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The derivation of the equilibrium equations of the deformed state of a liquid crystal (LC) from a 
variational principle is considered. The invariance of the form of the free energy to translation in 
accord to the Noether theorem leads to conservation of the momentum flux, and invariance with 
respect to the rotation group leads to conservation of the angular-momentum flux. The "spin" 
and "orbital" momenta are separately conserved in the single-constant approximation. The con- 
servation laws obtained can be used to derive analytic solution of a number of problems concern- 
ing the equilibrium of LC with substantially nonplanar distribution of the director: a cholestric 
liquid crystal (CLC) with longitudinal magnetic field and homeotropic orientation on the wall, a 
planar-homeotropic CLC cell, and a cell with a twisted nematic. 

PACS numbers: 61.30.C~ 

1. INTRODUCTION. THE NOETHER THEOREM xk*=xkf  e i lk  ( x ,  Y) y.* ( x * )  =Y. ( x )  + E ~ =  (.x, Y )  ( 5 )  
The equations that determine the equilibrium configu- 

ration of the deformed state of a liquid crystal (LC) are usual- 
ly obtained from a variational principle i.e., from the re- 
quirement that the free energy be a minimum. These 
nonlinear equations are as a rule quite complicated, and 
their integration is therefore extremely difficult. A search 
for any kind of integral for these equation is therefore most 
desirable. In the absence of external fields, the expression for 
the free-energy density is invariant to translations and rota- 
tions of three-dimensional space; in some particular cases 
there are also other more subtle symmetry properties. 

By virtue of the known Noether theorem, a conserved 
quantity corresponds to each single-parameter symmetry 
group of the density of a Lagrangian function (its role is 
played in our case by the free-energy density F ) .  We recall the 
corresponding expressions, see Refs. 1 and 2. Assume that 
we must minimize the functional 

I= J F  (XA, Ya, ya,k) dx, (1) 
0 

possibly subject to the additional condition 

imposed on the independent variables y, = y,(x). Here 
xk(k = 1, ..., n) are the coordinates, yo,, =dya/dxk and 
dx = dx,dx ,... dx, . The Euler-Lagrange equations take then 
the form 

Here A (x) is an indeterminate Lagrange multiplier obtained 
when account is taken of condition (2). The symbol d /axk in 
(3) means 

aH(x, Y, Y, , )  
3% ay d5k d ~ , ~  arm 

Assume that under an infinitesimal transformation (as E-0) 
of the form 

both densities F (x,y,yk) and @ (7) remain unchanged in first 
order in E.  We get then a relation of a conservation-law type 

We shall use below the general formulas for specific 
types of symmetry. We note specially that the function @ ha) 
whose vanishing determines the supplementary condition is 
contained in Eq. (3) rather than in (6). These results can also 
be obtained by considering the minimum of the functional 
3 = F + A@ with a parameterA independent of the coordi- 
nates. The in the limit as A-co we obtain @+m, A@ '4, 
and 2A@-il ( x ) ,  and since d@ /dyak = 0, expression (6) turns 
out to be independent of @. 

We note that the conservation of the angular momen- 
tum and of the momentum in LC were used to obtain soh- 
tions in Refs. 3 and 4. 

2. MOMENTUM FLUX TENSOR IN DEFORMED STATE OF A 
LIQUID CRYSTAL 

The state of a cholesteric (CLC) or nematic (NLC) liq- 
uid crystal will be described by the three components of the 
director n(r) = (n,,n,,n,) which are subject to the supple- 
mentary condition @ (n) = n: + n: + n; - 1 = 0; further- 
more, n and - n are assumed to be indistinguishable. The 
free energy density (in erg/cm3) will be written in the 

P='12K, (div n)2+'/2Kz ( n  rot n+q)Z+1/2K3 [ n  rot n] '+Tiknin,. 

(7) 

Here K , , , ,  are Frank constants of dimensionality dyn, Tik 
(in erg/cm3) is a certain tensor that characterizes the aniso- 
tropic action of the external fields (e.g., electric or magnetic). 
If Ti, does not depend on the coordinates, the function F in  
(7) is invariant to translations in a Cartesian coordinate sys- 
tem. We can then make in the general expression (5) the sub- 
stitutions 
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where a = x, y, z and E, is the vector of infinitely small 
translation. As a result, the "momentum flux" conservation 
law takes the form 

apka an, aF - = 0, Pka=-F6na + - 
axk axa a ( a n ~ d x ~ )  ' 

(8) 

This expression for the stress tensor turns out in the general 
case to be symmetric in the indices k and a. This symmetry is 
of no significance for the integration of the equilibrium equa- 
tions. We shall therefore not bother to "symmetrize" it by 
adding a term of the form ahky /ax,, where $,,, is antisym- 
metric in the indices k and y (see the analogous operations in 
Ref. 7). An expression similar to (8) was first obtained by 
Ericksens (see also the review9). 

3. FLUX 1 ENSOR OF "ORBITAL" AND "SPIN" MOMENTA 

In the absence of external anisotropic fields (at Ti, = 0) 
the free energy (7) is invariant to the rotation group of three- 
dimensional space. If we put in the general formula (5) 

&fb=ekma~m(pa, &!&=eohan~(pa, 
where p, is an infinitesimal angle of rotation around the 
axis, we obtain from Eq. (6) 

It is natural to call L,, in (10) the orbital-momentum flux 
tensor, and S, in (1 1) the spin-momentum flux tensor. In the 
general case when the Frank constants K , ,  K,, and K, are 
different, only the total angular momentum M + S is con- 
served. 

Interest attaches also to the special case when we can 
assume that K ,  = K,  = K,. In this single-constant case the 
free energy for nematics, i.e., at q = 0, can be reduced to the 
form (see Ref. 5) 

The term in the form of an exact divergence in F can be 
discarded, since it does not influence the equilibrium equa- 
tions, and we have then two separate symmetry groups: rota- 
tions of the vector n with the coordinates unchanged, and 
rotations of the coordinates with the n direction unchanged. 
The first corresponds to conservation of the spin momentum 
S separately, and the second to conservation of the orbital 
momentum L separately. In other words, in the single-con- 
stant approximation we have 

where the expressions for S,, and L,, coincide with (1 1) and 
(10). In particular, 

Interest attaches also to the case when there is an exter- 
nal field that specifies some symmetry axis b. We then have 
only conservation of the projection of the angular momen- 
tum on this axis: 

We emphasize once more that in the general non-single- 
constant case the nonlinear equilibrium equations are very 
cumbersome. Therefore a direct check on the obtained rela- 
tions (9)-( 15) would be exceedingly difficult. 

4. CONSERVATION LAWS IN A PLANE PARALLEL CELL WITH 
LC 

We shall apply the results to the problem of equilibrium 
of an LC in a cell bounded by the planes z = 0 and z = L. We 
confine ourselves here to the case when the deformed state of 
the LC is homogeneous with iespect to translations in the 
(x,y) plane, i.e., n = n(z). Then Pxy = Pyx = P, = P = 0, 

ZY 

and the quantities Pxx ,Pxz ,Pyy ,P,, do not depend on x or y. 
Therefore only one out of Eqs. (8) carries nontrivial informa- 
tion, namely dP,/dz = 0, whence 

P,,=~onst=p='/~ { (R,+ K3,rzZ2) (dn./dz) ' 
t K , ,  (dn,/dz) 2-KzqZ+~,HZn,2). 

(16) 

The expression ( d n , / d ~ ) ~  implies summation over all three 
components a = x g j .  We have assumed here than an exter- 
nal magnetic field was applied to the medium (directed, for 
simplicity, along the z axis, H = ezH).  This field introduces 
into the free energy an additional term F, = - k,(n.H), 
wherex, is the anisotropy of the magnetic polarizability per 
unit volume of the liquid crystal. We note that since X, is 
small Cy, 5 lop5) the magnetic field H can be regarded as 
uniform even after the deformation of the LC. To abbreviate 
the notation we have introduced also the symbols 

with inequalities K,, > 0 and K , ,  > 0 valid for all the known 
LC. 

We proceed now to the angular momentum. We have 
L, =O for a strain homogeneous in x and y. Out of the three 
equations (9) dM,,/ax, = 0, two equations (with a = x,y) 
lead to results that coincide with (16), and in the third we 
have the identity 

i3LkZ/i3~k=O. 

Ultimately, therefore, the zz component of the spin mo- 
mentum flux is conserved (independently of the ratio of the 
constants K , ,  K,, and K,) 

S,,=const=m=- (K,+K,,nZZ) n rot n-K,q (1-nzz) . (18) 

We shall need in what follows also the representation of 
the vector with the aid of the polar angles: 

n=e. cos rp sin We, sin cp sin BSe, cos 8. (19) 
The Euler-Lagrange variational equations constitute a sys- 
tem of two nonlinear equations containing d 20 /dz2, d0 /dz ,  
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d 'e, /dz2, d p  /dz and the variables 8 (z)  and p(z) themselves. 
The presence of two conservations laws (16) and ( 1  8) enables 
us to find the solution of the problem in quadratures without 
writing out the equations themselves. 

We shall find it convenient to use an identity that fol- 
lows from the conditions In1 = 1 and n = n(z) 

Because of this identity and the relations (16) and (18) we can 
eliminate the transverse components of the vector n (i.e., the 
azimuthal angle q) and obtain 

whence 

It is more convenient to deal with the equation for the trans- 
verse components of the director by using the azimuthal an- 
gle p(z), from which it follows, when account is taken off the 
relation n curl n = - ( 1  - nf)dp  /dz that 

and therefore 
"z(') 

mtK2q(1-x2) G ( x )  dx. (24) 
q ( z ) = q ( 0 )  + I ( I - X ~ ~  ( K ; + K ~ ' x ~ )  

n,(r=O) 

The parameters m andp in (22) and (24) must be deter- 
mined from the boundary conditions at z = L (the condi- 
tions on the boundary z = 0 are already satisfied). 

5. CELL WITH TWISTED NEMATIC 

We consider, in the absence of a magnetic field, an NLC 
whose director is pinned to the boundaries at certain angles 

0,=0 ( z = o )  , cpd=cp ( 0 )  and HL=0 (z==L) , rp,=rp ( z = L ) .  

If 8, = 8, ,  the solution takes the form 

Of course, this solution, which is valid at arbitrary K, ,  K2 
and K,, could not be obtained without the use of the conser- 
vation laws. 

Let now 8, #8, and, for the sake of argument, 8,  > 8,; 
in the opposite case it is necessary to interchange z = 0 and 
z = L. We consider for this problem first the single-constant 
approximation. The integrals (22) and (24) can then be expli- 
citly evaluated: 

z  (2p lK)  "'=arcsin [a  cos 001 
-arcsin [ a  cos 0 ( z ) ]  , 

q ( z )  -cp (0 )  =arcsin [ (a2--1)" ctg O0] 
-arcsin [ (a2- 1 )  '" ctg 0 ( 2 )  ] , (26) 

a2=2Kp/ (2Kp-in2) .  

FIG. 1 .  Equilibrium dependence of the polar 8 (z) and azimuthal 
p(z) - q, (0) angles in a cell with a twisted nematic: B(z = 0) = 30', 
0 (z = L ) = 60", q,(L ) - q, (0) = 45" in the single-constant approximation. 

The values ofp and m must be determined from the bound- 
ary conditions at z = L. 

Figure 1 shows by way of example plots of 6 (z) and p(z) 
at 8, = 30", 8,  = 60", p, - p, = 45". The quantitiesp and m 
as functions of the cell thickness L vary respectively like L -' 
and L - I ,  and for this example, at K = 6X lo-' dyn, their 
values arep = 2 X dyn/cm2 and m = 7 X dyn/cm 
at L = 5 x l o p 3  cm. We note that in the region with smaller 
6 the azimuthal angle p varies more rapidly. This is quite 
natural, since 

dn - = (e, cos q-e, sin axi (27) 

i.e., at small 8 a finite change of the azimuth p leads to small 
changes of the vector n. 

Another particular case corresponds to a twisted nema- 
tic, po = qL . It can be assumed that the director vector lies 
in the (xz) plane. The parameter m is here zero, and the solu- 
tion reduces to an incomplete elliptic integral: 

z  (2p/K3)'"--E (Oo; a) +E (0 ( z )  ; a ) ,  (28) 
e 

E (0; a) = I (I-sin2 a sin2 Q) ' d$, sin2 a = R l / K . .  
0 

In the single-constant approximation Eq. (28) goes over into 
8 (z) = 8, + (8 ,  - O,)z/L. A solution of the type (28) was 
discussed in the literature (see, e.g., Ref. 10). As shown in 
Ref. 10, the presence of more than one constant in this prob- 
lem is slight, since usually IK, - K,  I/K, 5 0.2. In essentially 
nonplanar problems with twisted LC, on the contrary, the 
differences K ,  - K2 and K, - K2 come into play, and are 
already of the order of the constant K, itself; in such prob- 
lems the single-constant approximation should be much less 
effective. 

6. CHOLESTERIC IN A MAGNETIC FIELD AT A 
HOMEOTROPIC ORIENTATION ON THE WALLS 

The problem of a cholesteric with homeotropic pinning 
of the director at the walls, i.e., with boundary conditions 

was considered in Refs. 4 and 1 1 .  Here we discuss those 
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changes which arise when account is taken of an external 
magnetic field H directed along the same z axis. As before, 
we confine ourselves to solutions in which n depends only on 
the coordinatez. The boundary condition (29), satisfied on at 
least one of the walls, predetermines the vanishing of the 
angular-momentum transfer: M, = m = 0. 

Before we proceed to discuss the general solution (22), 
(24) we note that under the boundary conditions (29) there 
always exists a solution in the form n(z)re,. In the absence 
of a magnetic field, however, and at a cell thickness 
L > nq-'K,/K,, this solution is unstable. The manifestation 
of such an instability was named in Ref. 1 1 a zero-field FrCe- 
dericksz transition. The threshold of this transition changes 
in the presence of a magnetic field H = He,. 

Examination of the linearized equation for small per- 
turbations of 6 (z,t ) analogous to that carried out in Refs. 4 
and 1 1, yields a solution in the form - 

nmz 
0(z,t)=f: Omsin-exp(~t), T, 

We have introduced in (30) an orientation-relaxation con- 
stant 77 with the dimension of poise. Thus, the magnetic field 
stabilizes the homeotropic structure, at X, > 0 and destabi- 
lizes it at X, <O. The instability manifests itself first in the 
mode with m = 1, and the threshold of the FrCedericksz 
transition is determined by the relation r, = 0. 

In the single-constant approximation it follows from 
(24), with allowance for m = 0, that 

independently of the behavior of 6 (z) and of the magnetic 
field. For 6 (z), Eq. (22) yields an explicit relation in the form 
of an elliptic integral: 

To determine the above-threshold stationary value 
6,,, = 6 (z = L /2) we must solve the equation 

In particular, at a slight excess above threshold we have 

The general solution in the non-single-constant approx- 
imation is given by the integrals (2) and (24). It makes it 
possible in principle to calculate the stationary above- 
threshold distribution of the director. The corresponding 
analysis is very sensitive to the numerical values of the ratios 
K3,/K,, K3,/K3, and will therefore not be presented here. 
We note only that here, just as in the absence of a magnetic 
field, hysteresis of the FrCedericksz phenomenon is possible 
(cf. Ref. 4). 

7. CELL IN COMBINED ELECTRIC AND MAGNETIC FIELDS 

Let an electric and a magnetic field be applied to the 
cell. The latter we write in the form E = - grad $(r), where 
$(r) is the potential, and we regard the quantity $(r) as an 
independent field when deriving the variational equations. 
The supplementary .free-energy term connected with the 
field E is of the form 

FE=- ( 8 n ) - ' ~ , ~  (r) (6'$/dxt) (a$/dxk) 9 

~ i k  (r) =&LSih+&oni (r) n, (r) . (34) 

Here E,  is the anisotropy of the dielectric constant, 
E, = E,, - E ~ .  The boundary conditions for $ are of the form 

$(z=O, x, y)=$1, $(z=L, x, y)==$1+V, 

where V is the voltage applied to the cell from an external 
source. We note first of all that in the absence of free charges 
the free energy Fis invariant t the transformations u(r)-t$(r) 
+ const. Therefore the Euler-Lagrange equations that fol- 

low from (34), when varied with respect to $(r) 

=O+div D (r) =0, 

can be simultaneously be regarded also as conservation 
equations of the Noether-theorem type. The equation 
divD (r) = 0 under the condition E = - V$ is the fundamen- 
tal equation of electrostatics, which we now obtain from the 
same variational principle. 

For the problem homogeneous in the transverse coordi- 
nates $(r)r$(z) we have E (r) = e,E (z). Owing to possible 
distortions of the director, however, the induction D(z) has 
generally speaking all three Cartesian coordinates. 

The equation div D = 0 yields in this case one condi- 
tion: D,(z) = Do = const; in terms of the potential $(z) it 
takes the form 

The momentum flux density acquires an additional 
term of the type of the Maxwell stress tensor, so that on the 
whole 

Expression (1 8) for the momentum flux M,, does not change 
when an electric field directed along the z axis is turned on. 
Using the conservation laws (37) and (38) we easily obtain a 
solution for 6 (z) and&). It takes the form (22), (24), in which 
p must be replaced by p + (D X (E, + ~,nS(z)). We em- 
phasize that the foregoing analysis takes full account of the 
distortion that the deformation (in general, not planar) of the 
director produces in the electric field inside the cell. 

If initially (i.e., without the electric and magnetic fields) 
the configuration corresponds to a twist-cell, i.e., 6 (z)=?r/2, 
p (L ) - p (0) = Ap, application of the fields E and H can 
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cause a transition of the FrCedericksz type. The threshold of 
this transition is determined by the conditioned 

In the particular cases V = q = 0, H # 0 or H = q = 0, 
V # O  this expression coincides with the published results 
(see Refs. 6,  12, and 13). 

At a small excess above threshold, i.e., at 0 <AL 2/ 

K,r2(l ,  an explicit expression can be obtained for 
a, = r / 2  - 8 (z = L /2). In this case we have in a stationary 
above-threshold structure 

and a, is given by 

a,=* (AB)  '", 

In other words, a, is proportional to the square root of the 
relative excess above the transition threshold. 

8. HOMEOTROPICALLY PLANAR CHOLESTERIC 

Let a cholesteric liquid crystal be poured into a cell 
whose one plane (z = 0) imposes rigidly a homeotropic orien- 
tation, n(z = 0) = e,, and the other (z = L ) maintains rigidly 
a planar orientation, n(z = L ) = ex.  In the absence of an 
electric and of a magnetic field, 8 (z) is given by the integral 
(22) with H = 0 and m = 0; the latter follows from the ho- 
meotropic pinning on the t = 0 wall. The constantp is deter- 
mined from the condition 8 (z = L ) = ~ / 2 ,  and the course of 
p(z) is given by the equation 

dcp/dz=K,q/ (K ,+K, ,  cos2 0 ( z )  ) . (39) 

! At qLS.1, i.e., for a "thick cell," we have the asymptotic 
relations 

The constant C stands here for the definite integral 

Just as in the case of an orientation homeotropic on both 
walls (see Ref. 4), the deviation from 8 = 0 at the middle of 
the cell is exponentially small, cc exp{ - 0.5qL ( K , / K , ) ' ~ ~ )  . 

The case qL( 1 is equivalent to the problem of a homeo- 
tropically invariant nematic (see above). 

Thus, the use of the Noether theorem to obtain the con- 
servation law not only helps to better understand the qualita- 
tive picture of the equilibrium deformation of a liquid crys- 
tal, but also to obtain in a large number of cases an analytic 
solution of the problem. The most useful is the application of 
the Noether theorem to problems in which the director does 
not lie in some single plane. 

The authors are grateful to N. V. Tabirin, V. A. Belya- 
kov, E. I. Kats, and Yu. S. Chilingaryan for helpful discus- 
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