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Crystallization waves that can propagate in He3 at T< mK are considered. It  is shown that the 
principal mechanism of residual damping of such oscillations is the emission of spin waves into 
the volume of solid antiferromagnetic He3. The value of the damping is calculated with account 
taken of the previously discussed [S. V. Iordanskiy and A. V. Smirnov, JETP Lett. 32,398 (1980); 
A. 8. Meierovich and B. Z. Spivak, ibid. 34,55 1 (198111 ferromagnetic ordering on the phase 
interface. It is shown that the existence of surface magnetization can lead to a nonmonotonic 
dependence of the residual damping on the wave number k. Experimental observation of this 
dependence would be convincing proof in favor of surface ferromagnetism. 

PACS numbers: 67.80.Cx, 67.80.Jd 

1. INTRODUCTION 

One of the most interesting recent events in the physics 
of quantum crystals was the experimental observation' of 
the crystallization waves, predicted in Ref. 2, on the inter- 
face of solid and liquid He4. These waves can propagate if the 
interface is atomically rough and the liquid is in the super- 
fluid state. There is therefore every reason to assume that at 
T < 1 mK, when the liquid He3 is in the superfluid B phase, 
such oscillations take place for this helium isotope, too. 
Since the hydrodynamics equations of He3-B coincide with 
those of He 11, the spectrum of the crystallization waves in 
He3 will coincide with the spectrum obtained in Ref. 2 for 
the case of He4: 

Herep, andp, are densities of the solid and the liquid, while 
a is the surface tension; a small term linear in k and account- 
ing for the gravitational field has been left out. 

For He4 we have 5-0.2-0.3 erg/cm2 (Ref. 1). In the 
case of He3 this quantity should be of the same order. Such 
an estimate is obtained if it is assumed that the surface ener- 
gy per surface atom is of the order of the Fermi energy. Then 
S- 3 x 102 cm3/sec2. 

The principal mechanism of the damping of crystalliza- 
tion waves in He4 at T = 0 is the decay into analogous excita- 
t i o n ~ . ~  To determine the residual damping of such oscilla- 
tions in He3 it is necessary in turn to consider the possibility 
of excitation of spin degrees of freedom. 

Below the NCel temperature TN -- 1.03 mK (Ref. 3) the 
solid bcc He3 is a two-sublattice antiferromagnetic with 
easy-plane anisotropy due to the dipole intera~tion.~ There- 
fore one of the branches of the magnon spectrum is gapless: 
w(k) = ck ( c z  8 cm/sec, Ref. 4), and the second has a gap 
equal to the antiferromagnetic-resonance frequency shift 
OAF/2rz8.25 x 10' sec-' (Ref. 3). 

The velocities c, and c, of the longitudinal and trans- 
verse spin waves in He3-B, connected by the relation 
ct2 = 2cI2 (Ref. 5), exceed c considerably (c, - lo3 cm/sec 
according to experimental data6). 

It is easily seen that propagation of crystallization 
waves with a wave vector k in the interval 

should be accompanied by emission of a spin wave corre- 
sponding to the zero-gap branch of the solid-He3 spectrum. 
Neither the B-phase spin wave nor the wave corresponding 
to the solid-phase spectrum gap branch is emitted. 

The experiments1 on the crystallization waves in He4 
were carried out at k - 10-10' cm- '. Being of interest also in 
connection with possible experiments on He3, this wave-vec- 
tor region lies within the interval (2). 

Emission of a spin wave leads to damping of the crystal- 
lization wave. To determine the extent of this damping it is 
necessary to solve a system of equations that describe the 
boundary oscillations and the excitation of the spin degrees 
of freedom. 

There is at present theoretical proof of the existence of 
surface ferromagnetism on the interface between solid and 
liquid He3 (Refs. 7, 8). Experiments9 performed on liquid 
He3 filling the space between Grafoyl particles reveal a sur- 
face ferromagnetic contribution to the susceptibility. It will 
be shown in this paper that the existence of surface magneti- 
zation can lead to a nonmonotonic k dependence of the cry- 
stallization-wave damping. 

The volume interaction between the layers causes the 
surface magnetization to be connected by definite relations 
with the antiferromagnetic order parameter of solid He3, as 
well as with the order parameter of the B phase and the vec- 
tor normal to the interface. Before we proceed to derive a 
system of equations we must establish these relations. 

2. CONNECTION BETWEEN THE ORDER PARAMETERS ON 
THE INTERFACE 

It is now firmly established that the B phase is a Balian- 
Werthamer state1' with an order parameter 
dV = 3-112A~v,  where A is the energy gap and RV is an 
arbitrary (neglecting dipole forces) matrix of the spin-system 
rotation relative to the orbital system. The problem of find- 
ing the connection between R,, the normal n to the interface, 
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and the surface magnetization M, is closely connected with 
the question of the behavior of do near a solid wall, which 
was considered in Ref. 11. It  was shown within the frame- 
work of the Ginzburg-Landau theory that the boundary 
condition on a specularly reflecting wall, in the case of sys- 
tem with p pairing, takes the form nidQ 1, =, = 0. It was es- 
tablished in Ref. 12 that a solution satisfying such a condi- 
tion is sought for the Ginzburg-Landau equations in the 
form 

d ,  (z) =3-'"A ( (Gil-nin[)$(z) +[ 1 - f  (2) ]n,n1}RIj. (3) 
The function f (z) in (3) decreases from unity at z = 0 to zero 
over a distance of the order of the coherence length 5 (T). To 
determine the influence of the wall on the order-parameter 
orientation in the volume, a simpler form of d,,(z) with 
flz) = 1 was used. 

Ferromagnetic ordering on the interface between the 
phases increases substantially the difference between the 
densities of particles with different spin projections on the 
vector M in the Fermi-liquid boundary layer, hindering 
thereby the pairing of the quasiparticles in states with zero 
spin projection of the pair on this vector. We note that for 
dQ(z) in the form (3) there are no pairs near the wall with zero 
spin projection on the nkRkj direction, as can be easily veri- 
fied by checking that the contraction of the right-hand side 
of (3) with nkRkj vanishes at f (2) = 1. Therefore the ferro- 
magnetic ordering on the interface should not lead to addi- 
tional depairing if M and n,Rkj are parallel or antiparallel. 
Since, however, the amplitudes of pairing into states with 
spin projections + 1 and - 1 are now different on the vec- 
tor M, we have in place of (3) 

dij (2) =%'"A {'/z (6ir-nrn~) [$t t (2) +$++ (2) I 
+ilZi[$+t (2) -$+$ (2) I~ilknk+ [ f-f (2) In,nl)Rl~, (4) 

and the connection between M, n, and RQ is given by 

n,RGM,=+- I M 1 .  ( 5 )  

The amplitudes for pairing into states with spin projections 
+ 1 and - 1 on nkRkj are proportional to the functions 
$,, (z) and $,, (z) contained in (4), inasmuch as in the case 
RQ = So the order parameter (4) corresponds to a pair wave 
function 

'4' vv (k; 2) widij (2) L i  ( 0 ~ 0 ~ )  Mv 

The influence of surface ferromagnetism on the reflection of 
volume quasiparticles from the boundary should reduce ef- 
fectively to moving apart of the "walls" that reflect the 
quasiparticles with different spin projections on M, to a dis- 
tance on the order of atomic. Therefore at a(z <( (T)  the 
difference 

[$tf (2) -$+, (2) I -alE ( T ) .  

By virtue of this relation, the difference between (4) and (3) is 
small. At atomic distances, apparently, [$,, (z) - $,, (z)] - 1.  

As for the connection between M and the unit vector 1 
parallel to the magnetization of the sublattice in solid He3, 
we assume 

M1=0. (6) 
This relation is obtained if it is assumed that several atomic 
layers of a solid antiferromagnet are acted upon by a "molec- 
ular" field directed along M and produced by the ferromag- 
netic layer. 

The dipole energy in the volume of He3-B is reached 
when the angle of the rotation effected by the matrix RQ is 
equal to arccos( - 1) (see, e.g., Ref. 5). The rotation axis here 
remains arbitrary. The dipole forces in the volume of solid 
and liquid He3 do not lead to a complete lifting of the degen- 
eracy with respect to rotation in spin space. In fact, by plac- 
ing the vector 1 in the easy plane at arbitrary orientation and 
then choosing M to satisfy Eq. (6), we can always place the 
rotation axis q in such a way that the matrix 
R,(q, arccos( - a)) satisfies the relation (5). 

Final lifting of the degeneracy is by dipole forces of sur- 
face origin. The primary contribution to the surface dipole 
energy 9," is made by the term connected with the distortion 
of the B-phase order parameter near the boundary. It was 
shown in Ref. 13 that in the case of an extraneous wall the 
rotation axis 7' is perpendicular to this wall at equilibrium. 
In the case of a ferromagnetic boundary the rotation axis 
also tends to be perpendicular, inasmuch as at distances larg- 
er than atomic, as already noted, ($,, - $,, )<I. At T = 0 
the corresponding surface constant is d'-gBco- erg/ 
cm2, where g, - erg/cm3 is the volume energy density 
of the dipole interaction in He3-B and go is the pair dimen- 
sion. In the situation considered 9-f depends on the orienta- 
tion of the mutually perpendicular vectors M and l. The 
order of magnitude of the constants corresponding to such 
terms can be easily determined from an estimate of the inter- 
action energy of two nuclear moments separated by atomic 
distance: gy'-,u2/a5- lo-'' erg/cm2. We see that gv' can 
exceed gp' by one order, and we shall therefore assume that 
in the case of an interphase boundary at equilibrium 

qO=f no. (7) 

We assume for the sake of argument that the normal is 
directed towards the solid, and the upper signs are chosen in 
(5) and (7). At equilibrium we have then M0 = MnO. The vec- 
tor lo is then directed along the intersection of the separation 
boundary and the easy plane. 

3. SYSTEM OF EQUATIONS 

It is convenient to derive the equations on the basis of 
the Lagrangian formalism. We shall not include the surface 
dipole energy 9," in the system Lagrangian. The condition 
for the validity of this approximation will be stipulated be- 
low. 

We represent the Lagrangian of the system as a sum of 
four terms: 

2=9B+9AF+2F+2cn. PI 
The first three terms of the sum pertain to the spin dynamics, 
which we shall describe, as is frequently done, with the aid of 

1235 Sov. Phys. JETP 56 (6), December 1982 S. E. Korshunov and A. V. Smirnov 1235 



small rotation angles pi. To keep the matrix R: = Rq 
(qO, arccos( - j)) that corresponds to equilibrium from en- 
tering explicitly in the Lagrangian and in the equations, we 
make first the following substitutions for all the spin vectors, 
as well as for the unit vector v perpendicular to the easy 
plane in the antiferromagnetic bcc He3: 

i R  Mi-+Rk,OMk, ipi-tRaiDipk, ~i+RkiO~k. (9) 
Following Refs. 14 and 15, we write down the parts of the 
Lagrangian that correspond to the B phase and to the solid, 
with allowance for the concrete form of the dipole aniso- 
tropy: 

(div 9)' +--- -Q,'(q, qO)' 
axj : j x i  I 

Here x and X,  are respectively the susceptibilities of He3-B 
and of the bcc He3, 0, is the frequency of the longitudinal 
resonance in the B phase, and y is the gyromagnetic ratio for 
the He3 nucleus. We note that the integrand terms in square 
brackets in (10) differ from each other by a divergence of a 
certain vector. This means that when the variables in the 
volume of the liquid are varied they correspond to equal 
terms in the Lagrange equations. The fact that (10) contains 
their arithmetic mean rather than some other combination 
cannot follow from phenomenological considerations but is 
based on the need for obtaining, when varying the variables 
on the boundary, a correct expression for the normal compo- 
nent of the spin current, which is known from the micro- 
scopic theory (see, e.g., Ref. 5). Neglect of the difference 
between these terms led to incorrect boundary conditions in 
Ref. 15. 

If we confine ourselves to the part of the Lagrangian 
corresponding to the ferromagnetic transition to 
the term of lowest order in cp and 4, which is not a total 
derivative with respect to time, we obtain 

In expression (12) the ferromagnetic layer if formally re- 
ferred to the solid. 

The last term in (8) corresponds to crystallization 
waves. It  can be written in the form 

Here f is the displacement of the phase interface, CF is the 
angle of rotation of the normal to the boundary (the Greek 
subscripts correspond to the unperturbed plane surface S o  
and run through the values 1 and 2). The first term in the 
right-hand side of (13) is the energy, expressed in terms of 8 
of the potential motion of an incompressible liquid whose 
velocity satisfies the boundary conditions 

vl ,=-,=O, (vnO) I , = - , = I  ( p l - , p , ) l p l1  b .  
The second term is the increment, taken with opposite sign, 
of the surface energy. 

We linearize, finally, the boundary condition (5): 

(6ij-nionjO) ( 9 ,  I z = + o - q j  1 = = - 0 )  -~iaj(dt/8xa) njo=O. (14) 
The action W = $dt corresponding to the Lagrangian (8) 
should be varied subject to the additional condition (14). The 
condition (6) is automatically satisfied, since plZ_ + o  de- 
scribes rotation of a pair of mutually perpendicular vectors 
M and 1. 

We write out the resultant expression with allowance 
for (7). We omit hereafter the superscript 0, which corre- 
sponds to equilibrium. 

Variation of Wwith respect to the angle variables yield 
first of all the equations of motion in the volume: 
( a z ~ a t z - ~ 2 ~ )  ((P-i  ( ( P I )  ) +Q, ,~  (1 XVI (cp  [i x vl ) =0, 2'0, 

(15) 
(aZ/dtZ-ctZA) (P- (c12-ct2) V div (p+QDZn(qn) =0, 2 - 4 ,  (16) 
as well as the boundary conditions 

{(MIy) ~zjk(pjnk+jik*~nk) I z=+O=jikBnk I r = - o ,  (17) 
JikDnink 1 z=-o=O, (18) 

where the spin-current tensors in the bcc He3 and in He3-B 
are respectively 

We note that equations fully analogous to (16) were first ob- 
tained in the Hamiltonian formalism in Ref. 16. 

Variation of the action with respect to the variable 
leads to the equation 

The system (14)-(21) is a system of equations and of effective 
boundary conditions needed to determine the damping of 
the crystallization wave. 

4. RESIDUAL DAMPING OF CRYSTALLIZATION WAVE 

1 . a t  a t  We confine ourselves hereafter to the wave-vector re- 
- - d., J d2ru -j--& xo 2 gion in which the following inequalities hold: 

5" 

10 cm-' -g:" y 2 / x ~ , 2 < k < Q D l ~ l - 1 0 3  cm-I 
0 0 

(22) 
tiae=a6aB+ (d2a/88edfiv) ~a~i~avjni  nj . (1 3) (according to Ref. 17, f2B2/(27r)2z 5.10'~ set-'). The left- 
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hand inequality in (22) means in essence that the characteris- 
tic value of the B-phase spin current on the boundary greatly 
exceeds the surface dipole forces. It  is just this circumstance 
which makes it possible to leave the energy 9: out of the 
Lagrangian. Allowance for this energy would lead in (17), 
(18), and (21) to additional terms that can be neglected by 
virtue of the smallness of the ratio gt 'y2/kc12k ). 

In the propagation of a crystallization wave with wave 
vector k and frequency w the dependence of the variables on 
rII and on the time reduces to the factor exp(ik.r,, - i d  ): 

rp(r, t )  =cD ( 2 )  exp ( i k r , , - i o t ) ,  ( r l l ,  t )  =Z exp ( ikr , , - io t )  . 

(23) 
It will be clear from the calculation results that the correc- 
tions to the spectrum (1) to allow for the excitation ofthe spin 
degrees of freedom wili be found to be small. Therefore if the 
inequalities (22) are satisfied it is easy to show that the fol- 
lowing chain of inequalities holds: 

c3k2< 1 o 1 2<~12k2<QB2<QAR2.  (24) 

The inequalities (24) make it possible to simplify significant- 
ly the calculation of the dependence of the angle variables on 
L. 

The solution we seek for Eq. (15) consists of two modes: 
one is a traveling wave propagating into the interior of the 
solid He3, and the other decreases exponentially as z-UJ . It  
follows from (24) that for the first mode we can neglect c2k 
compared with w2, and for the second we can neglect c2k 
and w2 compared with OAF2.  In this approximation we ob- 
tain 

cD (1) =v (vcD ( + O )  ) exp r - n (.: 1 

The exponentially decreasing solution of Eq. (16) con- 
sists of three modes. Two of them decrease over lengths of 
the order of k - ' with increasing penetration into the He3-B, 
and the third decreases over the dipole length gd - c , / O B .  In 
this situation one of the three spin-wave in He3-B dipole gap. 
The inequalities (24) make it possible, when all three modes 
are determined, to solve the static problem for Eq. (16), i.e., 
neglect the frequency. In addition, when determining the 
mode that decreases on g, we can neglect c12k compared 
with a B 2 .  At the accuracy indicated we obtain 

o ( 2 )  = [ t x n ]  ( [ i x n ]  cD ( - 0 ) )  exp (kn)  +i ( io (-0))  exp (2 k r )  
ct 

+n ( n o  ( - 0 )  ) esp 

(26) 

The dispersion equation can now be obtained as the 
condition for the solvability of the system of linear equations 
(14), (17), (la), and (21), in which all the quantities should be 
expressed in terms of @ ( - O), @ ( + O), and Z with the aid of 
(23), (29), and (26). But since the determination of the disper- 
sion equation by this method calls for writing down the de- 
terminant of a matrix, of seventh order it is preferable to 

eliminate in succession @ ( - 0) and <P ( - 0) from the equa- 
tions. 

Using (14) and (15) we can express @ ( - 0) in terms of 
@(+O)andZ:  

,. ,. 
@ ( - ~ ) = [ k x n ]  ( [ k ~ n ] c D ( + O ) - i k Z ) +  

We express now the normal components of the spin current 
on both side of the boundary in terms of @ ( + 0) and Z with 
the aid of (25)-(27): 

X exp ( ikr l l - io t )  . (28) 

- i k ~ e , ~ , L ~ n , }  exp (ikr1-lot). (29) 

We have left out of (29) the term containing the small factor 
cl k  / a B .  

The vector equation that connects @ ( + 0) with the am- 
plitude Zof the crystallization wave is obtained by substitut- 
ing (28) and (29) in (17). Without dwelling on the calcula- 
tions, we write directly the solution of this equation: 

where 

In the numerator and the denominator of (30) we have ne- 
glected the terms that contain the small factors -w/OAF. 

Substituting finally (29) and (30) in (21) and taking (23) 
into account we obtain the sought dispersion equation 

which can be solved by successive approximations, choosing 
as the zeroth approximation the unperturbed spectrum 

The imaginary correction to the frequency, i.e., the damp- 
ing, is obtained in first-order approximation. When writing 
down the result we invert the substitutions in (9): 
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ro=-Irn o=Ck%in2 o{A(^~)+  ( y M / x c t ) ' A ( k )  [ I - h ( k ) ] )  

x {sin' 0 [ I -  (cl lct)  ( yMIxc t ) 'A(k )  1 
+ ( x L c / ~ c t )  '.4(k) [ I +  ( c , / c t - I )  A&)] *I-', (33) 

where 

and 6 is the angle between the phase interface and the easy 
plane in the antiferromagnetic bcc He3. The coefficient C in 
(33) is estimated at - cm3/sec. If we assume the thick- 
ness of the transition layer to be atomic, then 
( ;YM/,c,)~- lo2. The ratio (xId /,yc,)'. is of the same order 
or somewhat smaller. 

It must be noted that the decay mechanism yields a neg- 
ligibly small contribution to the damping compared with ro 
(Ref. 2). 

r d e c -  [fipll ( ~ 1 - p ~ )  '1 k5. 
We recall that our result is valid in the wave-vector re- 

gion for which the inequalities (22) hold. Expression (33) 
should provide a quantitative description of the dependence 
of the residual damping on k for k = (0.5-2) X lo2 cm- '. At 
k = 2 x lo2 cm-' we have ro- lo2 sec-', so that this damp- 
ing can be measured provided, of course, that the possibility 
arises of observing crystallization waves in He3 and of mea- 
suring their amplitude. It must be emphasized here that to 
measure ro we need also that the temperature part of the 
damping be not too large. At low temperatures the main 
contribution t o r ,  is made by collisions with thermal mag- 
nons from the solid He3, since these excitations have the 
lowest velocity. Using the method of Ref. 2, we find 

r T -  [ApJ ( p l - ~ ~ ) ' ]  (Tl f ic )  'k- 

Estimates show that if k = 2X 10' cm-' the value of r, 
becomes comparable with ro at T- mK. 

The existence of surface magnetization can lead to a 
nonmonotonic depend$nce of ro on K. Differentiating (33) 
with respect to k at A (k) = 1 we find that if 

(2-13) sin4 0 ( y M / ~ , c ) ~ c , / c , >  I ,  

then at the points 

ro has a maximum and a minimum (the upper sign corre- 
sponds to the maximum). According to estimates, the condi- 
tion (34) can be satisfied even at atomic thickness of the tran- 
sition ferromagnetic layer. 

In conclusion, the authors thank S. V. Iordanskii for a 
discussion of the work during all stages, and I. A. Fomin for 
helpful critical remarks. 
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