (Ref. 
19), which is easier the more the characteristic length L of 
the variation of q(r) exceeds the characteristic length I of the 
variation of 8 (r). 

In some systems, L exceeds not only I but also the sys- 
tem dimensions In this case q hardly changes in space, 
and its value is determined by Eq. (2) averaged over the vol- 
ume of the system4: 

-cdqlal=-(Q(e ( r ) ,  q ,  A ,  . . . ,G) >, (3) 

where the symbol (.-) denotes averaging of the function 
over the system volume V on the boundaries H of which3 

and n is a unit vector normal to the surface. The system (1) 
and (3) describes the properties of a number of concrete phys- 
ical systems. Reducible to this system are the equations that 
describe stratification of the current in semiconductors with 
single-valued current-voltage characteristics (CVC), includ- 
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ing in the presence of superheat instability of the electrons 
when the phonons are in disequilibriumZ0 and Joule heating 
of certain semiconducting str~ctures.".'~ 

Also reducible to the system (1) and (3) are the equations 
that describe the pinching of current in superconductors 
withS-shaped CVC,12.'7'21 when the role of (3) is assumed by 
the equation of the external circiut. The conditions for the 
onset of pulsating current pinches under superheat instabil- 
ity of the electrons in semiconductors will be analyzed in Sec. 
3. First, however, we consider in Sec. 2, the general condi- 
tions for the appearance of p.ulsating "heterophase" regions 
in systems with infinite length of variation of the damping 
parameter q. In Sec. 4, the results are generalized to the case 
of a finite value of L. In Sec. 5 we analyze critical fluctu- 
ations to which the IS become unstable, and advance some 
hypotheses concerning the type of the possible pulsations in 
the considered class of nonequilibrium systems, as well as 
the effects connected with them. 

2. SYSTEMS WITH INFINITE LENGTH OF VARIATION OF THE 
DAMPING PARAMETER 

Stationary inhomogeneous solutions of the system (1) 
and (3) under the boundary conditions (4) were analyzed in 
Refs. 4, 12, 17, and 18. It follows from their results that the 
only stable states in systems with L = oo and T, = 0 are IS in 
the form of a single stratum, of a spot (cylindrically symmet- 
rical IS), or of a drop (spherically symmetrical IS). We exa- 
mine the stability of these IS at finite values of 7,. To this end 
it is convenient to analyze the derivativedq/dA, which in the 
general case when the bifurcation parameter A has a fre- 
quency w, we shall call the susceptibility of the system. 

For the sake of argument we investigate the stability of a 
spot and of a drop, i.e., of radially symmetrical stationary IS 
in a system of radius R,, which satisfy, according to (1) and 
(3), the equations 

wherep is measured in units of I, and s = 1 and 0 respectively 
for spherically and cylindrically symmetrical states. We lin- 
earize Eqs. (1) and (3) near the stationary state O @) that satis- 
fies (5) and (6), relative to perturbations of the form 

6q (t) =6qe-T', 6A (t) =6Ae-Tt, (7) 

60 (p, a, (P, t )  =60e-", 60=60(@) (p)em4(cos a) e", (8) 

where P hm)(cos a) are associated Legendre polynomials in the 
case of spherical symmetry and 

60 (p, cp, t) =60e-lt, 68=60(@) (p) ei" (9) 

in the case of cylindrical symmetry. As a result we find that 
the spectrum of the fluctuations of y is determined from the 
equations 

where 

respectively for spherical or cylindrical symmetry; 
a = T ~ / T , ;  the time is measured in units of T,. 

We expand the functions SO @ )  in terms o f ~ h e  orthonor- 
malized eigenfunctions SO ? I  of the operator H ',B). We sub- 
stitute this series in (lo), multiply the resultant expression 
from the left by SO f), and average over the volume of the 
sample. As a result, putting y = iw, we obtain 

M 

where R ?) are the eigenvalues of the operator H f l ,  with 
po > 0 and all af)>O (Refs. 1-4). 

To find the spectrum of the fluctuations of y at SA = 0 we 
substitute the perturbation Sq from (11) in (10). Next, ex- 
panding the function SO @) in a series in SO ?), we arrive at a 
system of homogeneous algebraic equation with respect to 
the coefficient of this expansion. The condition for the solv- 
ability of system reduces to 

It can be seen from (17) that y = R ?) at f l  #O. This result 
follows directly from (10) if it is recognized that, according to 
(1 I), Sq = 0 for the functions SO ?' with f l  #O. We note that 
for the same reason only the functions SO F) are contained in 
(14)-(16). 

Differentiating Eq. (6) with respect top, we obtain 

i.e., SO a dB /dp at %system radius R,+m is an eigenfunc- 
tion of the operator H (,"and corresponds to R (,') = O(see Ref. 
22). It  follows therefore that in the considered systems with 
L = oo (Ref. 4) (just as in semiconductors with S-shaped 
CVC'7.22) the only stable IS are those in the form of a single 
drop or a spot (current pinch), for which 19 @) is monotonic 
and consequently only R t1 < 0, with R = 0. For a drop or 
spot with large radiuspo>l, according to Refs. 23 and 3, we 
have R f)- - (I/po)2. At a finite radius, R,, the function 
SO a dO /dp does not satisfy the boundary condition (4), since 
it is the function itself and not its derivative which vanishes 
on the boundary. The true value R g) corresponds to thz ei- 
genfunction Set1 ,  which satisfies (4), of th5operator Hg). 
From (18), using the fact that the operators H ',B) are Hermi- 
tian and the condition24 that 68  g)(O) = 0, we obtain 

1276 Sov. Phys. JETP 56 (6), December 1982 B. S. Kerner and V. V. Osipov 1276 



The estimate (19) takes into account the fact that the func- 
tion SO is localized in the wall of the drop or the spot (of the 
current filament23). Thus, for a drop (spot) R !' is negative at 
finite R, )I, but it is an exponentially small quantity. There- 
fore, at finite values of L, even a small change of p@) leads to 
suppression of the growth of SO t' (see also Sec. 4) and to 
instability of the drop (spot) at the center of the ~ y s t e m . ~ . ~  
Formally, however, at L = a, the drop (spot) at the center of 
a spherically (cylindrically) symmetric system of radius R, is 
unstable. What can be stable is a distribution in the form of 
1/8 (1/4) part of the drop (spot) located in a system that has 
the form of one-eighth of a sphere (one-quarter of a cylinder) 
of radius R,.  For such distributions of 8 @) the function SO 
is n 2  included among the eigenfunctions SO If' of the opera- 
tor H ',", since it does not satisfy the boundary conditions (4), 
and therefore only R r' < 0. 

Thus, for a potentially stable single drop (spot) only 
R 60' < 0, and it follows therefore from (17) that the drop is 
unstable when N = 0, where N is the number of zeros in the 
upper w = - iy complex plane of the function D'O'(o) (15). 
According to the argument principle, 

N=P+ (2n) -' arg D("' (o) , 

where P is the number of poles of the function D "'(w) (15) in 
the upper half-plane. In the case considered, only A r' < 0, 
i.e., P = 1. It can be seen from (1 5) that Re D "'(a) is an even 
function of w and Im D "'(o) is odd, with D "'( k w ) = 1. It 
follows therefore, that when D'O'(0) >0, we have N = 1 
(curve 1, Fig. la), and consequently the drop (spot) is unsta- 
ble. 

At D "'(0) < 0 the quantity arg D '"(o) depends on the 
sign of the quantity 

zero, and arg D'O'(w) = - 27r (curve 2, Fig. la) i.e., N = 0, 
and consequently the drop (spot) is stable. Thus, when (2 1) is 
satisfied the condition D'O'(0) = 0 determines the stability 
limit, i.e., the point A = A, on the bifurcation characteristic 
(on the plot of p on A, where d ~ / d A  (w = 0) = w , Fig. 2), is 
according to (14) the demarcation point. In this case only 
drops (spots) of large amplitude are stable, since it is precise- 
ly for them that D "'(0) < 0. (Refs. 3 and 4). 

At a( 1, since po = (Q :, ) - 1, the condition (21) no 
longer holds even for drops (spots) of large radiuspo)l, for 
which R r'- - (I/po)2. Inasmuch as for them we have 
[A f '  I ( 1, it follows that D "'(0) (1 5) is certainly less than zero, 
and it can be seen from (20) that K "'(0) < 0, but reverses sign 
already at a certain w = w ,( 1. Analogously, at a certain 
w = w, we have Re D "'(w,) = 0, sinceRe D "'(0) 
= D "'(0) < 0, while Re D 'O'( w ) = 1. From an analysis of 

D ("(w) (1 5) it follows that at K "'(0) < 0 the drop (spot) is sta- 
ble (N = P - 1 = 0) if Re D "'(w,) < 0 (curve 3, Fig. lb) and 
unstable (N = P + 1 = 2) if Re D'O'(w ,) > 0 (curve 4, Fig. lb). 
Thus, at a certain critical dimensionp, of the filament, when 
0, = w,, we have D "'(w,) = 0, i.e., the real frequency w, is a 
zero of the function D'O'(w) at the stability threshold of the 
drop (spot). Since Re D "'(o) (1 5) and K "'(w) (20) are func- 
tions of w2, it follows that D'O'(w) vanishes at o = k a, ,  and 
it is this which explains the simultaneous appearance of two 
zeros of the function D'O'(w) in the upper half plane of 
w(N = 2). 

We ascertain now the conditions (in particular, we esti- 
mate the critical radius of the dropp,) under which ol = w,, 
and estimate also the value of a , .  Recognizing that among 
the R only A r l <  0, and for a drop (spot) of large radius we 
have lR 41, we can retain in the sum (15) for Re D'O)(o) 
only the first term and find that 

- In the estimate of (22) it was taken into account1' that the 
(a) = C a d 0 '  (ap+li:" ) [ (hio' ) z+o'l-l function SO is localized in the wall of the drop (spot), where 

n=o 

1 q; Q ;, < 0 (Ref. 3), and the thickness of the drop (spot) wall is 
a - ImD'O' ( a ) .  (20) of the order of I. Taking into account the smallness of the 

0 
quantities 12 f'I,a and w,, we can obtain from (20) the insta- 

In the case when a = T,/T, is not small, or more accurately bility condition corresponding to K "'(w,) < 0, i.e., w, >a , ,  
when when Re D "'(w,) > 0 (curve 4, Fig. 1 b): 

ayo+hdO'>O, (21) 
m 

ap+h~"<-ap0 Cai"lh,?' <O(>-a). 
the quantity K'O'(o) at all finite o is certainly larger than 

(23) 
n-I 

FIG. 1.  Qualitative behavior of the complex function D'O'(w) (15) on circling around the upper half-plane of o: a-at K"'(w) > 0 (20); b-at K'O'(0) < 0. 
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FIG. 2. Form of the bifurcation characteristic of a spherically (cylindri- 
cally) symmetrical system of radius R, with a drop (spot) for the case 
L = a, Q ; > 0, Q :, = 0, q; < 0. The curve 0 corresponds to the homo- 
geneous state, I to a hot drop (spot), and I1 to a cold drop (spot). (The 
unstable sections at a > a, are shown dashed.) The arrows show the possi- 
ble jumps when the given state loses stability. 1, 1'-points where the ho- 
mogeneous state loses stability. 

For a drop (spot) of large radius R :'- - (1 /p,)', therefore 
the condition (23) at a ( l  is satisfied at p,<p, -la-112, 
when JR (1. In this case, as already noted, DtO'(0) < 0 (15), 
i.e., the drop (spot) is stable relative to fluctuations with 
w = 0. Thus, at a( 1, with decreasing bifurcation parameter 
A and corresponding decrease of the radiusp, of the drop at 
A =A,, at which ~ ' ~ ' ( w , )  = 0, and dq/dA (w = w,) = W ,  
the drop (spot) loses stability and does not reach the point 2 
(A = A,) on the bifurcation characteristic (see Fig. 2), where 
dq/dA (w = 0) = w . 

The result has a simple physical meaning. At 
A, >A >A, a uniform slow growth of the activator fluctu- 
ation 60 :' with a growth rateR t' < 0 is damped by the corre- 
sponding change of q. At the same time at r,)r,(a<l), the 
change of the lower-inertia activator with frequency 
rgl)wc)r;' cannot be followed by the larger-inertia 
damping parameter q, i.e., it no longer damps the onset of 
inhomogeneous self-oscillations 60 a 60  flcos w,t. In other 
words, the physics of the appearance of drop (spot) fluctu- 
ations with frequency o, is the same as that of the onset of 
homogeneous oscillations, and is connected with the fre- 
quency difference between 68 t' and 677. Indeed, linearizing 
(I)  and (3) [or (2)] relative to the homogeneous fluctuations, 
we find3.19 that the homogeneous state loses stability relative 
to fluctuations of frequency w = wo, where 

when 

If it is recognized that p, = (Q h), it can be seen from a 
comparison of (25) with (21) and of (23), (25) with (22) that the 
condition for the onset of the pulsations (23) correlates with 
the condition for the onset of homogeneous oscillations (25). 
At the same time, according to (24) we have w,-(~,r,)-'/~, 
and for a drop (spot) of large radius we have 
0, - ( T ~ T , ) - " ~ ( ~ ~ ~ +  '/R :+ ')'I2, i.e., the frequency w, of the 

critical pulsations of the drop is noticeably larger than w,. 
Such a difference between o, (22) and the frequency 0, (24) 
for the onset of homogeneous oscillations is connected with 
the fact that the unstable section in the drop (spot) of radius 
p,, where q; <O, in contrast to the homogeneous state, is 
concentrated only in a narrow spherical (cylindrical) layer of 
thickness of the order of 1, where 66 r1 differs from zero3 (see, 
however, footnote 1). 

We note3v4 that the IS in the form of a single drop (spot 
or stratum) exists also in the cold region (A <Ao), where the 
homogeneous state is stable and the condition (23) for the 
onset of the pulsations of a drop is easiest to satisfy. The 
latter is due to the fact that when the system is cooled the 
drop radius decrea~es~.~  and consequently A, - - (I be- 
comes a more negative quantity. When the system is heated 
(when A increases) the drop expands and at A 2 A : it is trans- 
formed into a narrow (with dimension of order 1 ) cold spheri- 
cal layer at the system boundary in the form of a sphere of 
radius R,. Such a layer becomes unstable even at a > l ,  
without reaching the point 2' (A =A :) where 
dq/dA (w = 0) = w (see Fig. 2). The latter is connected with 
the fact that there are several A f 1  < 0 in the spectrum of the 
fluctuations of the narrow spherical layer.3 

In the hot region, besides the narrow cold spherical lay- 
er at the surface of the system, there is realized an IS in the 
form of a cold drop at the center of the system. The presence 
of two different states, corresponding to a hot and to a cold 
drop existing approximately in one and the same range of 
values of A (Fig. 2), follows directly from the procedure of 
the construction of the IS (Refs. 1 and 3). Indeed, Eq. (5) can 
be formally regarded as an equation for one-dimensional 
motion of a particle with coordinate 0 and timep, moving in 
a potential U, in the presence of a friction force of constant 
sign that decreases with increasingp (Ref. 3). The distribu- 
tion of 0 @) in the form of a drop (spot) of large radius corre- 
sponds here to a particle trajectory from one saddle point of 
the potential E, to a n ~ t h e r . ~ . " , ~ ~  In a certain range of the 
bifurcation parameter A there exist a certain q = qs, at 
which the values of the potential U, at the two maxima, i.e., 
at the saddle points of Eq. (5), coincide.24 Because of the 
friction, the particle moves on a descending trajectory, 
therefore 0 @) in the form of a hot drop withpo>l is realized 
only at q > q,, while in the form of a cold drop it is realized 
that q < qs (Ref. 3) for a system whose bifurcation character- 
istic is shown in Fig. 2. When the system is heated, the radius 
of the cold drop decreases, and in the case as1 the drop 
vanishes jumpwise at the point A =A :,, where 
dq/dA (0) = w (see Fig. 2). When the system is cooled, the 
cold drop expands and is transformed into a narrow hot 
spherical layer at the surface of the system, and the layer 
loses stability at a lower value of A than in the case 
dq/dA (0) = w (Fig. 2). If a ( l  the cold drop, for the same 
reason as the hot one, becomes unstable at A = A : <A 
which corresponds to the limit of satisfaction of the condi- 
tion (23), relative to the fluctuation 60-SOfl@) cos w,t, 
which is a small oscillation of the volume of the drop with 
frequency w, (22). 

The fluctuation 60 p(p), relative to which stability is 
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lost, is centrosymmetric and is localized at the center of the 
drop. At a4 1, as already noted, the condition (23) is satisfied 
at a drop radiuspo)l, and consequently the instability rela- 
tive to the fluctuation SO :I@) cos o,t  denotes instability rel- 
ative to the onset of pulsations of the drop, i.e., of oscillations 
of its radius. At not too small a value of a, the condition (23) 
is satisfied for a drop (spot) of small radius, inasmuch as for it 
il :I- - 1 (Ref. 3). For such a drop, SO :I@) is localized over 
the entire region of the drop, and its extrema are located at 
p = 0. Consequently, stability is lost in this case relztive to 
small oscillations of the drop amplitude, with frequency o, . 
With further increase of a ,  the value of A, tends to the value 
of A, at which dv/dA (o = 0) = co (Fig. 2). In this case the 
instability that leads to pulsations of the drop, becomes 
aperiodic at a = a,, at which A, = A,. Thus, at a > a, there 
will be no drop pulsations, and at A <A, the hot drop vanish- 
es jumpwise (Fig. 2). 

3. PULSATING CURRENT PINCH2' 

We consider an electronic semiconductor of cylindrical 
shape with radius R, and height I, for which the necessary 
condition of superheat is satisfied: 

d l n  ~ ~ ~ , / d l n  T,>1, i.e. %$.E>1. (26) 

Here and determine the dependence of the momentum 
relaxation time T, a T $ and of the energy T, a T$ of the hot 
electrons on the electron temperature T,. The condition (26) 
is satisfied at low lattice temperatures To in certain semicon- 
ductors, when the carrier momentum relaxes on ionized im- 
purities, and the energy relaxes on piezoacoustic phonons. l7 

In addition, we assume satisfaction of the condition under 
which the electron gas can be regarded as nondegenerate and 
incompressible, so that the energy-balance equation of the 
electron gas can be written in the form",22 

where account is taken of the fact that the stratification of 
the temperature of the electron gas takes place in a direction 
perpendicular to the electric field E (the z axis), i.e., 
V, = id/dx + jd/dy; the quantities n, a ,  x, and c, are the 
concentration, specific conductivity, thermal conductivity, 
and specific heat of the electron gas. Negative differential 
resistance and instability of the homogeneous state in a semi- ' 

conductor of sufficiently large cross section 
(R,)l= (x~,/nc,)"~, Ref. 22) is realized 

This leads to pinching of the current density at a given cur- 
rent in the external circuit, or more accurately at a sufficient- 
ly large load resistance R,.22 In other words, when pinching 
of the current is considered, Eq. (27) must be considered to- 
gether with the equation of the external circuit 

where is the power-supply voltage and, in contrast to 
Refs. 12, 17,22, and 23, account is taken of the influence of 
the capacitance C. Using the notation 

we easily write Eq. (29) in the form (3), in which 
4 

(Q ( q ,  0, A )  ) = - A R W ~ - ~ + ~ R ~ R ~ - ~ + ~ Z ~ R ~ I ! ~ - ~  2 n j  o (0) p dp, 

(30) 
and Eq. (27) in the form 

re ( x O / x )  (d0lat)  =A,0-q ( 0 ,  q) , (3 1) 
q (8, q )  = [ T ( 0 )  -11 T-' (0)  - -TC(0)  $go; 

go=oOzeO ( E O )  '/TOnc,.  (32) 

Equation (3 1) differs from (1) by an insignificant factor xO/x 
and by replacement of the operator A by A, .  The only effect 
of the factor xO/x is that the eigenfunctions SO @)in the equa- 
tions derived in Sec. 2 must now be normalized with a weight 
xO/x; the appearance of the operator A T ,  on the other hand, 
means that in the concrete case considered it is impossible to 
have an IS with spherical symmetry in the form of a drop, 
but an IS of cylindrical symmetry, a current filament, is real- 
i ~ e d . ~ ~  Thus, all the general relations and results obtained in 
Sec. 2 are fully applicable to the present model. This makes it 
possible, using (22) and (23), write down the condition for the 
onset of radially symmetrical oscillations of the wall of the 
large-radius current pinch, for which il :I- - T: '(l/po)2, 
in the form 

and estimate the frequency of such pulsations of the pinch: 

o,- [2np,l ( o J - o i ) l l , t , C ]  I"= (L,C)  - ' I2  , (34) 

where a, = a(T3), 0, = (T(Tl); T3 and T, are the tempera- 
tures of the electrons in the filament ( O Q  <po) and outside it 
bo <p< R, ); L,  is the inductance corresponding to the iner- 
tia of the pinch Z fil(o) and Z, '(a) are the differ- 
ential admittances of the pinch and of the remaining part of 
the sample, regarded as homogeneous phases with cross sec- 
tions n-p; and n-(R - pz ) (Ref. 23). 

The relations (33) and (34) obtained for the analyzed 
simplest model can be obtained also directly from an analy- 
sis of the zeros of the function Z -'(o) + R , ' - ioC, that 
follows from Kirchoff s law, whereZ -'(a) is the admittance 
of a sample with a pinch. According to (23), the equivalent 
circuit of a sample with a current pinch of large radius con- 
sists of parallel-connected impedances Zd , and Zd, and the 
impedance of the pinch wall, which comprises a series-con- 
nected of the negative resistance R, = L,A and of the in- 
ductance L , .  Therefore the addition in the external circuit 
of the capacitance C satisfying the condition (33) leads to 
oscillations of the walls of the pinch with frequency oc(34). 
From the viewpoint of the general approach developed in the 
present paper, the damping parameter 7 is in this case the 
electric field E (the increment of E in the regime of a given 
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total current in the absence of capacitor damps out the per- 
turbations of the activator--of the temperature O ). On the 
other hand, in the presence of a capacitance C the field E 
does not manage to follow the fluctuation SO with frequen- 
cy w,, since the characteristic time of variation of the field E 
at sufficiently large R, and C is 

T , , ~ C  (3d1- '+213- ')  -'B,ZO~-'. 

In other words, the temperature fluctuations SO in the wall 
of the pinch (activator) and of the damping parameter q a E 
differ in frequency. Obviously, a similar situation is realized 
also in systems with N-shaped CVC. In this case the imped- 
ance of a static or of a moving domain contains a resistance 
R,<O connected in parallel with a capacitance 
Cw = l/RcAo (Ref. 17); therefore addition of a certain induc- 
tance 2' in the external circuit leads to pulsations of the 
domain wall with frequency o, -(Cw 2')-''2. 

In the model considered above, that of superheat insta- 
bility of the electron gas in the semiconductor, it was as- 
sumed that the phonons are at At low tem- 
peratures this assumption is not justified, since heating takes 
place of the system of the long-wave phonons (LP) with 
which the hot electrons interact. As a result, the section of 
the negative differential conductivity on the CVC vanish- 

since the Joule power obtained by the electrons from the 
electric field goes to heating not only the electron system but 
also the LP, whose specific heat increases like T :". Never- 
theless, stratification of the current will take place in such a 
system,20 and in accordance with the results of the present 
study the current pinch can pulsate. In other words, stratifi- 
cation of the current takes place at positive differential resis- 
tance of the semiconductor and even in the case when its 
CVC is single-valued. The physical meaning of this result is 
the following.20 A homogeneous increase of Te leads to a 
homogeneous heating of the LP, and this damps out the su- 
perheat instability of the electron gas. A different situation is 
realized in the case of inhomogeneous change of T,. Indeed, 
relaxation of the LP at low temperatures takes place as a rule 
at the boundaries of the sample,25 i.e., they can be only uni- 
formly heated. It follows from this that the inhomogeneous 
fluctuations of T,, which do not change the total current in 
the circuit, will not cause a damping heating of the LP. In 
other words, the stratification of the temperature T, of the 
hot electrons is due to the spatial separation of the electron 
system and of the LP, while the possibility of the appearance 
of a pulsating pinch is connected with their frequency separ- 
ation. From (22) we can obtain for this model that the pinch 
pulsation frequency is 

We" ( T ~ T ~ ~ ,  e)  -I" ( lp~Rb-~) 'Iz, 

where rPh,, is the relaxation time of the LP energy on the 
 electron^.'^ In this case the bifurcation characteristic of the 
sample with hot and cold current pinches has the form 
shown in Fig. 2, where q is the average energy of the LP and 
A cr E2. 

4. SYSTEMS WITH FINITE LENGTH OF VARIATION OF THE 
DAMPING PARAMETER 

Methods of constructing stationary solutions of the sys- 
tem (1) and (2) and for the analysis of their stability were 

developed in Refs. 1-4 where it was shown, in particular, 
that the spectrum of the fluctuations of y near the investigat- 
ed IS is determined from the equation 

" 

where 

and (.-) denotes averaging of a function over the volume of 
the system. Owing to the damping action q, all the fluctu- 
ations 67, correspond to eigenvalues p, > 0, and the larger 
the index I the larger p, (Ref. 1). In the spectrum A, of the 
fluctuations SO, of the activator O there are negative values. 
They correspond to a discrete spectrum, and the functions 
SO, corresponding to them are localized in the transitions 
layers between the regions of different phases, e.g., in the 
walls of the strata,'.' spots, or drops.3 Taking into account 
the damping character of the fluctuations 67, it is easy to 
understand that if account is taken of the influence of all the 
677, when considering the growth of any particular m-th ei- 
genfunction SO, with A, <0, but no account is taken of 
some others SO, with n #m, the value of y will be overesti- 
mated. This upper bound for y can be obtained from the 
determinant (35), by equating its diagonal terms to zero. The 
result, for each A, < 0 we obtain an equation for y: 

0. 

(y)=A,"-y + Z a : )  (l-a-l,L,-ly)-l=o, (37) 

where a t )  = Phm p, '. On the contrary, if account is taken 
of all other SO,, and of only 677, in the diagonal terms of the 
matrix in (35), we arrive at a lower bound for y: 

D(") (7) = l+ (1-a-'pm-'y) -i 

(38) 

where A =A,  + a',")(l - a-'p; ' y)-'. It  follows from 
(37) that the necessary condition for the stability for the IS 
is'.2.4 

The sufficient stability condition, according to (38), reduces 
to the absence of zeros in the upper w half-plane for the 
function D '"'(y = io) for each Am < 0. The function D '")(w) 
at N = 0 for the functions il ;(a) has only one pole 
io = A, < 0, therefore the problem of finding itz zeros ( N )  
reduces to the problem considered in Sec. 3 in the analysis of 
the zeros of the function D(O'(o) (15). It  follows from the re- 
sults of Sec. 3 that at a) 1 the IS is stable if for each A m  < 0 we 
have D '"'(0) < 0 (Ref. 4). At a( 1 and [A, 14 1, the sufficient 
condition for the stability is violated even at D (m)(0) < 0 rela- 
tive to one of the fluctuations SOm cos wLm)t with 

when 
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Investigating the zeros of the function @ '"'(y = iw) (37), we 
can easily verify that it has two zeros in the upper half-plane 
with Re o = * w,, when the following condition is satisfied 
for one of the A, < 0: 

0. 

Recognizing that according to Refs. 1 and 3 the coefficients 
9 ,,, ( 9 ,,, (the functions Sq, and SO, have different 
numbers of zeros), then (42) leads in fact to the instability 
condition (41) connected with the frequency difference 
between the activator fluctuation, which is close in form to 
SO, cos oLm't with A, < 0, and the damping variation 87, 
of the inhibitor. 

5. PROPOSED BASIC TYPES OF PULSATIONS 

5.1. In the cold region near the loss of stability of the 
inhomogeneous state (A =Ac), in spherically symmetrical 
systems or in systems with dimension much larger than L, 
there exists3 at E = I /L4 1 an IS in the form of a single large- 
radius drop with p,>l. The spectrum of the fluctuations 
SOf' and Sqf'  of such a drop, corresponding to 

A, =;l < 0, is according to Ref. 3 

Recognizing that p, - 1 and 9 ,,, > 1/1, I, it follows from 
(43) that the necessary stability condition (39) is satisfied. At 
the same time, at a< 1 the condition (41) is satisfied when the 
system is cooled and the drop dimension is p, <p, -1; I/', 

and according to (43) primarily relative to the spherically 
symmetrical fluctuation SO corresponding to il :' < 0 and 
localized in the drop wall (atp = p,). It follows thus that the 
instability relative to SO t', which oscillates at a frequency 
w?' (40), leads to pulsations of the drop, i.e., to oscillations of 
its radius with frequency w ~ ' ~ ( a 9 , ) " ~ .  

In systems with a- 1, only a small-radius drop with 
p,-I, for whichR,- - 1, can p ~ l s a t e . ~  In this case the func- 
tion SO is localized in the entire region of the drop,3 there- 
fore the pulsation of the small-radius drop constitutes an 
oscillation of its amplitude. Naturally, depending on the pa- 
rameters a and E,  the onset of pulsations can be both soft and 
hard, and in the latter case the pulsations can be relaxational 
with a period of the order of T, and with a drop-amplitude 
growth time of the order of T,. 

These results pertain fully to a two-dimensional or one- 
dimensional IS in the form of a single spot of stratum. Such 
oscillating layers (current pinches) were observed in experi- 
ment,26 and were also revealed by a numerical investigation 
of a model of one chemical reaction." The observed stability 
of such pulsating single drops, spots, or strata is due to the 
fact that vibrating wall is bounded on both sides by stable 
 region^.^ 

All the foregoing results can also be easily generalized 
to include the case of a traveling stratum (spot, drop), real- 
ized in a system of sufficiently large size.3 In other words, it 
is possible to excite in the considered systems, at a( 1 and 
~ ( 1 ,  a pulsating stratum (drop, spot) that travels without 
damping. 

5.2. It is natural to assume that at parameters A that are 
close to A, (or A l )  values corresponding to loss of stability of 
the homogeneous state (see Fig. 2), a drop (spot or stratum) 
pulsating with sufficiently large amplitude can excite spheri- 
cally (cylindrically or one-dimensionally) diverging waves 
and undamped waves (traveling IS). The reason is that ac- 
cording to Refs. 3 and 4, traveling IS of large amplitude are 
produced in the systems considered at a( 1 and E( 1. In oth- 
er words, a single pulsating drop (spot or stratum) can act as 
the leading center observed experimentally in a high-fre- 
quency gas dischargeI5 and in the ~elousov-~habotinskg re- 
action.'." 

The fluctuation spectrum of a single drop contains sev- 
e ra l i l t '  < 0 (Ref. 3) and, according to (43), the condition (41) 
may be satisfied not only with respect to spherically symmet- 
rical fluctuations with p = 0. It follows therefore that the 
drop (spot) can execute also radially asymmetric oscillations. 
Similarly, from the form of the spectrum A, for the stratum3 
it can be concluded that a stratum can become unstable to 
inhomogeneous oscillations in the planes of the stratum 
walls. As a result, a stratum with sinuous walls can arise. 

5.3. In the cold (hot) region there can exist besides a 
single stratum (spot or drop) several strata, spots (and par- 
ticularly current pinches) or drops that lie far from one an- 
~ t h e r . ~ . ~  When the distance between the strata L,sI ,  the 
critical funtions SO, with A, < 0, localized in the walls of 
the neighboring strata, do not overlap in practice.'-3 Such 
strata (spots, drops) therefore become unstable to oscilla- 
tions of their walls practically independently of one another. 
With decreasing L,, the phases of the pulsations should be- 
come synchronized, because at L ,  5 L the quantity p, in- 
creases abruptly with increasing m.' As a result, the condi- 
tion (41) can be satisfied only for m = 0, to which the 
fluctuation SO,, which has no nodes, corresponds. This syn- 
chronization effect is due to the fact that diffusion processes 
cause the inhibitor to follow up more rapidly the shorter- 
wavelength fluctuations SO, with m #O (the time of change 
of the inhibitor is approximately r,/p,). These results per- 
tain to a sequence of traveling IS. 

5.4. In the systems considered there can exist compli- 
cated IS, including some in the form of strata that differ in 
amplitude and in dimen~ion.'.~ Since the condition (41) is 
satisfied for narrow strata also at not too small a ,  such com- 
plicated IS can constitute inhomogeneous states in some re- 
gions of which (with size of the order of I )  local pulsations 
take place. Such pulsating regions can be far enough from 
one another, and can therefore oscillate independently of 
one another with frequencies that are different albeit close. 
At ag 1 these pulsations recall either a breathing wall of a 
broad stratum, or a narrow wall that oscillates in amplitude. 

5.5. According to Ref. 3, at e g l  stable two- and three- 
dimensional IS, including those having a complicated form, 
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FIG. 3. Qualitative character of the dependences of the minimum 
L, = L,,, and maximum L,  = L,,, period of stable strata on the bifurca- 
tion parameter A. 

constitute stable extended cold and hot regions separated by 
transition "heterophase" layers with dimension of the order 
of I, in which is located a warmed "unstable" region of the 
system. In addition, a stable IS can contain warm regions 
that are close in form to the hot (cold) drop (spot) of small 
radius (-I ), separated from one another and from the "he- 
terophase" surface layer by distances much larger than I. 
Fluctuations 68, with A, < 0 are localized in such "unsta- 
ble" heated regions (or surfaces) (Ref. 3). Therefore at a( 1 
these heated regions will pulsate because of the local fre- 
quency difference between the inhibitor 11 and the activator 
8. Such an IS can be regarded as a set of local self-oscillators 
with different frequencies (which are identical for a periodic 
structure), located in surface layers separated by stable ex- 
tended (>I)  regions. At large amplitude of the oscillations, 
such local self-oscillators can serve as sources for autowave 
processes in stable regions of the IS, and also to the onset of 
irregular inhomogeneous oscillations in the system. 

We note in conclusion that irregular inhomogeneous 
oscillations can arise also at a> 1. In fact, according to Refs. 
1 and 2, stable strata in one-dimensional systems with I, )L 
with a given period L, exist in one or two ranges ofA, on the 
boundaries of each of which (A,,, and A,,) the IS vanishes, 
and the boundary values A,,, and A,,, depend on L,  (Refs. 1 
and 2). In other words, in a certain range A (A, <A <A A ,  
Fig. 3), at each given value of A, there exist strata from a 
certain minimum period L,  = L,,,,, to a certain maximum 
L, = L,, . The functions L,,, (A ) and L,, (A ), plotted in 
accordance with the dependence of the number of strata 
N = I,/L, on A, which follow from Fig. 9 of Ref. 1 and Fig. 3 
of Ref. 2, are shown in Fig. 3 by dashed and solid curves, 
respectively. Since L,,, and L,,, are generally speaking in- 
dependent, two cases are possible: a) stable IS exist at all 
A, =&4 (A ;, (Fig. 3a); b) in regions of A where L,,, < L,,, , 
there are no stable IS (Fig. 3b) and turbulence is possible in 
the entire system. These conditions are apparently satisfied 
in a gas discharge for which the appearance of turbulence in 
the plasma is typical. l4 

'It was also assumed in the estimate that in the estimate that in the region 
ofabrupt variation of 0 (drop wall) we have I(q:)sh(Q ;)shl- 1. How- 
ever, for a large-amplitude drop it is possible to have 
1 (q;)sh(Q ;) IshSl. As a result o, can exceed substantially the value 
that follows from the estimate in (22). 

'The appearance of a pulsating current pinch when condition (21) is satis- 
fied was established earlier" in an analysis of the pinching of current in 
semiconducting structures. 
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